
Dispersive approach to 
nonperturbative QCD

Hsiang-nan Li, Academia Sinica
at YITP, Kyoto
Nov. 1st, 2024

Li, 2408.06738



Conventional QCD approaches 
• QCD observables involve nonpert dynamics. How to handle it?
• Factorization theorem: absorb nonpert dynamics into universal 

PDFs; break down at high powers eventually
• QCD sum rules: simple but hard to control uncertainties from 

assumption of quark-hadron duality, determination of stability 
window in Borel mass; less predictive power

• Lattice QCD, 1st principle but tedious numerics; inapplicable to 
complicated processes ( D -> pi pi,…)

• Effective theories (chiral pert theory,…), models (chiral quark 
model,…)



Our proposal---dispersive approach 
• Adopt dispersion relation like sum rules---based only on analyticity 

of physical observables (rigorousness)
• OPE in Euclidean region calculable to high orders and powers with 

universal condensates (no breakdown, systematical improvement 
of precision)

• Handle dispersion relation as inverse problem---solve integral 
equation directly to get unknown spectral functions with OPE 
inputs (mature mathematical tools available)

• Have shown uniqueness of solution
• Higher predictive power without strong assumptions



Formalism



Contour integration
• Two-current correlator

• Identity from contour integration

vacuum polarization 
function

s

branching cut



Quark side
• Correlator at large        (deep Euclidean region)
• Operator product expansion (OPE) reliable

higher order higher powers

perturbative piece 4-quark condensate
factorized into
product of 2-quark
condensates

nontrivial vacuum

OPE

parameter characterizing
factorization breakdown



Hadron side
Dispersive integral 

contribution
from large 
circle C of 
radius R will 
be cancelled

branch cut caused by 
real intermediate
states due to time-like

(log term)

s

nonperturbative
spectral function perturbative result



Dispersion relation
• Rewrite pert piece as contour integral

• Equality of two sides gives dispersion relation
• Contributions from big circles cancel, and unknown spectral 

function from branch cuts remains

due to analyticity of  perturbation theory 

arbitrary radius



UV subtraction
• Subtracted spectral function

• Maintain low-energy                                                                      
behavior                    at 

• Bear resonance structure the same as
• Circle radius R can be pushed to infinity

• No duality assumed at any finite s 

Kwon et al 2008

arbitrary R turned 
into arbitrary scale

Fredholm equation of the 1st kind



Weakness of sum rules
• Presume existence of ground state, parametrized as pole
• How to handle excited-state contribution?
• Rely on parametrization, quark-hadron duality

• Duality may fail
• Stability in unphysical Borel mass?
• Usually not; rely on discretionary prescription; tune s0 to 

make 70% (30%) perturbative (nonperturbative) contribution   

continuum thresholdobservables: decay constant, mass

equivalent to q, related via Borel transform



Phenomenological applications
Set aside technical detail of solving the integral equation



rho meson spectral function
• OPE input known in the literature

rho meson peak emerges !

solution of 
spectral function

excited states

local duality violation



rho meson mass
• Vary     , find peak location
• Physical solution insensitive to 
• Tiny error, stable solution

• Including condensate variation

• Variable changes 

• Scaling behavior due to disappearance of power corrections at high

stable
physical
solution

scaling (unphysical) region
peak locations drift with 



Excited states 
• To access excited state, ground-state contribution must be deducted 

from correlator, i.e., from spectral function to suppress interference
• Parametrize rho(770) contribution as delta-function

• Subtract it from two sides of dispersion relation
unknown



rho resonances
• To get 2nd excited state, further subtract 

• Adopting BW form, instead of delta-function,         increases by 5% 

valley due to subtraction of ground state

uncertainties involved in lower states 
propagated to higher states, enlarged 
through sequential subtractions



Scalar glueballs
• After checking our formalism, apply it to scalar glueballs

ground-state solution

valley due to subtraction of ground state

subtracted spectral function, cannot resolve fine structure with finite-power inputs



Pseudoscalar glueballs
• For pseudoscalar glueballs

ground-state solution

valley due to subtraction of ground state

glueball-like X(2370)
measured by BESIII 
should be 1st excited state

,



Conclusion 
• Dispersive approach, compared to conventional QSR, is free of arbitrary 

parameters, gives definite predictions with controllable uncertainties
• Applied to spectroscopies of rho and glueballs as test
• Predicted lightest scalar (pseudoscalar) glueball to be admixture of 

f0(1370), f0(1500) and f0(1710) (eta(1760)
• f0(2200) and X(2370) are 1st excited glueball states
• Can also derive x dependence of                                                                

light-cone distribution amplitude                                                                 
(LCDA)

quasi-LCDA
lattice

pion LCDA



Back-up slides



Fredholm integral equation
• Goal is to solve ill-posed integral equation

• How to solve it? Notoriously difficult
• Discretization does not work

unknown spectral density  
to be solved

1st kind of Fredholm integral equation

OPE input



ill-posedness
• Discretizing integral equation fails

• Rows Mij and M(i+1)j become almost identical for fine 
meshes, det(M) ~ 0 

• Matrix M becomes singular;             diverges quickly
• Solution diverges and sensitive to variation of inputs

inputunknowns
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Strategy 
• Suppose           decreases quickly enough
• Expansion into powers of 1/x justified

• Suppose            can be expanded
• Decompose

• Orthogonality  

generalized
Laguerre
polynomials

depend on            at 

true for OPE



Solution 
• Equating coefficients of

• Solution
• True solution can be approached by increasing N, but           

diverges with N
• Additional polynomial gives                correction due to 

orthogonality, beyond considered precision

matrix

unknown
input



Test examples
• Generate mock data from

• Compute matrix M with
• Solution stable for N > 20, becomes oscillatory as N=24 due 

to divergent  



Boundary conditions
• Test choices of       (red: true solution)

• Parameter       determined by boundary conditions of solution 
• Boundary conditions help getting correct solutions

deviation

N=22

almost perfect completely different

=1.2



Resolution 
• implies resolution power
• Test double peak functions

• Fine structure cannot be resolved (ill-posed)

red: true solution 
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