Femtoscopic study of the **D** interaction in heavy-ion collisions

Faisal Etminan

University of Birjand and iTHEMS Nishinomiya-Yukawa workshop-YITP Hadrons and Hadron Interactions in QCD 2024 (HHIQCD2024), Oct. 14 - Nov. 15, 2024, YITP, Kyoto, Japan

دانشگاه بیرجند University of Birjand

Table of Contents

Introduction

- HAL QCD and meson exchange ΩN potentials
- Single-folding potential approach
- $\Omega \alpha$ momentum correlation functions
- Results and discussions
- Summary

≻

This presentation is based on [F. Etminan arXiv:2409.19705v2]

The spin-2 Omega-nucleon (ΩN) state with S = -3 is expected to lack a repulsive core. [F. Etminan et al. NPA 928, 89 2014] [T. Iritani et al., PLB 792,284 2019]

- Strongly attractive interaction in the ⁵S₂ channel reported by HAL QCD Collaboration and Sekihara, Kamiya and Hyodo based on the meson exchanges with effective Lagrangians [T. Sekihara, Y. Kamiya, and T. Hyodo, PRC 98, 015205 2018.]
- One method for studying the hh interaction that is hard to investigate in scattering experiment is measuring the momentum correlation functions in high-energy collisions
- It provides information for effective emission source and interaction potential.
- First measurement of the p-Ω correlation function in heavy-ion collisions is done by STAR experiment at RHIC [K. Morita et al., PRC 94, 031901 2016 [M. P. i Méndez, et al. (2024), arXiv:2409.16747; J. Adam et al. (STAR Coll.), PLB 790, 490 2019

- As the next step in the femtoscopic analyses, h-deuteron correlation functions would be promising [S. Acharya et al. (ALICE Coll.), PRX 14, 031051 2024]
- The production of ΩNN and $\Omega \Omega N$ in ultra-relativistic heavy-ion collisions using the Lattice QCD ΩN , $\Omega \Omega$ potentials studied. [L. Zhang, et al., EPJC 82,1 2022]
- And very recently, the momentum correlation between Λα and Ξα are examined to shed light on the interaction between a hyperon and nucleons (N). [A. Jinno, et al, PRC 110, 014001 2024; Y. Kamiya, et al, arXiv:2409.13207]

• Therefore I want to explore the $\Omega \alpha$ correlation function in the relativistic heavy ion collisions to probe the nature of ΩN interactions as an independent source of information.

+ Also, $\phi \alpha$ is in preparation.

HAL QCD ΩN potential

From Ref. [T. Iritani et al., PLB 792, 284 2019]

S-wave and spin $2\Omega N$ potential in configuration space at nearly physical quark masses.

► The discrete lattice potential is fitted by an analytic function

$$V_{\Omega N}^{HAL}(r) = b_1 e^{\left(-b_2 r^2\right)} + b_3 \left(1 - e^{-b_4 r^2}\right) \left(rac{e^{-m_\pi r}}{r}
ight)^2,$$

Gauss functions describe the short-range and the Yukawa functions explain the meson exchange picture at medium to long-range distances of the potential.

➤ Discrete lattice results are fitted reasonably well, $\chi^2/d.o.f \simeq 1$, with four different sets of parameters $b_{1,2,3}$ and b_4 , they are given in Table 1 of [T. Iritani et al., PLB 792,284 2019]

- For imaginary-time slices t/a = 11, 12, 13, 14 and a = 0.0846 fm is the lattice spacing. Pion mass is taken from the lattice simulation, $m_{\pi} = 146$ MeV.
- ► For this potential, the scattering length, effective range and binding energy, respectively are $a_0^{\Omega N} = 5.30$ fm, $r_0^{\Omega N} = 1.26$ fm and $B^{\Omega N} = 1.54$ MeV.

HAL QCD ΩN potential

★ HAL QCD Ω*N* potential, $V_{\Omega N}^{HAL}$ at the imaginary-time distances t/a = 11, 12, 13, 14 from Ref.[T. Iritani et al., PLB 792,284 2019]

• ΩN potential based on the meson exchanges model (solid black line), Ref.[T. Sekihara, Y. Kamiya, and T. Hyodo, PRC 98, 015205 2018.]

★ It should be mentioned that the HAL potentials are only in ${}^{5}S_{2}$ channel but in the case of ME potential model the coupled channels effects to $\Omega N {}^{5}S_{2}$ interaction are imposed. [T. Sekihara, Y. Kamiya, and T. Hyodo, PRC 98, 015205 2018.]

Meson Excange (ME) ΩN potential

≻

Developed by Sekihara, Kamiya and Hyodo Ref based the meson exchanges (MS) potential, [T. Sekihara, Y. Kamiya, and T. Hyodo, PRC 98, 015205 2018.]

$$V_{\Omega N}^{ME}(r) = \frac{1}{4\pi r} \sum_{n=1}^{9} C_n \left(\frac{\Lambda^2}{\Lambda^2 - \mu_n^2}\right)^2 \tag{1}$$

$$\left(\exp\left(-\mu_{n}r\right)-\frac{\left(\Lambda^{2}-\mu_{n}^{2}\right)r+2\Lambda}{2\Lambda}\exp\left(-\Lambda r\right)\right)$$

- Cutoff parameter $\Lambda = 1$ GeV, $\mu_n = 100 n$ MeV and parameters C_n are taken directly from Table V of [T. Sekihara, Y. Kamiya, and T. Hyodo, PRC 98, 015205 2018.].
- They formulated an equivalent local potential that reproduces $\Omega N^5 S_2$ scattering length 7.4 \pm 1.6 fm at the time range t/a = 11 of the lattice simulations.

- > Long range part is build on the exchanges of the η meson and correlated two mesons in the scalar-isoscalar channel (Known as " σ ") The short-range part is constructed by the contact interaction.
- Coupled channels effect to ΩN⁵S₂ interaction by adding the box diagrams with intermediate ΛΞ, ΣΞ and ΛΞ channels.
- > They concluded that even though the elimination of these channels induces the energy dependence of the single-channel ΩN interaction, this effect is not significant.

HAL QCD and ME ΩN potential

★ HAL QCD Ω*N* potential, $V_{\Omega N}^{HAL}$ at the imaginary-time distances t/a = 11, 12, 13, 14 from Ref.[T. Iritani et al., PLB 792,284 2019]

 \bullet ΩN potential based on the meson exchanges model (solid black line), Ref. [T. Sekihara, Y.

Kamiya, and T. Hyodo, PRC 98, 015205 2018.]

$\Omega \alpha$ potential from single-folding potential approach

The effective $\Omega + \alpha$ nuclear potential is approximated by the single-folding model [G. Satchler and W. Love, Phys. Rep. 55, 183 (1979)]

$$V_{\Omega\alpha}(\mathbf{r}) = \int \rho(\mathbf{r}') \, V_{\Omega N}(|\mathbf{r} - \mathbf{r}'|) \, d\mathbf{r}', \qquad (2)$$

- ► $V_{\Omega N}$ ($|\mathbf{r} \mathbf{r}'|$) is ΩN potential between the Ω particle at \mathbf{r}' and the nucleon at \mathbf{r} [F. Etminan, Chin. Phys. C 44, 054106 (2020)]
- ► And $\rho(\mathbf{r'})$ is the nucleon density function in α -particle at a distance $\mathbf{r'}$ from its center-of-mass where can be taken as[K. S. Myint and Y. Akaishi, PTP. 117,251 1994],

$$\rho(r') = 4\left(\frac{4\beta}{3\pi}\right)^{3/2} \exp\left(-\frac{4}{3}\beta r'^2\right),\tag{3}$$

► β is a constant and it is defined by the rms radius of ⁴He, i.e, $r_{r.m.s} = \frac{3}{\sqrt{8\beta}} = 1.47$ fm.

• $V_{\Omega\alpha}(r)$, the resultant single-folding potential as functions of distance between Ω and α . Potentials are obtained using ΩN potential models of HAL QCD at t/a = 11 (red circle) and meson exchanges model (black square).

$\Omega \alpha$ Correlation function KP formula

The two-particle momentum correlation function C_q is defined by Koonin-Pratt (KP) formula[A. Ohnishi, et al., NPA 954, 294 2016]

$$C(q) = \int d\mathbf{r} S(\mathbf{r}) \left| \Psi^{(-)}(\mathbf{r}, \mathbf{q}) \right|^2, \qquad (4)$$

► $S(r) = \exp\left(-\frac{r^2}{4R^2}\right) / (4\pi R^2)^{3/2}$ is a single particle source function that it is assumed to be spherical and static Gaussian with radius (or source size) *R*.

The relative wave function $\Psi^{(-)}$ contains only the S-wave interaction effect. The resulting correlation function can be written as

$$C(q) = 1 + \int_0^\infty 4\pi r^2 \, dr \, S(r) \left[|\psi(q,r)|^2 - |j_0(qr)|^2 \right], \tag{5}$$

► $j_{l=0}(qr) = \sin(qr)/qr$ is the spherical Bessel function and $\psi(k, r)$ is the S- wave scattering wave function. For a given two-body $\Omega \alpha$ potential it can be obtained straightforwardly by solving the Schrödinger equation.

$\Omega \alpha$ Correlation function LL formula

- When the source size is much larger than the interaction range, it is possible to employ the asymptotic behaviour of the wave function,
- ψ (q, r) → j₀ (qr) + f (q) exp (iqr) / r, which leads to much more simple formula the Lednicky-Lyuboshits (LL) approach, [A. Ohnishi, et al., NPA 954, 294 2016]
 [R. Lednicky and V. L. Lyuboshits, Yad. Fiz. 35, 1316 1981]

$$C_{LL}(q) = 1 + \frac{|f(q)|^2}{2R^2} F_0\left(\frac{r_0}{R}\right) + \frac{2\text{Re}\,f(q)}{\sqrt{\pi}R} F_1(2qR) - \frac{\text{Im}\,f(q)}{R} F_2(2qR)\,, \tag{6}$$

- $f(q) \approx 1/(-1/a_0 + r_0q^2/2 iq)$ is scattering amplitude which can be calculated with the effective range expansion (ERE) formula
- $F_1(x) = \int_0^x dt e^{t^2 x^2} / x, F_2(x) = \left(1 e^{-x^2}\right) / x,$

≻

• the factor $F_0(x) = 1 - x/(2\sqrt{\pi})$ is a correction for the deviation of the true wave function from the asymptotic form.

Numerical Results

- For phenomenological application I fit $V_{\Omega\alpha}(r)$ to a Wood-Saxon motivated by common Dover-Gal model of potential[C. Dover and A. Gal, Ann. Phys. 146, 309 1983.] $V_{\Omega\alpha}^{fit}(r) = -V_0 \left[1 + \exp\left(\frac{r-R}{c}\right)\right]^{-1}$,
- V_0 is known as the depth parameter, $R = 1.1A^{1/3}$ with A = 4 being the mass number of α and c is known as the surface diffuseness.
- By using the fit functions as input, the Schrödinger equation were solved in the infinite volume to extract binding energy and scattering observables.

 $\mathbf{\Phi} = \sqrt{2\mu E}$ and μ is the reduced mass of $\Omega \alpha$ system

Numerical Results

• Low-energy part of $\Omega \alpha$ phase shifts provides the scattering length and the effective range by employing the ERE formula up to the next-leading-order (NLO),

$$q \cot \delta_0 = -\frac{1}{a_0} + \frac{1}{2} r_0 q^2 + \mathcal{O}\left(q^4\right) ..$$
⁽⁷⁾

Model	V_0 (MeV)	<i>R</i> (fm)	<i>c</i> (fm)	<i>a</i> 0(fm)	<i>r</i> ₀ (fm)	$B_{\Omega lpha}({\sf MeV})$	$B_{\Omega^- \alpha^{++}}$ (MeV)
t/a = 11	61.0	1.74	0.47	0.79(0.63)	2.81(5.80)	22.9(23.3)	24.2(24.6)
Meson exchange	33.6	1.67	0.33	2.65(2.60)	1.30(1.28)	6.4(6.6)	7.5(7.7)

The experimental masses of α and Ω, 3727.38 MeV/c and 1672.45 MeV/c respectively.

The results corresponding to Ω mass value derived by the HAL QCD Collaboration 1711.5 MeV/c are given between parenthesis.

igoplus in the area of low momentum $q \lesssim 100$ MeV/c, the results for two potentials are different.

 \blacklozenge the HAL potential model, is more attractive than ME potential model, thus it gives enhancement of $C_{\Omega\alpha}$ (q).

• Nevertheless, with the increase of the source size , the difference between the $C_{\Omega\alpha}(q)$ s decreases until they are almost same for R = 5 fm.

Therefore, the future measurement of Ω _Ω correlation function from a small source at small relative momentum, substantially can be constrained by ΩN interaction at high densities.

Numerical Results

Corrected by Yuki Kamiya-san

Numerical Results, KP vs. LL formula

★ In principle, the LL formula can not be a good approximation where the source size is smaller than the interaction range (for interactions that include nuclei can be about \gtrsim 3 fm) [A. Jinno, et al, PRC 110, 014001 2024; Y. Kamiya, et al, arXiv:2409.13207].

• On the other hand, the LL approximation is consistent with KP formula for relatively large source size, i.e. $R \ge 3$ fm.

Note that here, only the strong interaction is switched on.

• $\Omega \alpha$ potential is made from two available ΩN interactions,

- First principles HAL QCD HAL
- and developed meson exchange potentials, in the latter potential coupled channels effect are considered.
- $\Omega + \alpha$ potentials were obtained by using SFP model and they were fitted by a Woods-Saxon type functions.
- Employing two $\Omega \alpha$ potentials, correlation functions are calculated using KP formula for three different source sizes, R = 1, 3 fm and 5 fm.
- The difference of potentials is appear in the correlation functions by small source size around 1 – 3 fm, with and without considering the Coulomb interactions,
- while for source size R ≥ 5 fm the correlation functions tended to become same for both Ωα potentials with Coulomb interactions.

- correlation functions is examined within the Lednicky-Lyuboshits approach
- It was seen as expected, the LL formula by small source (1 fm) seriously differ from KP formula in the low-momentum region.
- In conclusion, since the correlation functions are sensitive to Ωα potentials behavior and Coulomb interactions, we could get important information about effects of Ω particle in dense nuclear medium.

- The Koonin-Pratt formula is valid while the two correlated particles can be considered as well separated point-like particle.
- In the case of composite particle like α, since there is a possibility of simultaneous formation of alpha particle the effective source size must be larger than those with single hadron emissions[S. Mrówczyński and P. Sloń, PRC 104, 024909 2021].
- So basically we are facing a 5-body problem of two protons, two neutrons and Ω and a emergence of alpha particle and production of Ω - α correlation take place at same time,
- This effect should be considered in future works.

Exploring the *p*-*n* interaction via femtoscopic study

Exploring the ϕ - α interaction via femtoscopic study

Exploring the *p*-*n* interaction via femtoscopic study

$\phi \alpha$ potential from single-folding potential approach

← From [I. Filikhin, et al.,2024 arXiv:2408.13415]

★ The rms matter radius of ⁴*He* is measured to be 1.70 ± 0.14 fm [R. Wang, C.Han, and X. Chen, PRC 109, L012201 2024] [Y. Lyu, et al. PRD 106, 074507 2022]

★ And the second three based on the QMC model of ϕ -N potentials for three values of the cutoff parameter Λ_K : 2 GeV (dash-dotted green line), 3 GeV (dash-dot-dotted blue line) and 4 GeV (dashed brown line), where the rms matter radius of ⁴He is chosen to be 1.56 fm. [J. J. Cobos-Martinez, et al. PRC 96, 035201 2017]

Exploring the ϕ - α interaction via femtoscopic study

Model		<i>rms</i> (fm)	V_0 (MeV)	<i>R</i> (fm)	c (fm)	a ₀ (fm)	<i>r</i> ₀ (fm)	$B_{\phi-\alpha}$ (MeV)
$U_{\phi-lpha}^{HAL}$		1.84	43	1.36	0.55	4.0	1.7	2.97
		1.70	52	1.30	0.55	3.4	1.5	4.78
		1.56	60	1.26	0.45	3.0	1.3	5.98
$U^{QMC}_{\phi-lpha}$	$\Lambda_K = 2 \text{ (GeV)}$	1.56	21	1.94	0.33	6.7	2.0	0.80
	$\Lambda_K = 3 \text{ (GeV)}$	1.56	28	1.94	0.33	3.9	1.7	3.19
	$\Lambda_K = 4 \text{ (GeV)}$	1.56	35	1.80	0.37	3.4	1.6	4.71

ϕ - α Numerical Results

ϕ - α Numerical Results, KP vs. LL formula

Thanks **HHIQCD2024** organizers for organizing such wonderful event!

Thank You for your attention!