Femtoscopic study of the Ωα interaction in heavy-ion collisions

Faisal Etminan

University of Birjand and iTHEMS Nishinomiya-Yukawa workshop-YITP Hadrons and Hadron Interactions in QCD 2024

(HHIQCD2024), Oct. 14 - Nov. 15, 2024, YITP, Kyoto, Japan

دانشگاه یب جند **University of Biriand**

Table of Contents

o Introduction

- \bullet HAL QCD and meson exchange ΩN potentials
- **•** Single-folding potential approach
- \bullet $\Omega\alpha$ momentum correlation functions
- Results and discussions
- **•** Summary

➤

1 This presentation is based on [F. Etminan arXiv:2409.19705v2]

The spin-2 Omega-nucleon (ΩN) state with $S = -3$ is expected to lack a repulsive core. [F. Etminan et al. NPA 928, 89 2014] [T. Iritani et al.,PLB 792,284 2019]

- Strongly attractive interaction in the ${}^{5}S_{2}$ channel reported by HAL QCD Collaboration and Sekihara, Kamiya and Hyodo based on the meson exchanges with effective Lagrangians [T. Sekihara, Y. Kamiya, and T. Hyodo,PRC 98, 015205 2018.]
- ➤ One method for studying the hh interaction that is hard to investigate in scattering experiment is measuring the momentum correlation functions in high-energy collisions
- ➤ It provides information for effective emission source and interaction potential.

 \blacktriangleright First measurement of the p-Ω correlation function in heavy-ion collisions is done by STAR experiment at RHIC [K. Morita et al., PRC 94, 031901 2016 [M. P. i Méndez, et al. (2024), arXiv:2409.16747; J. Adam et al. (STAR Coll.), PLB 790, 490 2019

Introduction

- ➤ As the next step in the femtoscopic analyses, h-deuteron correlation functions would be promising [S. Acharya et al. (ALICE Coll.), PRX 14, 031051 2024]
- \blacktriangleright The production of ΩNN and ΩΩN in ultra-relativistic heavy-ion collisions using the Lattice QCD ΩN , $\Omega \Omega$ potentials studied. [L. Zhang, et al., EPJC 82,1 2022]
- And very recently, the momentum correlation between $\Lambda \alpha$ and $\Xi \alpha$ are examined to shed light on the interaction between a hyperon and nucleons (N). [A. Jinno, et al, PRC 110, 014001 2024; Y. Kamiya, et al, arXiv:2409.13207]

 \triangle Therefore I want to explore the $\Omega \alpha$ correlation function in the relativistic heavy ion collisions to probe the nature of ΩN interactions as an independent source of information.

 \triangleleft Also, $\phi \alpha$ is in preparation.

HAL QCD ΩN potential

► From Ref. [T. Iritani et al., PLB 792, 284 2019]

S-wave and spin $2\Omega N$ potential in configuration space at nearly physical quark masses.

➤ The discrete lattice potential is fitted by an analytic function

$$
V_{\Omega N}^{H A L}(r) = b_1 e^{(-b_2 r^2)} + b_3 \left(1 - e^{-b_4 r^2}\right) \left(\frac{e^{-m_\pi r}}{r}\right)^2,
$$

➤ Gauss functions describe the short-range and the Yukawa functions explain the meson exchange picture at medium to long-range distances of the potential.

▶ Discrete lattice results are fitted reasonably well, $\chi^2/d.o.f \simeq 1$, with four different sets of parameters $b_{1,2,3}$ and b_4 , they are given in Table 1 of $[T. Iritani]$ et al.,PLB 792,284 2019]

- ► For imaginary-time slices $t/a = 11, 12, 13, 14$ and $a = 0.0846$ fm is the lattice spacing. Pion mass is taken from the lattice simulation, $m_{\pi} = 146$ MeV.
- ➤ For this potential, the scattering length, effective range and binding energy, respectively are $a_0^{\Omega N} = 5.30$ fm, $r_0^{\Omega N} = 1.26$ fm and $B^{\Omega N} = 1.54$ MeV.

HAL QCD ΩN potential

 \blacklozenge HAL QCD ΩN potential, $V_{\Omega N}^{HAL}$ at the imaginary-time distances $t/a = 11, 12, 13, 14$ from Ref.[T. Iritani et al.,PLB 792,284 2019]

 \triangle ΩN potential based on the meson exchanges model (solid black line), Ref.[T. Sekihara, Y. Kamiya,

and T. Hyodo,PRC 98, 015205 2018.]

 \triangleq It should be mentioned that the HAL potentials are only in $^{5}S_{2}$ channel but in the case of ME potential model the coupled channels effects to ΩN^5S_2 interaction are imposed. [T. Sekihara, Y. Kamiya, and T. Hyodo,PRC 98, 015205 2018.]

Meson Excange (ME) ΩN potential

➤

➤ Developed by Sekihara, Kamiya and Hyodo Ref based the meson exchanges (MS) potential, [T. Sekihara, Y. Kamiya, and T. Hyodo,PRC 98, 015205 2018.]

$$
V_{\Omega N}^{ME}(r) = \frac{1}{4\pi r} \sum_{n=1}^{9} C_n \left(\frac{\Lambda^2}{\Lambda^2 - \mu_n^2}\right)^2
$$
\n
$$
\left(\frac{(\Lambda^2 - \mu_n^2) r + 2\Lambda}{\Lambda^2 - \mu_n^2} \right)^2
$$
\n(1)

$$
\left(\exp\left(-\mu_n r\right)-\frac{\left(\Lambda^2-\mu_n^2\right)r+2\Lambda}{2\Lambda}\exp\left(-\Lambda r\right)\right)
$$

- ► Cutoff parameter $\Lambda = 1$ GeV, $\mu_n = 100$ n MeV and parameters C_n are taken directly from Table V of [T. Sekihara, Y. Kamiya, and T. Hyodo, PRC 98, 015205 2018.].
- \blacktriangleright They formulated an equivalent local potential that reproduces ΩN ⁵ S_2 scattering length 7.4 \pm 1.6 fm at the time range $t/a = 11$ of the lattice simulations.
- \blacktriangleright Long range part is build on the exchanges of the η meson and correlated two mesons in the scalar-isoscalar channel (Known as " σ ") The short-range part is constructed by the contact interaction.
- \blacktriangleright Coupled channels effect to ΩN ⁵S₂ interaction by adding the box diagrams with intermediate $Λ\Xi$, $\Sigma\Xi$ and $Λ\Xi$ channels.
- ➤ They concluded that even though the elimination of these channels induces the energy dependence of the single-channel ΩN interaction, this effect is not significant.

HAL QCD and ME ΩN potential

 \blacklozenge HAL QCD ΩN potential, $V_{\Omega N}^{HAL}$ at the imaginary-time distances $t/a = 11, 12, 13, 14$ from Ref.[T. Iritani et al.,PLB 792,284 2019]

 \blacklozenge ΩN potential based on the meson exchanges model (solid black line), Ref. [T. Sekihara, Y.

Kamiya, and T. Hyodo,PRC 98, 015205 2018.]

Ωα potential from single-folding potential approach

 \blacktriangleright The effective $\Omega + \alpha$ nuclear potential is approximated by the single-folding model [G. Satchler and W. Love, Phys. Rep. 55, 183 (1979)]

$$
V_{\Omega\alpha}(r) = \int \rho(r') V_{\Omega N}(|\mathbf{r} - \mathbf{r}'|) d\mathbf{r}',
$$
\n(2)

- ► $V_{\Omega N}(|\mathbf{r} \mathbf{r}'|)$ is ΩN potential between the Ω particle at \mathbf{r}' and the nucleon at r [F. Etminan, Chin. Phys. C 44, 054106 (2020)]
- And $\rho(r')$ is the nucleon density function in α -particle at a distance r' from its center-of-mass where can be taken as[K. S. Myint and Y. Akaishi, PTP. 117,251 1994],

$$
\rho(r') = 4\left(\frac{4\beta}{3\pi}\right)^{3/2} \exp\left(-\frac{4}{3}\beta r'^2\right),\tag{3}
$$

 \triangleright β is a constant and it is defined by the rms radius of ⁴He, i.e, $r_{r.m.s} = \frac{3}{\sqrt{8\beta}} = 1.47$ fm.

 $\blacklozenge \frac{1}{\sqrt{2}}$ (r), the resultant single-folding potential as functions of distance between Ω and α . Potentials are obtained using ΩN potential models of HAL QCD at $t/a = 11$ (red circle) and meson exchanges model (black square).

Ωα Correlation function KP formula

 \blacktriangleright The two-particle momentum correlation function C_q is defined by Koonin-Pratt (KP) formula[A. Ohnishi, et al., NPA 954, 294 2016]

$$
C(q) = \int d\mathbf{r} S(\mathbf{r}) \left| \Psi^{(-)}(\mathbf{r}, \mathbf{q}) \right|^2, \tag{4}
$$

► $S(r) = \exp\left(-\frac{r^2}{4R^2}\right) / \left(4\pi R^2\right)^{3/2}$ is a single particle source function that it is assumed to be spherical and static Gaussian with radius (or source size) R .

 \blacktriangleright The relative wave function $\Psi^{(-)}$ contains only the S-wave interaction effect. The resulting correlation function can be written as

$$
C(q) = 1 + \int_0^{\infty} 4\pi r^2 dr S(r) \left[|\psi(q, r)|^2 - |j_0(qr)|^2 \right],
$$
 (5)

 \blacktriangleright $j_{l=0}$ (qr) = sin (qr) /qr is the spherical Bessel function and ψ (k, r) is the S- wave scattering wave function. For a given two-body $\Omega \alpha$ potential it can be obtained straightforwardly by solving the Schrödinger equation.

Ωα Correlation function LL formula

➤ When the source size is much larger than the interaction range, it is possible to employ the asymptotic behaviour of the wave function,

 $\triangleright \psi(q,r) \rightarrow j_0(qr) + f(q) \exp(iqr)/r$, which leads to much more simple formula the Lednicky-Lyuboshits (LL) approach, [A. Ohnishi, et al., NPA 954, 294 2016] [R. Lednicky and V. L. Lyuboshits,Yad. Fiz. 35, 1316 1981]

$$
C_{LL}(q) = 1 + \frac{|f(q)|^2}{2R^2} F_0\left(\frac{r_0}{R}\right) + \frac{2\mathrm{Re}\,f(q)}{\sqrt{\pi}R} F_1(2qR) - \frac{\mathrm{Im}\,f(q)}{R} F_2(2qR), \tag{6}
$$

- $f\left(\mathsf{q}\right) \approx 1/\left(-1/a_{0}+r_{0}\mathsf{q}^{2}/2-i\mathsf{q}\right)$ is scattering amplitude which can be calculated with the effective range expansion (ERE) formula
- $F_1(x) = \int_0^x dt e^{t^2 x^2}/x, F_2(x) = \left(1 e^{-x^2}\right)/x,$

➤

the factor $F_0(x) = 1 - x/(2\sqrt{\pi})$ is a correction for the deviation of the true wave function from the asymptotic form.

Numerical Results

- For phenomenological application I fit $V_{Q\alpha}(r)$ to a Wood-Saxon motivated by common Dover-Gal model of potential^[C]. Dover and A. Gal, Ann. Phys. 146, 309 1983.] $V_{\Omega\alpha}^{fit}\left(r\right) = -V_0 \left[1 + \exp\left(\frac{r - R}{c}\right)\right]^{-1},$
- \bullet V₀ is known as the depth parameter, $R = 1.1A^{1/3}$ with $A = 4$ being the mass number of α and c is known as the surface diffuseness.
- By using the fit functions as input, the Schrödinger equation were solved in the infinite volume to extract binding energy and scattering observables.

Numerical Results

I Low-energy part of $\Omega \alpha$ phase shifts provides the scattering length and the effective range by employing the ERE formula up to the next-leading-order (NLO),

$$
q \cot \delta_0 = -\frac{1}{a_0} + \frac{1}{2} r_0 q^2 + \mathcal{O}(q^4) \,. \tag{7}
$$

 \blacklozenge The experimental masses of α and Ω , 3727.38 MeV/c and 1672.45 MeV/c respectively.

The results corresponding to Ω mass value derived by the HAL QCD Collaboration 1711.5 MeV/c are given between parenthesis.

in the area of low momentum $q \leq 100$ MeV/c, the results for two potentials are different.

the HAL potential model, is more attractive than ME potential model, thus it gives enhancement of $C_{Q\alpha}(q)$.

Nevertheless, with the increase of the source size, the difference between the $C_{\Omega\alpha}$ (q)s decreases until they are almost same for $R = 5$ fm.

Therefore, the future measurement of $\Omega \alpha$ correlation function from a small source at small relative momentum, substantially can be constrained by ΩN interaction at high densities.

Numerical Results

Corrected by Yuki Kamiya-san

Numerical Results, KP vs. LL formula

In principle, the LL formula can not be a good approximation where the source size is smaller than the interaction range (for interactions that include nuclei can be about $\gtrsim 3$ fm) [A. Jinno, et al, PRC 110, 014001 2024; Y. Kamiya, et al, arXiv:2409.13207].

On the other hand, the LL approximation is consistent with KP formula for relatively large source size, i.e. $R \ge 3$ fm.

Note that here, only the strong interaction is switched on.

 Ω Ω α potential is made from two available ΩN interactions,

- First principles HAL QCD HAL
- and developed meson exchange potentials, in the latter potential coupled channels effect are considered.
- $\Omega + \alpha$ potentials were obtained by using SFP model and they were fitted by a Woods-Saxon type functions.
- **Employing two** $\Omega \alpha$ **potentials, correlation functions are calculated using KP** formula for three different source sizes, $R = 1.3$ fm and 5 fm.
- The difference of potentials is appear in the correlation functions by small source size around $1 - 3$ fm, with and without considering the Coulomb interactions,
- while for source size $R \geq 5$ fm the correlation functions tended to become same for both $\Omega \alpha$ potentials with Coulomb interactions.
- correlation functions is examined within the Lednicky-Lyuboshits approach
- \bullet It was seen as expected, the LL formula by small source (1 fm) seriously differ from KP formula in the low-momentum region.
- **In conclusion, since the correlation functions are sensitive to** $\Omega \alpha$ **potentials** behavior and Coulomb interactions, we could get important information about effects of Ω particle in dense nuclear medium.
- The Koonin-Pratt formula is valid while the two correlated particles can be considered as well separated point-like particle.
- **In the case of composite particle like** α **, since there is a possibility of simultaneous** formation of alpha particle the effective source size must be larger than those with single hadron emissions[5] Mrówczyński and P. Sloń,PRC 104, 024909 2021].
- \bullet So basically we are facing a 5-body problem of two protons, two neutrons and Ω and a emergence of alpha particle and production of Ω - α correlation take place at same time,
- **•** This effect should be considered in future works.

Exploring the ϕ - α interaction via femtoscopic study

Exploring the ϕ - α interaction via femtoscopic study

Exploring the ϕ - α interaction via femtoscopic study

ϕ _{α} potential from single-folding potential approach

 \blacklozenge From [I. Filikhin, et al., 2024 arXiv: 2408.13415]

The rms matter radius of ⁴ He is measured to be 1.70 \pm 0.14 fm [R. Wang, C.Han, and X. Chen, PRC 109, L012201 2024] [Y. Lyu, et al. PRD 106, 074507 2022]

And the second three based on the QMC model of ϕ -N potentials for three values of the cutoff parameter Λ_K : 2 GeV (dash-dotted green line), 3 GeV (dash-dot-dotted blue line) and 4 GeV (dashed brown line), where the rms matter radius of ${}^{4}He$ is chosen to be 1.56 fm. [J. J. Cobos-Martinez, et al. PRC 96, 035201 2017]

Exploring the ϕ - α interaction via femtoscopic study

ϕ-α Numerical Results

ϕ-α Numerical Results, KP vs. LL formula

Thanks HHIQCD2024 organizers for organizing such wonderful event!

Thank You for your attention!