

Lattice QCD applications of optimised meson operators in the distillation framework

HHIQCD 2024, Nishinomiya-Yukawa Workshop, YITP, Kyoto University

Jochen Heitger, University of Münster, ITP

living.knowledge

Topics:

Lattice QCD

 \hookrightarrow Hadron Spectroscopy

 \hookrightarrow Distillation

 \hookrightarrow Profiles

 \hookrightarrow Applications

Who is involved:

- J. Finkenrath, CERN
- F. Knechtli, U. Wuppertal
- T. Korzec, U. Wuppertal
- J. Neuendorf, J. H., U. Münster
- M. Peardon, Trinity College Dublin
- R. Höllwieser, A. Risch, U. Wuppertal
- L. Struckmeier, U. Wuppertal
- J.A. Urrea-Niño, U. Wuppertal

Outline:

- 1. Motivation & Basics
- 2. Distillation
- 3. Distillation profiles
- 4. Examples: Charmonium spectroscopy
- 5. Examples: *D* and *D*^{*} mesons
- 6. Profiles and momenta
- 7. Further applications
- 8. Summary & Outlook

Scattering and resonances

Most hadrons = Resonances, decaying strongly to lighter hadrons

Optimised meson operators in the distillation framework

Scattering and resonances

A scattering process such as "two particles" \rightarrow "two particles" happens in real time In lattice QCD, we work in Euclidean (imaginary) time

- Perfect for spectroscopy \leftrightarrow Systematically improvable, first-principles calculations
- However: No direct access to scattering
- Lüscher's idea [M. Lüscher, NPB 354 (1991) 531]: Compute the two-particle spectrum in a *finite volume* and solve an equation to find the phase shifts and infer the resonance parameters
- Gives rise to a well-established workflow:

Lattice QCD: Compute correlation matrix

 $\stackrel{\text{GEVP}}{\longrightarrow}$ Obtain finite-volume spectrum

Lüscher quant. cond.

Determine scattering amplitudes

 \longrightarrow Poles, couplings, ...

Scattering and resonances

A scattering process such as "two particles" \rightarrow "two particles" happens in real time In lattice QCD, we work in Euclidean (imaginary) time

- Perfect for spectroscopy \leftrightarrow Systematically improvable, first-principles calculations
- However: No direct access to scattering
- Lüscher's idea [M. Lüscher, NPB 354 (1991) 531]: Compute the two-particle spectrum in a *finite volume* and solve an equation to find the phase shifts and infer the resonance parameters
- Practical "window" challenge: (1.) Effective masses $am_{eff} = \ln \left[C_{ij}(t)/C_{ij}(t+a)\right]$ approach ground state energy E_0 only at *large t*; (2.) Exponential *increase* of statistical errors at *large t*
- ⇒ Need operators with large overlaps onto eigenstates to get early plateaus already at *small t* (large variational basis, smearing); similar issue affects quark-line disconnected diagrams
- → We use quark smearing called distillation [M. Peardon et al., PRD 80 (2009) 054506] with profiles [F. Knechtli, T. Korzec, M. Peardon, J.A. Urrea-Niño, PRD 106 (2022) 034501]

Spectroscopy on the lattice

Lattice QCD is very good at computing Euclidean (time-slice) correlation functions (CFs)

$$C(t) = \left\langle O(t) O^{\dagger}(0) \right\rangle \stackrel{\text{path int. repr.}}{\longleftrightarrow} \left\langle \Omega \left| O(t) \hat{O}^{\dagger}(0) \right| \Omega \right\rangle$$

where the "operator" O is a (temporally) local combination of fields and $|\Omega\rangle$ the vacuum state

• Judiciously designed operators O^{\dagger} create states of interest

$$O = O [\overline{\psi}(t), \psi(t), U(t)]$$

 Above path integral expression for *C*(*t*) is related to an underlying QFT with Hamiltonian ℍ and complete set of states |*n*⟩:

$$\mathbb{H}|n\rangle = E_n|n\rangle \qquad \langle n|m\rangle = \delta_{nm} \qquad \sum_n |n\rangle\langle n| = \mathbb{1}$$

• An important consequence of this connection is the "spectral decomposition" that allows extracting the (finite-volume) energy eigenstates from C(t) acc. to

$$\langle O(t) O^{\dagger}(0) \rangle = \sum_{n} |c_n|^2 e^{-E_n t}$$

with matrix elements called overlaps

$$c_n = \langle n | \hat{O}^{\dagger} | \Omega \rangle$$

Symmetries

Consider:

A change of variables, under which the action of the theory is invariant, s.th.

 $\left\langle O(t)\,O^{\dagger}(0)\right\rangle \;=\; \left\langle O'(t)\,O'^{\dagger}(0)\right\rangle$

- In QFT this means that some operator $\mathbb U$ commutes with $\mathbb H$
 - \rightarrow Energy eigenstates can be chosen to be also eigenstates of $\mathbb U$

$$\mathbb{H}|n\rangle = E_n|n\rangle \implies \mathbb{U}\mathbb{H}|n\rangle = E_n\mathbb{U}|n\rangle \implies \mathbb{H}\underbrace{\mathbb{U}|n\rangle}_{=|n\rangle'} = E_n\underbrace{\mathbb{U}|n\rangle}_{=|n\rangle'}$$

- If $|n\rangle \neq |n\rangle'$, we have a degeneracy of eigenstates
- If O is chosen carefully, then $\hat{O}^{\dagger}|0\rangle$ is an eigenstate of \hat{U} and orthogonal to all states in different symmetry channels
 - \Rightarrow $c_n = 0$ for all $|n\rangle$ of a different symmetry channel than O

Symmetries: Flavour

Nature has no exact flavour symmetry, but an approximate SU(2), or even SU(3); e.g., $N_f = 3 + 1$ QCD (we'll come back to it later) obeys

$$\begin{pmatrix} u \\ d \\ s \end{pmatrix} \to V \begin{pmatrix} u \\ d \\ s \end{pmatrix} \qquad (\bar{u}, \bar{d}, \bar{s}) \to (\bar{u}, \bar{d}, \bar{s}) V^{\dagger} \qquad V \in \mathrm{SU}(3)$$

Symm. trafo leaves the action invariant \Rightarrow Energy eigenstates can be labeled by $|D, Y, I, I_3\rangle$

J. Heitger

Optimised meson operators in the distillation framework

Tackling excited states

Well-proven method is to solve a GEVP = Generalized Eigenvalue Problem \rightarrow Recipe:

[Michael & Teasdale, 1983, Lüscher & Wolff, 1990; Blossier at al., 2009]

- Assume we have several operators for the same symmetry channel, i.e. $O_1, O_2, \ldots, O_{N_{op}}$
- Compute a correlation matrix with elements $C_{ij}(t) = \langle O_i(t) O_j^{\dagger}(0) \rangle$
- Then the **generalised eigenvalues** $\lambda_n(t, t_0)$ solving the GEVP equation

$$C(t)V_n = \lambda_n C(t_0)V_n$$
 behave as $\lambda_n(t, t_0) = e^{-(t-t_0)E_n} \times \left\{1 + e^{-(t-t_0)\Delta_n}\right\}$

But then a variational basis with operators that have "good" (= large) overlaps

$$\langle n | \hat{O}_i^{\dagger} | \Omega \rangle \propto [C(t_0) V_n(t, t_0)]_i$$

with all states is required \rightarrow Excited spectra: large bases of operators with appropriate structures

The cubic group

Quantum numbers J^{PC} of states are defined by their transf. behaviour, where P and C are unaffected by discretisation, while J is related to dimension of an irreducible representation (irrep) of SO(3)

- Rotations on the lattice are characterised by the cubic group $O \simeq S_4$
- Subduced representations are known; J is now no longer unique

J	Dimension	Representation
0	1	A ₁
1	3	<i>T</i> ₁
2	5	$E \oplus T_2$
3	7	$A_2 \oplus T_1 \oplus T_2$
4	9	$A_1 \oplus E \oplus T_1 \oplus T_2$

 Table: Mapping to irreducible SO(3) representations

 [e.g.: Lacock et al., 1996]

Lattice group irrep	J^{PC}	Meson operator		
T	1,3,4	$\bar{q}_b \gamma_i q_a$		
		$\bar{q}_b\gamma_4\gamma_i q_a$		
		$\bar{q}_b \nabla_i q_a$		
		$\bar{q}_b \overline{\nabla}_i \gamma_i \overline{\nabla}_i q_a$		
		$\bar{q}_b \overleftarrow{\nabla}_i \gamma_4 \gamma_i \overrightarrow{\nabla}_i q_a$		
		$\bar{q}_b \overleftarrow{\Delta} \nabla_i q_a$		
		$\overline{q}_{b}\epsilon_{ijk}\gamma_{j}\gamma_{5}\overrightarrow{ abla}_{k}q_{a}$		
		$\bar{q}_b \overleftarrow{\Delta} \epsilon_{ijk} \gamma_j \gamma_5 \overrightarrow{\nabla}_k q_a$		
A ₁ ⁺⁻	0^+,4^+	$\bar{q}_b \gamma_5 q_a$		
		$\bar{q}_b \overleftarrow{\nabla}_i \gamma_5 \overrightarrow{\nabla}_i q_a$		

Table: Interpolators belonging to different irreps[Mohler, Prelovsek & Woloshyn, 2013]

Illustration

Figure: $N_f = 2$ example of effective masses from charmonium CFs decaying to ground state with n_t (this state is different for each irrep, and different operators decay at different rates)

$$\langle O_i(t) O_j^{\dagger}(0) \rangle = \sum_n |c_n|^2 \exp(-E_n t)$$

- **Isolate channel** with given lattice group representation of interest
- We want **good overlap** with physical states of interest (typically the ground state)
- For that one needs **smooth** and **pysically extended** sources
 - \rightarrow Quark fields are often **smeared**

Smearing

For instance:

 $\langle O(t)O^{\dagger}(0)\rangle = \langle \bar{q}_1 \Gamma q_2 \bar{q}_2 \bar{\Gamma} q_1 \rangle$

The correlator (expectation value) is the **trace** over a diagram such as

Figure: Sketch of the correlator; time is on x-axis; Γ fixes quantum numbers J^{PC} of particle states

- One can start from a point-source and ...
- ... usually prefers an iterative procedure

- $\bar{q} \Gamma q$ might have spatial component
- States are extended
 - \Rightarrow operators (interpolators) should be, too
- Interpolators must be **gauge invariant**
- (invariant source) (covariant operation)
 = (new invariant source)

• This is a kind of **convolution**

Smearing

For instance:

 $\langle O(t)O^{\dagger}(0)\rangle = \langle \bar{q}_1 \Gamma q_2 \bar{q}_2 \bar{\Gamma} q_1 \rangle$

The correlator (expectation value) is the **trace** over a diagram such as

Figure: Sketch of the correlator; time is on x-axis; Γ fixes quantum numbers J^{PC} of particle states

- One can start from a point-source and ...
- ... usually prefers an iterative procedure

- $\bar{q} \Gamma q$ might have spatial component
- States are extended
 - \Rightarrow operators (interpolators) should be, too
- Interpolators must be gauge invariant
- (invariant source) (covariant operation)
 = (new invariant source)

• This is a kind of **convolution**

Gaussian smearing

$$q_{n+1} = c_1 (1 + c_2 H) q_n$$
 with $H = \sum_i U_i(x) \delta_{x,y-i} + U_i^{\dagger}(x-i) \delta_{x,y+i}$

- This iterative prescription acts only on nearest neighbours ...
- ... and approaches a convolution $(q_{\text{final}} = f * f * f \cdots f * q_{\text{initial}})$ with a **Gaussian**, by virtue of the central limit theorem
- *c*² and number of iterations control the shape
- Smooth shapes have generally better overlap with desired states
- There is a link between the scales of the source and the state
- Note: Dirac operator *D* needs to be re-inverted for each field

Distillation

Let's come back to the previous type of smearing

$$q_{n+1} = c_1 (1 + c_2 H) q_n$$
 with $H = \sum_i U_i(x) \delta_{x,y-i} + U_i^{\dagger}(x-i) \delta_{x,y+i}$

The d = 3 (gauge-covariant) Laplacian is

$$\Delta(x,y) = \frac{1}{6}H(x,y) - \delta_{x,y}$$

Its repeated application to a quark field

$$q_n = \left(\mathbb{1} + \frac{\sigma}{n}\Delta\right)^n q_0 \implies \lim_{n \to \infty} q_n = e^{\sigma\Delta}q_0$$

thus leads to a suppression of higher Laplacian eigenmodes

Standard distillation

Observation: Higher eigenmodes of Δ suppressed \Rightarrow Smearing fct. = Projector to "small space"

Compute eigenvectors of the Laplacian and write quark fields in space of N_V lowest
 eigenmodes
 [M. Peardon et al., PRD 80 (2009) 054506]

$$q \rightarrow V V^{\dagger} q$$
 with $\Delta V_i = \lambda_i V_i$

where λ_i and V_i are eigenvalues and eigenvectors of the (d = 3 lattice) Laplacian Δ

- Properties (Pros & Cons):
 - VV^{\dagger} is projector onto space of smooth, low-energy fields; trace evaluated in this space
 - Implies: Eigenmodes of Δ above certain index N_V are cut off, all lower ones used equally
 - Many inversions of *D* required, but they can be **pre-computed** and stored
 - Operators with distilled fields overlap largely onto low-lying states, but computational effort ($\propto N_V$) scales with spatial volume (\Rightarrow more costly than other methods)
- \rightarrow Flexible method, increasingly being used for LQCD studies in hadron spectroscopy, etc.

Standard distillation

Example: One-meson $\langle PP \rangle$ correlator

With the **perambulator** $(\ni \text{ propagators } S \equiv D^{-1})$:

And the **elemental**: $\mathbb{N} = \boxed{V}$

Figure: Sketch of the correlator; time is on x-axis

[graphics by T. Korzec]

Distillation profiles

We can exploit the fact that one is free to choose

[F. Knechtli et al., PRD 106 (2022) 034501]

 $q \rightarrow V J V^{\dagger} q$

instead of $q \rightarrow V V^{\dagger} q$

- *J* is diagonal matrix with entries *g*(λ_i), the quark profile (= function of Laplacian EVs)
- In practice: Gaussians are used for $g(\lambda_i)$
- Provides degree of freedom analogous to smearing
- Changes are **independent of inversion**, i.e., perambulators not affected (none of the inversions of the Dirac operator *D* must be re-done)
- The **optimal profile** is determined by solving the GEVP

Distillation profiles (a bit more explicit)

Distillation operator : $V(t) \mathbf{J}(t) V^{\dagger}(t)$

with *V* the eigenvectors of the lattice Laplacian; a common (= "standard") choice is J = 1Instead, parametrise the diagonal matrix J as

 $J_{i,j}(t) = \delta_{ij} \,\delta_{\alpha\beta} \,\mathbf{g}(\lambda_{\mathbf{i}}(\mathbf{t})) \qquad \qquad \mathbf{g}(\lambda_{\mathbf{i}}) : \quad \text{fcts. of Laplacian EVs}$

thus providing an additional d.o.f. to be exploited in a variational formulation When calculating correlators, introduce the **perambulator** as before

$$\tau(t_1, t_2) = V^{\dagger}(t_1) D^{-1} V(t_2)$$

The rest is encoded in the **elemental**, now also incorporating the **quark profile** $g(\lambda_i(t))$:

$$\Phi_{\substack{i,j\\\alpha,\beta}}(t) = V_i^{\dagger}(t) \Gamma_{\alpha,\beta}(t) \mathbf{g}^*(\lambda_{\mathbf{i}}(\mathbf{t})) \mathbf{g}(\lambda_{\mathbf{j}}(\mathbf{t})) V_j(t) \qquad [\Gamma = \text{generic combination of } \gamma's]$$

Distillation profiles (a bit more explicit)

A meson 2-point correlation function then reads:

$$C(t) = -\left\langle \operatorname{tr} \left[\Phi_2(t) \, \tau_{q_a}(t,0) \, \bar{\Phi}_1(0) \, \tau_{q_b}(0,t) \right] \right\rangle_{\text{gauge}}$$

- Choose *basis* of profiles: $g_n(\lambda) = \exp\left(-\frac{\lambda^2}{\sigma_n^2}\right) \leftrightarrow$ Gaussians are beneficial choice
 - via J ≠ 1, higher eigenmodes are still cut off, but even below threshold the entries approaching N_V from below are suppressed
 - Extent of suppression is determined by the widths σ_n of the Gaussian profiles
- Optimise Φ via solving a GEVP that involves a suitable interpolator together with these basis profiles (now to be understood as different operators)
- Results in "optimal" profile: optimised lin. comb. $f = \sum_n c_n g_n^* g_n$ for any given state

Distillation profiles: Demonstration

Figure: Example for heavy-light meson (left: profiles; right: effective mass, which shows faster approach to flat effective energies after solving the GEVP for the optimal profile)

Note: lower $\lambda \Leftrightarrow$ contributions from smoother fields, higher $\lambda \Leftrightarrow$ more localised sources

J. Heitger

Performing the contractions

 $\langle \langle tr \left[\Phi_0(0) \tau_{q_0}(t_0, t_1) \Phi_1(t_1) \tau_{q_1}(t_1, t_2) \cdots \Phi_{N-1}(t_{N-1}) \tau_{q_{N-1}}(t_{N-1}, t_0) \right] \rangle \rangle_{\text{gauge}}$

- τ and Φ are $4N_V \times 4N_V$ matrices
- Φ decomposes into (4 × 4) $\bigotimes (N_V \times N_V)^*$
- Changing the profiles ...
 - ... is volume independent
 - ... can be done independently for every t_n -combination

Figure: N-point diagram with distillation

Performing the contraction (pictorial notation)

 $\langle \langle tr \left[\square_0(0) \square_{q_0}(t_0, t_1) \square_1(t_1) \square_{q_1}(t_1, t_2) \cdots \square_{N-1}(t_{N-1}) \square_{q_{N-1}}(t_{N-1}, t_0) \right] \rangle \rangle_{gauge}$

- and are $4N_V \times 4N_V$ matrices
- decomposes into $(4 \times 4) \bigotimes (N_V \times N_V)$
- Changing the profiles ...
 - ... is volume independent
 - ... can be done independently for every t_n -combination

Figure: N-point diagram with distillation

HHIQCD 2024 @ YITP, Kyoto U.

Ensembles: $N_f = 2$ and $N_f = 3 + 1$

id

$$N_f$$
 a [fm]
 $L^3 \times T$
 m_{π} [MeV]
 N_V
 N_{cnfg}

 D5
 2
 0.0653
 24³ × 48
 439
 200
 150

- Wilson fermion action with non-perturbatively determined clover (= O(*a*)) improvement + plaquette gauge action [CLS; P. Fritzsch et al., NPB 865 (2012) 397; J. H. et al., PoS LATTICE2013 (2014) 475]
- Study to compute $\psi(3770) \rightarrow \overline{D}D$ decay width [T. San José, B. Blossier, J. Neuendorf & J. H. @ Lattice 2024]

id	N _f	<i>a</i> [fm]	$L^3 \times T$	m_{π} [MeV]	N_V^{light}	$N_V^{\rm charm}$	<i>N</i> _{cnfg}
A1h A1	3+1 3+1	$\approx 0.069 \\ \approx 0.054$	$\begin{array}{c} 32^3 \times 96 \\ 32^3 \times 96 \end{array}$	$\approx 800 \\ \approx 420$	200 100	200 200	$\begin{vmatrix} \approx 2000 \\ \approx 4000 \end{vmatrix}$

• Wilson fermion action with non-perturbatively determined clover (= O(*a*)) improvement + Lüscher-Weisz (= tree-level improved) gauge action; *physical* charm quark mass

[P. Fritzsch et al., JHEP 06 (2018) 025; R. Höllwieser et al., EPJC 80 (2020) 4]

- A1h and A1 have light quark masses at the SU(3)-symmetric point
- Control over decay thresholds (e.g., A1h: glueball $\rightarrow \pi\pi$; A1: glueball $\rightarrow \pi\pi, \pi\pi\pi\pi$)

Charmonium spectroscopy

Example on D5 ($N_f = 2, 48 \times 24^3$):

 We are interested in ψ^{''} ≡ ψ(3770) (2nd excited cc̄ state, 1⁻⁻)

[J. Neuendorf et al. @ Lattice 2024]

- Solving an (8×8) –GEVP with:
 - Operators with *γ_i* and *γ₄γ_i* in Dirac space
 - Different smearing levels
 - Including operators with covariant derivatives

Figure: Spectrum of vector charmonium without distillation

Charmonium spectroscopy Example on D5 ($N_f = 2, 48 \times 24^3$),

now with distillation:

 We are interested in ψ^{''} ≡ ψ(3770) (2nd excited cc̄ state, 1⁻⁻)

[J. Neuendorf et al. @ Lattice 2024]

- Solving an (14×14) –GEVP with:
 - Operators with *γ_i* and *γ₄γ_i* in Dirac space
 - Different profiles
 - No covariant derivative ops.
 - ⇒ Correct state identification
- Similar dependence on γ_4 inclusion

Figure: Spectrum of vector charmonium with distillation

Charmonium spectroscopy Example on D5 ($N_f = 2, 48 \times 24^3$), now with distillation

now with distillation:

 We are interested in ψ'' ≡ ψ(3770) (2nd excited cc̄ state, 1⁻⁻)

[J. Neuendorf et al. @ Lattice 2024]

- Solving an (14×14) –GEVP with:
 - Operators with *γ_i* and *γ₄γ_i* in Dirac space
 - Different profiles
 - No covariant derivative ops.
 - ⇒ Correct state identification
- Similar dependence on γ_4 inclusion

Figure: Optimal distillation profiles

HHIQCD 2024 @ YITP, Kyoto U.

Charmonium spectroscopy

[J.A. Urrea-Niño, J. Finkenrath, R. Höllwieser, F. Knechtli, T. Korzec & M. Peardon] Another example: Ongoing study with distillation profiles close to the physical point

- $N_f = 3 + 1$
- $48^3 \times 144, a \approx 0.043 \, {\rm fm}$
- SU(3) flavour-symmetric quark mass point, physical charm
- Method of optimal distillation profiles reduces excited-state contamination at early times
- Even more marked improvement obtained w.r.t. to std. distillation

D and D^* mesons

Comparison of different meson channels, including D and D^* mesons:

- Different particles show different optimal profiles
- Charmonium wider than *D*, *D* wider than π
- Narrower profile
 ⇔
 Less localised contributions
- Different shapes for excited states (not shown here)

Figure: Different profiles and masses on A1 ensemble ($N_f = 3 + 1$)

Optimised meson operators in the distillation framework

HHIQCD 2024 @ YITP, Kyoto U.

Distillation profiles in real space

Illustration follows

- [F. Knechtli et al., PRD 106 (2022) 034501]
 - Reconstructed operator applied to a point source
 - Take **spatial slice** and average over *n*_t and configurations
 - tr [γ₅Γ] and colour average yield scalar value
 - *D* displays more significant less-localised background
 - Rings indicate excited states

Figure: Optimal profiles in real space ($N_f = 2$ ensemble D5)

D and D^* mesons

Optimal $D^{(*)}$ -Profiles

- Comparison between optimal distillation profiles and standard distillation on A1 (the latter is almost perfectly approximated by the widest profile)
- L.h.s.: 9 basis profiles, $N_V = 100$; higher EVs not shown on x-axis, as they have small impact
- General observation: at $N_V = 100$, *standard* distillation plateaus not only develop later, but also never become as good as the *optimised* profile (see also static-light case)

D and D^* mesons

Mixing Profiles and γ -Structure

- Test of including $\gamma_t \gamma_5$ operators for the *D* and its effect on ground-state plateau quality
- R.h.s.: colour coding of matrix entries indicates absolute value of the resp. contribution to the GEVP solution for the optimal profile
- Slight improvement (?), but it doesn't matter if one solves for the optimal "total" profile (via a $18 \times 18 \text{ GEVP}$) or re-using the profile of the γ_5 operators on the $\gamma_t \gamma_5$ ones (via a $9 \times 9 \text{ GEVP}$)

Profiles and momenta

Distillation profiles may also be incorporated in correlators with non-zero lattice momenta

Elementals with lattice momentum (Dirac indices of Γ suppressed) ...

$$\Phi_{i,j}(\vec{p}) = \sum_{\vec{x}} V_i^{\dagger}(\vec{x}) e^{-i\vec{p}\cdot\vec{x}} g^*(\lambda_i) g(\lambda_j) \Gamma V_j(\vec{x})$$

... can be split s.th. part encoding the momentum can be *pre-calculated*:

$$\Phi_{i,j}(\vec{p}) = \Gamma g(\lambda_i) g(\lambda_j) \sum_{\vec{x}} V_i^{\dagger}(\vec{x}) e^{-i\vec{p}\cdot\vec{x}} V_j(\vec{x})$$

→ This is the only additional cost, because the perambulators are unaffected and *no repeated inversions* are needed

Alternative way to induce momentum:

Partially twisted periodic boundary conditions

[Sachrajda & Villadoro, PLB 609 (2005) 73]

• Inversion with

$$\psi(x + L) = e^{i\theta}\psi(x)$$

 $\implies p = \frac{2\pi n + \theta}{L}$

- Allows continuos momenta
- Requires new inversions

Profiles and momenta

Distillation profiles may also be incorporated in correlators with non-zero lattice momenta

- Different momenta exhibit different optimal profiles
- Profiles still improve results
- Using profiles works with both ways of implementing lattice momenta

Figure: Opt. profiles and energies at different momenta on A1 ($N_f = 3 + 1$)

Profiles and momenta

Distillation profiles may also be incorporated in correlators with non-zero lattice momenta

- Different momenta exhibit different optimal profiles
- Profiles still improve results
- Using profiles works with both ways of implementing lattice momenta

Figure: Both methods fulfill dispersion relation (here for D5, $N_f = 2$); profiles are effective at higher momenta [J. Neuendorf @ Lattice 2023]

Optimised meson operators in the distillation framework

HHIQCD 2024 @ YITP, Kyoto U.

Further applications: The static-light system

[L. Struckmeier, R. Höllwieser, F. Knechtli, T. Korzec, M. Peardon & J.A. Urrea-Niño; talk by L. S. @ Lattice 2024]

- Investigate optimised distillation for static-light = *static limit of B mesons*/LO of HQET \rightarrow e.g., helpful for quantifying excited-state contamination in *B* correlators ($B\pi$ system)
- Study on $N_f = 3 + 1$ ensembles: Distillation profiles lead to improvement also in this case

• Left: $N_V = 100$; high supression of excited-state contamination through optimal profiles

• Right: Std. dist. very sensitive to N_v , impr. dist. profiles make best use of available vectors

J. Heitger

Further applications: The static-light system

[L. Struckmeier, R. Höllwieser, F. Knechtli, T. Korzec, M. Peardon & J.A. Urrea-Niño; talk by L. S. @ Lattice 2024]

Optimal meson profiles:

- The higher the state, the more structure in the optimal profile
- Larger eigenvalues still have non-negligible contribution
- Larger eigenvalues needed for excited states [first static-light/static-charm spectrum results exist]

Summary & Outlook

- Investigations reveal the efficacy of distillation profiles across a range of scenarios, particularly demonstrating their merit also for heavy-light systems
- Profiles tend to become narrower for lighter particles (i.e., when lighter quarks are included) and therefore have better overlap with more smeared sources
 → Restricting the number of light eigenmodes is possible to save computation cost
- Moreover, optimal profiles can also be obtained for CFs with (different types of) non-zero lattice momenta
 - \rightarrow Combine: more complex diagrams + momenta + profiles

[J. Neuendorf et al., PoS LATTICE2023 (2024) 057; work in progress @ U. Münster & U. Wuppertal]

• Another direction of application (not discussed today): Mixing of flavours, glueballs and 2-pion states in the scalar channel

[J.A. Urrea-Niño et al., talk by J.A. U.-N. @ Lattice 2024; work in progress @ U. Wuppertal & TCD]

Summary & Outlook

- Among the physical goals: address decays involving D^(*) mesons, such as ψ(3770) → DD̄ or T_{cc} → DD*
 (via a scattering analysis on the lattice based on the Lüscher formalism)
- Intermediate target: study DD^* scattering in the $J^{PC} = 1^{++}$ (I = 0) channel
 - \rightarrow Is there evidence for a charmonium-like state X(3872) below the $D\bar{D}^*$ threshold?

[cf. earlier studies by S. Prelovsek et al, 2013 & 2015]

- \rightarrow Explore excited charmonium spectrum in this channel
- \rightarrow Estimate $m_{\chi_{c1}}(2P) (m_D + m_{D^*})$ on our lattices, ...
- For this, as a first step, we are currently trying to find optimal profiles in correlation functions of **two-meson operators**, to be included in the GEVP, such as

