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Scattering and resonances
Most hadrons = Resonances, decaying strongly to lighter hadrons
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Scattering and resonances

A scattering process such as “two particles”→ “two particles” happens in real time

In lattice QCD, we work in Euclidean (imaginary) time
• Perfect for spectroscopy ↔ Systematically improvable, first-principles calculations

• However: No direct access to scattering

• Lüscher’s idea [M. Lüscher, NPB 354 (1991) 531 ] : Compute the two-particle spectrum in a finite
volume and solve an equation to find the phase shifts and infer the resonance parameters

• Gives rise to a well-established workflow:
Lattice QCD: Compute correlation matrix

GEVP−→ Obtain finite-volume spectrum
Lüscher quant. cond.

−→ Determine scattering amplitudes
−→ Poles, couplings, ...
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Scattering and resonances
A scattering process such as “two particles”→ “two particles” happens in real time

In lattice QCD, we work in Euclidean (imaginary) time
• Perfect for spectroscopy ↔ Systematically improvable, first-principles calculations

• However: No direct access to scattering

• Lüscher’s idea [M. Lüscher, NPB 354 (1991) 531 ] : Compute the two-particle spectrum in a finite
volume and solve an equation to find the phase shifts and infer the resonance parameters

• Practical “window” challenge: (1.) Effective masses ameff = ln
[
Cij (t)/Cij (t + a)

]
approach

ground state energy E0 only at large t; (2.) Exponential increase of statistical errors at large t

⇒ Need operators with large overlaps onto eigenstates to get early plateaus already at small t
(large variational basis, smearing); similar issue affects quark-line disconnected diagrams

→ We use quark smearing called distillation [M. Peardon et al., PRD 80 (2009) 054506 ]

with profiles [ F. Knechtli, T. Korzec, M. Peardon, J.A. Urrea-Niño, PRD 106 (2022) 034501 ]
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Spectroscopy on the lattice
Lattice QCD is very good at computing Euclidean (time-slice) correlation functions (CFs)

C(t) =
〈
O(t) O†(0)

〉 path int. repr.
⇐⇒ 〈Ω | O(t) Ô†(0) |Ω 〉

where the “operator” O is a (temporally) local combination of fields and |Ω〉 the vacuum state
• Judiciously designed operators O† create states of interest

O = O [k(t), k(t),U (t)]
• Above path integral expression for C(t) is related to an underlying QFT with Hamiltonian H
and complete set of states |n〉:

H|n〉 = En |n〉 〈n|m〉 = Xnm
∑

n |n〉〈n| = 1

• An important consequence of this connection is the “spectral decomposition” that allows
extracting the (finite-volume) energy eigenstates from C(t) acc. to〈

O(t) O†(0)
〉
=

∑
n
|cn |2 e−Ent

with matrix elements called overlaps
cn = 〈 n | Ô† |Ω 〉
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Symmetries
Consider:
A change of variables, under which the action of the theory is invariant, s.th.〈

O(t) O†(0)
〉
=

〈
O ′(t) O ′†(0)

〉
• In QFT this means that some operator U commutes with H
→ Energy eigenstates can be chosen to be also eigenstates of U

H|n〉 = En |n〉 ⇒ UH|n〉 = EnU|n〉 ⇒ H U|n〉︸︷︷︸
= |n〉′

= En U|n〉︸︷︷︸
= |n〉′

• If |n〉 ≠ |n〉′, we have a degeneracy of eigenstates

• If O is chosen carefully, then Ô† |0〉 is an eigenstate of Û and orthogonal to all states in
different symmetry channels
⇒ cn = 0 for all |n〉 of a different symmetry channel than O
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Symmetries: Flavour
Nature has no exact flavour symmetry, but an approximate SU(2), or even SU(3);
e.g., Nf = 3 + 1 QCD (we’ll come back to it later) obeys

©­«
u
d
s

ª®¬ → V ©­«
u
d
s

ª®¬
(
ū, d̄, s̄

)
→

(
ū, d̄, s̄

)
V† V ∈ SU(3)

Symm. trafo leaves the action invariant ⇒ Energy eigenstates can be labeled by |D,Y , I, I3〉
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Tackling excited states
Well-proven method is to solve a GEVP = Generalized Eigenvalue Problem → Recipe:

[Michael & Teasdale, 1983, Lüscher & Wolff, 1990; Blossier at al., 2009 ]

• Assume we have several operators for the same symmetry channel, i.e.
O1,O2, . . . ,ONop

• Compute a correlation matrix with elements Cij (t) =
〈
Oi (t) O†j (0)

〉
• Then the generalised eigenvalues _n(t, t0) solving the GEVP equation

C(t)Vn = _n C(t0)Vn behave as _n(t, t0) = e−(t−t0)En ×
{
1 + e−(t−t0)Δn

}
But then a variational basis with operators that have “good” (= large) overlaps

〈 n | Ô†i |Ω 〉 ∝ [ C(t0)Vn(t, t0) ] i

with all states is required → Excited spectra: large bases of operators with appropriate structures
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The cubic group
Quantum numbers JPC of states are defined by their transf. behaviour, where P and C are unaffected
by discretisation, while J is related to dimension of an irreducible representation (irrep) of SO(3)
• Rotations on the lattice are characterised by the cubic group O ' S4
• Subduced representations are known; J is now no longer unique

J Dimension Representation

0 1 A1
1 3 T1
2 5 E ⊕ T2
3 7 A2 ⊕ T1 ⊕ T2
4 9 A1 ⊕ E ⊕ T1 ⊕ T2
· · ·

Table: Mapping to irreducible SO(3) representations
[ e.g.: Lacock et al., 1996 ]

Lattice group irrep JPC Meson operator

T−−1 1−−,3−−,4−−. . . q̄bWiqa

q̄bW4Wiqa

q̄b
−→∇ iqa

q̄b
←−∇ iWi
−→∇ iqa

q̄b
←−∇ iW4Wi

−→∇ iqa

q̄b
←−
Δ
−→∇ iqa

q̄bnijkWjW5
−→∇ kqa

q̄b
←−
Δ nijkWjW5

−→∇ kqa

A+−1 0−+,4−+. . . q̄bW5qa

q̄b
←−∇ iW5

−→∇ iqa

Table: Interpolators belonging to different irreps
[Mohler, Prelovsek & Woloshyn, 2013 ]
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Illustration

Figure: Nf = 2 example of effective masses from
charmonium CFs decaying to ground state with nt
(this state is different for each irrep, and different
operators decay at different rates)

〈Oi (t) O†j (0)〉 =
∑

n
|cn |2 exp(−Ent)

• Isolate channel with given lattice group
representation of interest

• Parity controlled by W5 in the operator;
charge given by exchange of q↔ q̄;
many ops. known for each transf. behaviour

• We want good overlap with physical states
of interest (typically the ground state)

• For that one needs smooth and pysically
extended sources
→ Quark fields are often smeared

J. Heitger Optimised meson operators in the distillation framework HHIQCD 2024 @ YITP, Kyoto U.



Smearing
For instance:

〈O(t)O†(0)〉 = 〈q̄1Γq2 q̄2Γ̄q1〉

The correlator (expectation value) is the trace
over a diagram such as

Γ̄Γ

q2

q̄1

Figure: Sketch of the correlator; time is on x-axis; Γ
fixes quantum numbers JPC of particle states

• One can start from a point-source and ...
• ... usually prefers an iterative procedure

• q̄ Γ q might have spatial component

• States are extended
⇒ operators (interpolators) should be, too

• Interpolators must be gauge invariant

• (invariant source)
⊗

(covariant operation)
= (new invariant source)

∗ =

• This is a kind of convolution
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Gaussian smearing

qn+1 = c1 (1 + c2H) qn with H =
∑

i
Ui (x)Xx,y−i + U†i (x − i)Xx,y+i

• This iterative prescription acts only on nearest neighbours ...

• ... and approaches a convolution (qfinal = f ∗ f ∗ f · · · f ∗ qinitial) with a Gaussian,
by virtue of the central limit theorem

• c2 and number of iterations control the shape

• Smooth shapes have generally better overlap with desired states

• There is a link between the scales of the source and the state

• Note: Dirac operator D needs to be re-inverted for each field
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Distillation

Let’s come back to the previous type of smearing

qn+1 = c1 (1 + c2H) qn with H =
∑

i
Ui (x)Xx,y−i + U†i (x − i)Xx,y+i

The d = 3 (gauge-covariant) Laplacian is

Δ(x, y) = 1
6

H (x, y) − Xx,y

Its repeated application to a quark field

qn =

(
1 + f

n
Δ

)n
q0 =⇒ lim

n→∞
qn = e fΔq0

thus leads to a suppression of higher Laplacian eigenmodes
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Standard distillation
Observation: Higher eigenmodes of Δ suppressed ⇒ Smearing fct. = Projector to “small space”
• Compute eigenvectors of the Laplacian and write quark fields in space of NV lowest
eigenmodes [M. Peardon et al., PRD 80 (2009) 054506 ]

q → VV†q with ΔVi = _iVi

where _i and Vi are eigenvalues and eigenvectors of the (d = 3 lattice) Laplacian Δ

• Properties (Pros & Cons):
• VV† is projector onto space of smooth, low-energy fields; trace evaluated in this space
• Implies: Eigenmodes of Δ above certain index NV are cut off, all lower ones used equally
• Many inversions of D required, but they can be pre-computed and stored
• Operators with distilled fields overlap largely onto low-lying states, but computational
effort (∝ NV ) scales with spatial volume (⇒ more costly than other methods)

→ Flexible method, increasingly being used for LQCD studies in hadron spectroscopy, etc.
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Standard distillation
Example: One-meson 〈PP〉 correlator

With the perambulator
(3 propagators S ≡ D−1):

And the elemental:

[graphics by T. Korzec]

Γ̄AΓA

h

h̄

Figure: Sketch of the correlator; time is on x-axis
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Distillation profiles
We can exploit the fact that one is free to choose [ F. Knechtli et al., PRD 106 (2022) 034501 ]

q → V J V†q

instead of q→ VV†q
• J is diagonal matrix with entries g(_i), the quark profile
(= function of Laplacian EVs)

• In practice: Gaussians are used for g(_i)

• Provides degree of freedom analogous to smearing

• Changes are independent of inversion, i.e., perambulators not affected
(none of the inversions of the Dirac operator D must be re-done)

• The optimal profile is determined by solving the GEVP
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Distillation profiles (a bit more explicit)
Distillation operator : V (t) J(t) V†(t)

with V the eigenvectors of the lattice Laplacian; a common (= “standard”) choice is J = 1

Instead, parametrise the diagonal matrix J as

J i,j
U,V

(t) = Xij XUV g(_i(t)) g(_i) : fcts. of Laplacian EVs

thus providing an additional d.o.f. to be exploited in a variational formulation

When calculating correlators, introduce the perambulator as before

g(t1, t2) = V†(t1) D−1 V (t2)

The rest is encoded in the elemental, now also incorporating the quark profile g(_i(t)):

Φ i,j
U,V

(t) = V†i (t) ΓU,V (t) g∗(_i(t)) g(_j(t)) Vj (t) [ Γ = generic combination of W’s ]
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Distillation profiles (a bit more explicit)

Γ̄AΓA

h

h̄A meson 2-point correlation function then reads:

C(t) = −
〈
tr

[
Φ2(t) gqa (t, 0) Φ̄1(0) gqb (0, t)

]〉
gauge

• Choose basis of profiles: gn(_) = exp
(
− _2

f2
n

)
↔ Gaussians are beneficial choice

• via J ≠ 1, higher eigenmodes are still cut off, but even below threshold
the entries approaching NV from below are suppressed

• Extent of suppression is determined by the widths fn of the Gaussian profiles

• Optimise Φ via solving a GEVP that involves a suitable interpolator together with these
basis profiles (now to be understood as different operators)

• Results in “optimal” profile: optimised lin. comb. f =
∑

n cn g∗n gn for any given state
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Distillation profiles: Demonstration

Figure: Example for heavy-light meson (left: profiles; right: effective mass, which shows faster
approach to flat effective energies after solving the GEVP for the optimal profile)
Note: lower _⇔ contributions from smoother fields, higher _⇔ more localised sources
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Performing the contractions

〈〈tr
[
Φ0(0)gq0 (t0, t1)Φ1(t1)gq1 (t1, t2) · · ·ΦN−1(tN−1)gqN−1 (tN−1, t0)

]
〉〉gauge

• g and Φ are 4NV × 4NV matrices

• Φ decomposes into
(4 × 4)

⊗
(NV × NV )∗

• Changing the profiles ...
• ... is volume independent

• ... can be done
independently for every
tn-combination

Figure: N-point diagram with distillation
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Performing the contraction (pictorial notation)

〈〈tr
[

0(0) q0 (t0, t1) 1(t1) q1 (t1, t2) · · · N−1(tN−1) qN−1 (tN−1, t0)
]
〉〉gauge

• and are 4NV × 4NV matrices

• decomposes into
(4 × 4)

⊗
(NV × NV )

• Changing the profiles ...
• ... is volume independent

• ... can be done
independently for every
tn-combination

Figure: N-point diagram with distillation
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Ensembles: Nf = 2 and Nf = 3 + 1
id Nf a [fm] L3 × T mc [MeV] NV Ncnfg

D5 2 0.0653 243 × 48 439 200 150

• Wilson fermion action with non-perturbatively determined clover (= O(a)) improvement
+ plaquette gauge action [ CLS; P. Fritzsch et al., NPB 865 (2012) 397; J. H. et al., PoS LATTICE2013 (2014) 475 ]

• Study to compute k(3770) → D̄D decay width [ T. San José, B. Blossier, J. Neuendorf & J. H. @ Lattice 2024 ]

id Nf a [fm] L3 × T mc [MeV] Nlight
V Ncharm

V Ncnfg

A1h 3+1 ≈ 0.069 323 × 96 ≈ 800 200 200 ≈ 2000
A1 3+1 ≈ 0.054 323 × 96 ≈ 420 100 200 ≈ 4000

• Wilson fermion action with non-perturbatively determined clover (= O(a)) improvement
+ Lüscher-Weisz (= tree-level improved) gauge action; physical charm quark mass

[ P. Fritzsch et al., JHEP 06 (2018) 025; R. Höllwieser et al., EPJC 80 (2020) 4 ]

• A1h and A1 have light quark masses at the SU(3)-symmetric point
• Control over decay thresholds (e.g., A1h: glueball→ cc; A1: glueball→ cc, cccc)
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Charmonium spectroscopy

Example on D5 (Nf = 2, 48 × 243):

• We are interested in k ′′ ≡ k(3770)
(2nd excited cc̄ state, 1−−)

[ J. Neuendorf et al. @ Lattice 2024 ]

• Solving an (8 × 8)–GEVP with:
• Operators with Wi and W4Wi
in Dirac space
• Different smearing levels
• Including operators with covariant
derivatives Figure: Spectrum of vector charmonium without

distillation
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Charmonium spectroscopy
Example on D5 (Nf = 2, 48 × 243),
now with distillation:

• We are interested in k ′′ ≡ k(3770)
(2nd excited cc̄ state, 1−−)

[ J. Neuendorf et al. @ Lattice 2024 ]

• Solving an (14 × 14)–GEVP with:
• Operators with Wi and W4Wi
in Dirac space
• Different profiles
• No covariant derivative ops.
⇒ Correct state identification

• Similar dependence on W4 inclusion
Figure: Spectrum of vector charmonium with
distillation
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Charmonium spectroscopy
Example on D5 (Nf = 2, 48 × 243),
now with distillation:

• We are interested in k ′′ ≡ k(3770)
(2nd excited cc̄ state, 1−−)

[ J. Neuendorf et al. @ Lattice 2024 ]

• Solving an (14 × 14)–GEVP with:
• Operators with Wi and W4Wi
in Dirac space
• Different profiles
• No covariant derivative ops.
⇒ Correct state identification

• Similar dependence on W4 inclusion
Figure: Optimal distillation profiles
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Charmonium spectroscopy
[ J.A. Urrea-Niño, J. Finkenrath, R. Höllwieser, F. Knechtli, T. Korzec & M. Peardon ]
Another example: Ongoing study with distillation profiles close to the physical point

• Nf = 3 + 1

• 483 × 144, a ≈ 0.043 fm

• SU(3) flavour-symmetric quark
mass point, physical charm

• Method of optimal distillation
profiles reduces excited-state
contamination at early times

• Even more marked improvement
obtained w.r.t. to std. distillation
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D and D∗ mesons
Comparison of different meson channels, including D and D∗ mesons:

• Different particles
show different optimal
profiles

• Charmonium wider
than D, D wider than c

• Narrower profile
⇔
Less localised
contributions

• Different shapes for
excited states
(not shown here) Figure: Different profiles and masses on A1 ensemble (Nf = 3 + 1)
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Distillation profiles in real space
Illustration follows
[ F. Knechtli et al., PRD 106 (2022) 034501 ]

• Reconstructed operator
applied to a point source

• Take spatial slice and average
over nt and configurations

• tr [W5Γ] and colour average yield
scalar value

• D displays more significant
less-localised background

• Rings indicate excited states
Figure: Optimal profiles in real space (Nf = 2 ensemble D5)
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D and D∗ mesons
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Optimal D(∗)-Profiles

• Comparison between optimal distillation profiles and standard distillation on A1
(the latter is almost perfectly approximated by the widest profile)
• L.h.s.: 9 basis profiles, NV = 100; higher EVs not shown on x-axis, as they have small impact
• General observation: at NV = 100, standard distillation plateaus not only develop later,
but also never become as good as the optimised profile (see also static-light case)
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D and D∗ mesons
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Mixing Profiles and γ-Structure

• Test of including WtW5 operators for the D and its effect on ground-state plateau quality
• R.h.s.: colour coding of matrix entries indicates absolute value of the resp. contribution to
the GEVP solution for the optimal profile
• Slight improvement (?), but it doesn’t matter if one solves for the optimal “total” profile (via a

18 × 18 GEVP) or re-using the profile of the W5 operators on the WtW5 ones (via a 9 × 9 GEVP)
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Profiles and momenta
Distillation profiles may also be incorporated in correlators with non-zero lattice momenta

Elementals with lattice momentum
(Dirac indices of Γ suppressed) ...

Φi,j (®p) =
∑
®x

V†i (®x) e
−i ®p ·®x g∗(_i) g(_j) ΓVj (®x)

... can be split s.th. part encoding the momentum can
be pre-calculated:

Φi,j (®p) = Γg(_i)g(_j)
∑
®x

V†i (®x) e
−i ®p ·®x Vj (®x)

→ This is the only additional cost, because the
perambulators are unaffected and no repeated
inversions are needed

Alternative way to induce
momentum:
Partially twisted periodic
boundary conditions
[ Sachrajda & Villadoro, PLB 609 (2005) 73 ]

• Inversion with
k(x + L) = e i \k(x)
=⇒ p = 2cn+\

L

• Allows continuos momenta

• Requires new inversions
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Profiles and momenta
Distillation profiles may also be incorporated in correlators with non-zero lattice momenta

• Different momenta
exhibit different
optimal profiles

• Profiles still improve
results

• Using profiles works
with both ways of
implementing lattice
momenta

Figure: Opt. profiles and energies at different momenta on A1 (Nf = 3 + 1)
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Profiles and momenta
Distillation profiles may also be incorporated in correlators with non-zero lattice momenta

• Different momenta
exhibit different
optimal profiles

• Profiles still improve
results

• Using profiles works
with both ways of
implementing lattice
momenta
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Figure: Both methods fulfill dispersion relation (here for D5, Nf = 2);
profiles are effective at higher momenta [ J. Neuendorf @ Lattice 2023 ]
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Further applications: The static-light system
[ L. Struckmeier, R. Höllwieser, F. Knechtli, T. Korzec, M. Peardon & J.A. Urrea-Niño; talk by L. S. @ Lattice 2024 ]
• Investigate optimised distillation for static-light = static limit of B mesons / LO of HQET
→ e.g., helpful for quantifying excited-state contamination in B correlators (Bc system)
• Study on Nf = 3 + 1 ensembles: Distillation profiles lead to improvement also in this case
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• Left: NV = 100; high supression of excited-state contamination through optimal profiles
• Right: Std. dist. very sensitive to Nv , impr. dist. profiles make best use of available vectors
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Further applications: The static-light system
[ L. Struckmeier, R. Höllwieser, F. Knechtli, T. Korzec, M. Peardon & J.A. Urrea-Niño; talk by L. S. @ Lattice 2024 ]

Optimal meson profiles:
• The higher the state, the more structure in the optimal profile
• Larger eigenvalues still have non-negligible contribution
• Larger eigenvalues needed for excited states [first static-light / static-charm spectrum results exist]
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Summary & Outlook

• Investigations reveal the efficacy of distillation profiles across a range of scenarios,
particularly demonstrating their merit also for heavy-light systems

• Profiles tend to become narrower for lighter particles (i.e., when lighter quarks are
included) and therefore have better overlap with more smeared sources
→ Restricting the number of light eigenmodes is possible to save computation cost

• Moreover, optimal profiles can also be obtained for CFs with (different types of)
non-zero lattice momenta
→ Combine: more complex diagrams + momenta + profiles

[ J. Neuendorf et al., PoS LATTICE2023 (2024) 057; work in progress @ U. Münster & U. Wuppertal ]

• Another direction of application (not discussed today):
Mixing of flavours, glueballs and 2-pion states in the scalar channel

[ J.A. Urrea-Niño et al., talk by J.A. U.-N. @ Lattice 2024; work in progress @ U. Wuppertal & TCD ]
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Summary & Outlook
• Among the physical goals: address decays involving D(∗) mesons, such as
k(3770) → DD̄ or Tcc → DD∗

(via a scattering analysis on the lattice based on the Lüscher formalism)

• Intermediate target: study DD∗ scattering in the JPC = 1++ (I = 0) channel
→ Is there evidence for a charmonium-like state X (3872) below the DD̄∗ threshold?

[ cf. earlier studies by S. Prelovsek et al, 2013 & 2015 ]

→ Explore excited charmonium spectrum in this channel
→ Estimate mjc1 (2P) − (mD +mD∗) on our lattices, ...

• For this, as a first step, we are currently trying to find optimal profiles in correlation
functions of two-meson operators, to be included in the GEVP, such as
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