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Many candidates of exotic hadrons (@@@̄ @̄, @@@@@̄, · · · ) observed in the vicinity of
the hadronic 2-body thresholds e.g. -(3872), )22 , %2

動機

exotic hadronの候補と考えられる多くの peakが、two-body hadron
thresholdに見つかっている。
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Determination of the pole position is important for a better understanding of the
nature of such states
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Descrete states (e.g. Bound state, Virtual state, Resonance state)
Solutions of wave functions under the out-going-wave boudary condition
A. F. J. Siegert, Phys. Rev. 56, 750 (1939)

Descrete States ↔ Poles of the S-matrix
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In the following assume that:
Analytic continuation of the S-matrix is possible to complex momenta
LH-cut contributions from C-channel, D-channel negligible
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S-matrix: meromorphic function of CM momentum :

→ Mittag-Leffler theorem

Mittag-Leffler Expansion (ML Expansion)
J. Humblet, L.Rosenfeld, Nucl. Physics 26 (1961)
D. Ramírez Jiménez, N. Kelkar, Annals of Physics 396, 18 (2018)

A(:) =
∑
=

[
A=

: − :=
− A∗=
: + :∗=

]
+ [subtractions (entire function)]
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A(B) = 1
28�
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→ Extension to coupled-channels



CP1 Representation of the 2-channel S-matrix

7/34

�-plane 4-sheeted Riemann Surface (RS)
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CP1 Representation of the 2-channel S-matrix
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I-plane M. Kato, Annals of Physics 31, 130 (1965)
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2-channel Mittag-Leffler Expansion W. Yamada, O. Morimatsu, Phys. Rev. C 102, 055201 (2020)

A(I) =
∑
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[
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I − I=
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I + I∗=

]
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Spectral decomposition invariant under: �DC(CP1) ' %�!(2,C)
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Lineshapes of the spectral function in the presence a near-threshold pole
(near upper threshold)
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the distance between the pole and the nearest physical
point. Finally, and most importantly, the transition of the
spectrum is continuous. There is no essential difference
whether a pole is located on the [bt] sheet, [tb] sheet, or
[bb] sheet, contrary to the usual understanding that poles on
the [tb] sheet are irrelevant. Therefore, if the observed
spectrum is peaked about the upper threshold with exper-
imental uncertainties, it would be difficult, in addition,
nonessential to exactly determine which sheet the pole is
really located. What is important is the existence of a pole
near the upper threshold and how distant the pole is from
the physical energy, which should be sufficient for us to
know from experimental data.
Let us discuss the general behavior of the contribution

from a near-threshold pole in comparison to the Breit-
Wigner form. When e > 1, z is on the real axis, and we
parametrize z and zp as z ¼ x, zp ¼ xp þ iyp, where x, xp,
and yp are real. Then, a pole contribution is given by

−
1

π
Im

expðiϕpÞ
z − zp

¼ −
1

π

− cosϕpyp þ sinϕpðx − xpÞ
ðx − xpÞ2 þ y2p

; ð4Þ

which is a Breit-Wigner form in the variable x ¼ z (real)
with an additional phase. If we take the phase of the pole as,
ϕp ¼ 0, the contribution is given by

−
1

π
Im

expðiϕpÞ
z − zp

¼ 1

π

yp
ðx − xpÞ2 þ y2p

;

which is peaked at x ¼ xp. Now let us consider the
behavior when 0 < e < 1; i.e., z is on the unit circle.
We can parametrize z and zp as z ¼ expðiθÞ, zp ¼
rp expðiθpÞ, where θ, rp, and θp are real parameters.
Then, a pole contribution becomes

TABLE I. The pole position on the complex z plane, zp, the complex pole energy, ep, the nearest physical energy, e0, and the distance
from the physical energy, γ0, for poles A–F.

A B C D E F

zp 0.869þ 0.233i 0.895þ 0.094i 0.908 − 0.038i 0.962 − 0.092i 1.100 − 0.100i 1.300 − 0.100i
ep 0.943 − 0.053i 1.000 − 0.022i 1.007þ 0.008i 0.992þ 0.007i 1.002 − 0.018i 1.065 − 0.043i
e0 0.933 0.989 1 1 1.01 1.065
γ0 0.100 0.100 0.100 0.100 0.100 0.100
Sheet [bt] [bt] [tb] [tb] [bb] [bb]

(a) (b) (c)

(d) (e) (f)

FIG. 3. The “normalized” pole-pair contributions, fðz; zp;ϕpÞ, from poles A–F. Two cases are shown with different phases of
residues, ϕp ¼ ϕ0 and ϕ0 − π=2, where ϕ0 is, respectively, chosen as ϕ0 ¼ θp − π=2, Argðzp − 1Þ − π=2, and 0 for poles on the [bt],
[tb], and [bb] sheet, so that the contribution, fðz; zp;ϕpÞ, is maximized at physical energy e0.

YAMADA, MORIMATSU, SATO, and YAZAKI PHYS. REV. D 105, 014034 (2022)

014034-4

Peak position ≈ Closest Physical Point on I (≠ Re �')
Width of Structure ∝ Minimal Distance from Physical Domain on I (≠ |Im �' |)
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2-sheeted I12-plane (I-plane using channel mass &1, &2)
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3-channel ML Expansion W. Yamada, O. Morimatsu, T. Sato, PRL 129, 192001 (2022)
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M. Ablikim et al., Phys. Rev. Lett. 110, 252001 (BESIII)
M. Ablikim et al., Phys. Rev. Lett. 112, 022001 (BESIII)
Z. Q. Liu et al., Phys. Rev. Lett. 110, 252002 (Belle)

a mass difference of 2:1 MeV=c2, a width difference of
3.7 MeV, and production ratio difference of 2.6% absolute.
Assuming the Zcð3900Þ couples strongly with D !D# results
in an energy dependence of the total width [22], and the fit
yields a difference of 2:1 MeV=c2 for mass, 15.4 MeV for
width, and no change for the production ratio. We estimate
the uncertainty due to the background shape by changing to
a third-order polynomial or a phase space shape, varying
the fit range, and varying the requirements on the !2 of the
kinematic fit. We find differences of 3:5 MeV=c2 for mass,
12.1 MeV for width, and 7.1% absolute for the production
ratio. Uncertainties due to the mass resolution are esti-
mated by increasing the resolution determined by MC
simulations by 16%, which is the difference between the
MC simulated and measured mass resolutions of the J=c
and D0 signals. We find the difference is 1.0 MeV in the
width, and 0.2% absolute in the production ratio, which are
taken as the systematic errors. Assuming all the sources of
systematic uncertainty are independent, the total system-
atic error is 4:9 MeV=c2 for mass, 20 MeV for width and
7.5% for the production ratio.

In Summary, we have studied eþe% ! "þ"%J=c at a
c.m. energy of 4.26 GeV. The cross section is measured to
be ð62:9& 1:9& 3:7Þ pb, which agrees with the existing
results from the BABAR [5], Belle [3], and CLEO [4]
experiments. In addition, a structure with a mass of
ð3899:0& 3:6& 4:9Þ MeV=c2 and a width of ð46& 10&
20Þ MeV is observed in the "&J=c mass spectrum. This
structure couples to charmonium and has an electric
charge, which is suggestive of a state containing more
quarks than just a charm and anticharm quark. Similar
studies were performed in B decays, with unconfirmed
structures reported in the "&c ð3686Þ and "&!c1 systems
[23–26]. It is also noted that model-dependent calculations
exist that attempt to explain the charged bottomonium-
like structures which may also apply to the charmonium-
like structures, and there were model predictions of

charmoniumlike structures near the D !D# and D# !D#

thresholds [27].
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FIG. 4 (color online). Fit to the Mmaxð"&J=c Þ distribution as
described in the text. Dots with error bars are data; the red solid
curve shows the total fit, and the blue dotted curve the back-
ground from the fit; the red dotted-dashed histogram shows the
result of a phase space (PHSP) MC simulation; and the green
shaded histogram shows the normalized J=c sideband events.
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select the Dþ candidates. We use events in 30 MeV=c2-
wide sideband regions centered at 40 MeV=c2 above
and below the D mass peaks to evaluate non-D meson
backgrounds.
Figure 1(a) shows the distribution of masses recoiling

against the detected πþD0 system [23], where a prominent
peak at mD"− is evident. The solid-line histogram shows the
same distribution for MC-simulated eþe− → πþD0D"−,
D0 → K−πþ three-body phase-space events. Because of
the limited phase space, some events from the isospin part-
ner decay πþZcð3885Þ−, Zcð3885Þ− → D−D"0, where the
detected D0 is from the D"0 decay, also peak near mD"−, as
shown by the dashed histogram for MC-simulated
eþe− → πþZcð3885Þ−, Zcð3885Þ− → D−D"0, D"0 → γ
or π0D0 decays with the mass and width of the
Zcð3885Þ set to our final measured values. Since the
DD̄" invariant mass distribution is equivalent to the bach-
elor pion recoil mass spectrum, the shape of the
Zcð3885Þ → DD̄" signal peak is not sensitive to the parent-
age of the D meson that is used for the event tagging.
Figure 1(b) shows the corresponding plot for π−Dþ-tag
events, where the solid histogram shows the contribution
from MC-simulated eþe− → π−DþD̄"0 three-body
phase-space events and the dashed histogram shows the
cross feed from MC-simulated eþe− → π−Zcð3885Þþ,
Zcð3885Þþ → D̄0D"þ, D"þ → π0Dþ events.
We apply a two-constraint (2C) kinematic fit to the

selected events that constrains the invariant mass of the
D0 (Dþ) candidate to be equal to mD0 (mDþ) and the mass
recoiling from the πþD0 (π−Dþ) to be equal to mD"−

(mD̄"0). If there is more than one bachelor pion candidate
in an event, we retain the one with the smallest χ2 from
the 2C fit. Events with χ2 < 30 are retained for further
analysis. For the πþD0-tag analysis, we require
MðπþD0Þ > 2.02 GeV=c2 to reject eþe− → D"þD"−,
D"þ → πþD0 events. Figure 2(a) [2(b)] shows the distribu-
tion ofD0D"− (DþD̄"0) invariant masses recoiling from the
bachelor pion for the πþD0- (π−Dþ-) tag events. Both dis-
tributions have a distinct peak near the mD þmD̄" mass
threshold. For cross-feed events, the reconstructed D
meson is not, in fact, recoiling from a D̄", and the efficiency
for these events decreases with increasing DD̄" mass. This
acceptance variation is not sufficient to produce a peaking

structure, and its influence on the signal parameter deter-
mination is small compared to other sources of systematic
error.
To characterize the observed enhancement and determine

the signal yield, we fit the histograms of Figs. 2(a) and 2(b)
using a mass-dependent-width Breit-Wigner (BW) line
shape using the parametrization described in Ref. [24] to
model the signal and smooth threshold functions to re-
present the nonpeaking background. In the default fits,
we assume S waves for Zcð3885Þ production and decay,
and leave the Zcð3885Þ mass, width, and yield as free
parameters. We multiply the BW by the mass-dependent
efficiency to form the signal probability density function.
Mass resolution effects are less than 1 MeV=c2 and
ignored. For the default nonpeaking background, we
use: fbkgðmDD̄" Þ∝ ðmDD̄" −MminÞcðMmax−mDD̄"Þd, where
Mmin and Mmax are the minimum and maximum kinemat-
ically allowed masses, respectively, and c and d are free
parameters.
The solid curves in Fig. 2 show the fit results and the

dashed curves show the nonresonant background. The
Zcð3885Þ signal significance for each fit is greater than
18σ. The fitted BW mass and width from the πþD0

(π−Dþ)-tag sample are 3889:2% 1.8 MeV=c2 and 28:1%
4.1 MeV (3891:8% 1.8 MeV=c2 and 27:8% 3.9 MeV),
respectively, where the errors are statistical only. Since
the mass and width of a mass-dependent-width BW are
model dependent [26], we solve for the corresponding com-
plex quantities P ¼ Mpole − iΓpole=2 for which the BW
denominators are zero, and useMpole and Γpole to character-
ize the Zcð3885Þ. These are listed in Table I.
Monte Carlo studies indicate that the process

eþe− → DD̄1ð2420Þ, D̄1ð2420Þ → D̄"π, where D1ð2420Þ
is the lightest established D"π resonance with
MD1

¼ 2421:3% 0.6 MeV=c2 and ΓD1
¼ 27:1%

2.7 MeV [6], would produce a near-threshold reflection
peak in the DD̄" mass distribution. The D1ð2420Þ peak
mass is 30 MeV=c2 above the

ffiffiffi
s

p −mD kinematic boun-
dary, which suggests that contributions from DD̄1ð2420Þ
final states would be small. However, some models for
the Yð4260Þ attribute it to a bound DD̄1 molecular state
[13], in which case subthreshold D̄1 → D̄"π decays
might be important and, possibly, produce a reflection peak
in the DD̄" mass distribution that mimics a Zcð3885Þ
signal.
We study this possibility by separating the events into

two samples according to j cos θπDj > 0.5 and

FIG. 2 (color online). The (a) MðD0D"−Þ and
(b) MðDþD̄"0Þ distributions for selected events. The curves
are described in the text.

TABLE I. The pole mass Mpole and width Γpole, signal yields
and fit quality (χ2=ndf) for the two tag samples.

Tag Mpole ðMeV=c2Þ Γpole (MeV) Zc signal (evts) χ2=ndf

πþD0 3882:3% 1.5 24:6% 3.3 502% 41 54=54
π−Dþ 3885:5% 1.5 24:9% 3.2 710% 54 60=54

PRL 112, 022001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

17 JANUARY 2014

022001-4

Enhancement at ��̄∗ threshold
Resonance?
Threshold cusp?
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Y. Ikeda et.al. (HALQCD collab.), Phys. Rev. Lett. 117, 242001 (2016)
��/#-��2-��̄∗, B-wave interactions, (2+1)-flavor, <� =410-700 MeV

potentials, we find that the πJ=ψ -ρηc coupling in Fig. 2(e)
is also weak: This is consistent with the heavy-quark spin
symmetry, which tells us that the spin flip amplitudes of the
charm quark are suppressed by Oð1=mcÞ. On the other
hand, (b) the ρηc-DD# coupling and (d) the πJ=ψ-DD#

coupling are both strong: They correspond to the rear-
rangement of quarks between the hidden charm sector and
the open charm sector.
As a first step to investigate the structure of the Zcð3900Þ

on the basis of Vαβ just obtained, let us consider the
two-body T matrix [see, e.g., Eq. (16.43) of Ref. [31]]:

tαβð~pα; ~pβ;Wc:m:Þ
¼ Vαβð~pα; ~pβÞ

þ
X

γ

Z
d ~qγ

Vαγð~pα; ~qγÞtγβð~qγ; ~pβ;Wc:m:Þ
Wc:m: − Eγð~qγÞ þ iϵ

; ð3Þ

where ~pα (~qγ) indicates the on-shell (off-shell) momentum
of the two-meson state in channel α (γ). Wc:m:, and Eγð~qγÞ
represent the scattering energy in the center-of-mass (c.m.)

frame and the energy of the intermediate states in channel γ,
respectively.
Shown in Fig. 3(a) are the invariant mass spectra

ImfααðWc:m:Þ ¼ −πμαImtααðWc:m:Þ in the πJ=ψ (red
circles), ρηc (green triangles), and DD# (blue squares)
channels obtained from lattice QCD for case I in Table I.
The amplitude fαβðWc:m:Þ is related to the differential cross
section as dσαβ=dΩ ¼ jfαβðWc:m:Þj2. In Fig. 3(a), the inner
errors are statistical only, while the outer ones are statistical
and systematic errors added in quadrature: The systematic
errors from the truncation of the derivative expansion are
evaluated by the difference between Imfαα at t ¼ 13 and
that at t ¼ 15. The peak structures in ρηc and DD# spectra
are caused by the opening of the s-wave thresholds. The
sudden enhancement in the πJ=ψ spectrum just above the
DD# threshold is induced by the πJ=ψ-DD# coupling.
Indeed, if we switch off the off-diagonal components of
Vαβ, the red circles turn into the black crosses without any
peak structure. This implies that the peak structure in the
πJ=ψ spectrum [called Zcð3900Þ] is a typical “threshold
cusp” [31,32] due to the opening of the s-wave DD#

threshold.

FIG. 2. The s-wave potentials for the (a) D̄D#-D̄D#, (b) ρηc-D̄D#, (c) ρηc-ρηc, (d) πJ=ψ -D̄D#, (e) πJ=ψ-ρηc, and (f) πJ=ψ -πJ=ψ
channels. The coupled-channel potentials are obtained at time slice t ¼ 13 for case I (red circles), case II (blue squares), and case III
(black triangles).

TABLE I. Meson masses in MeV units and the number of configurations used in our simulations.

mπ mρ mηc mJ=ψ mD̄ mD# Ncfg

Expt. 140 775 2984 3097 1870 2007
Case I 411(1) 896(8) 2988(1) 3097(1) 1903(1) 2056(3) 450
Case II 570(1) 1000(5) 3005(1) 3118(1) 1947(1) 2101(2) 400
Case III 701(1) 1097(4) 3024(1) 3143(1) 2000(1) 2159(2) 399

PRL 117, 242001 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 DECEMBER 2016

242001-3

To make sure that the Zcð3900Þ is not associated with
the resonance structure, we examine the pole positions of
the S matrix on the complex energy plane according to the
notation and procedure in Ref. [33]. The complex energy
is defined as z ¼ mα

1 þmα
2 þ p2

α=2μα, and the “top [t]”
(“bottom [b]”) sheet corresponds to 0 ≤ argpα < π
(π ≤ argpα < 2π) for the complex momentum in each
channel (α ¼ πJ=ψ , ρηc, DD%). Among 8 Riemann sheets
for the present three-channel scattering, the most
relevant one is the [bbb] sheet in the notation of
Ref. [33]. We find a pole with a large imaginary part
on this sheet (see Supplemental Material [34]): z − ðmD þ
mD% Þ ¼ −167ð94Þð27Þ − i183ð46Þð19Þ MeV for case I,
−128ð76Þð33Þ − i157ð32Þð19Þ MeV for case II, and
−190ð56Þð42Þ − i44ð27Þð27Þ MeV for case III, with the
first and second parentheses indicating the statistical
and systematic errors, respectively. Shown in Fig. 3(b) is
the complex pole on the [bbb] sheet for case I. It is located
far from the DD% threshold on the real axis, so that the
amplitude is hardly affected by the pole.
To make further connection between the above result and

the experimentally observed structure in πJ=ψ and DD%

invariant mass spectra [2–4], let us now consider semi-
phenomenological analysis of the three-body decays
Yð4260Þ → ππJ=ψ , πDD% by taking into account the final
state rescattering due to Vαβ extracted from lattice QCD
simulations. We model the primary vertex by complex
constants CY→πþα [α ¼ ðπJ=ψ ; DD%Þ]. Then the three-
body T matrix TY→πþβ [β ¼ ðπJ=ψ ; DD%Þ] is given by

TY→πþβð~p; ~qβ;W3Þ

¼
X

α¼πJ=ψ ;DD%

CY→πþα

×
!
δαβ þ

Z
d~qα

tαβð~qα; ~qβ; ~p;W3Þ
W3 − Eπð~pÞ − Eαð~p; ~qαÞ þ iϵ

"
; ð4Þ

where W3, Eπð~pÞ, and Eαð~p; ~qαÞ represent the energies of
the Yð4260Þ, the spectator pion with the momentum ~p

and the interacting pairs with the relative momentum ~qα in
channel α, respectively (see Supplemental Material [34]).
The decay rate in the rest frame of Yð4260Þ is obtained as
dΓY→πþβðW3Þ ¼ ð2πÞ4δðW3 − Eπð~pÞ − Eβð~p; ~qβÞÞd~pd~qβ
jTY→πþβð~p; ~qβ;W3Þj2.
In order to have the same phase space as the experiments,

we employ the physical hadron masses while tαβ is taken
from the lattice data for case I. The complex couplings
CY→πþα are fitted to the BESIII data [2]. Since the
experimental data are in the arbitrary scale, we focus only

(a) (b)

FIG. 3. (a) The two-body invariant mass spectra in the πJ=ψ (red circles, scaled by 5), ρηc (green triangles), and D̄D% (blue squares)
channels. The two-body πJ=ψ spectrum without the off-diagonal component of Vαβ is also shown by ImfπJ=ψ ;πJ=ψ0 (black crosses, scaled
by 25). (b) The pole of the S matrix on the [bbb] sheet in the notation of Ref. [33] for πJ=ψ, ρηc, and D̄D% channels
(z ¼ mα

1 þmα
2 þ p2

α=2μα). Both figures correspond to the case I in Table I. In Fig. 3(a), the inner error is statistical, while the
outer one is statistical and systematic combined in quadrature.

(a)

(b)

FIG. 4. The invariant mass spectra of (a) Yð4260Þ → ππJ=ψ
and (b) Yð4260Þ → πD̄D% below the D̄%D% threshold calculated
with Vαβ for case I in Table I. The shaded areas show the
statistical errors. The vertical arrows show the predicted peak
positions from the calculations. The blue dashed lines show the
invariant mass spectra of the Yð4260Þ decay without the off-
diagonal components of Vαβ. The experimental data are taken
from Ref. [2].
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Pole positions from the HALQCD result (<� = 410 MeV)
CP1 plane of channels ��/# and ��̄∗

In Sec. IVA, we reexamine the HAL QCD results
including the poles conjugate to those given in Ref. [20]
from the symmetry of the S matrix and calculating the pole
contributions in the framework of the two-channel unifor-
mized Mittag-Leffler expansion. There, we cannot deter-
mine the relative contributions of the poles in the spectrum
since we do not know the residues of the poles in Ref. [20].
Then, in Sec. IV B, we set up a separable potential model in
which we have a pole near the D̄D! threshold similar to
Ref. [20] and show that the contribution of such a pole
really dominates the spectrum in the vicinity of the D̄D!

threshold.

A. HAL QCD results

There have already been many theoretical studies which
try to clarify the structure of Zð3900Þ (see Refs. [1–10] and
references therein). Among them, we focus on the work by
the HAL QCD Collaboration [20,21]. They studied the
πJ=ψ − ρηc − D̄D! coupled-channel interactions using
(2þ 1)-flavor full QCD gauge configurations in order to
study the structure of Zð3900Þ. They also examined the
pole positions of the S matrix on the complex energy plane
focusing on those corresponding to usual resonances. They
found some poles located far from the physical region.
From this observation, they concluded that Zð3900Þ is not a
usual resonance but a threshold cusp.
We found it hard to understand their conclusion from the

viewpoint of uniformized Mittag-Leffler expansion, in
which the physical spectrum is given as a sum of pole
contributions in terms of the uniformization variable. In the

following we point out that their results do indicate the
existence of the S-matrix pole near the D̄D! threshold,
which is most likely the origin of the peak found in their
calculation.
In order to study the whole region of the πJ=ψ − ρηc −

D̄D! coupled channel, it would be ideal to implement
three-channel uniformization, by which the three-channel S
matrix is single valued on the whole plane of the unform-
ization variable (global uniformization). However, since the
three-channel uniformization is very much involved, in this
paper, we focus on the region near the D̄D! threshold. The
two-channel uniformization is sufficient for our purpose, by
which the three-channel S matrix can be regarded as single
valued near the D̄D! threshold (local uniformization) but
not on the whole plane of the unformization variable. In the
following, we employ the uniformization variable of
πJ=ψ − D̄D! two-channel system. Effects of the coupling
to the ρηc channel will emerge as branch cuts in the
complex z plane as shown in Fig. 5, which is neglected.
According to the pole symmetry condition, Eq. (7), there

exist conjugate poles corresponding to the poles given in
the HAL QCD results [20]. Table II shows the scaled
energy, ep, the uniformizarion variables, zp, for poles, 1–5
(Imep < 0), given in Ref. [20] and for their conjugate
poles, 1!–5! (Imep > 0), not given in Ref. [20]. Then,
Fig. 5 shows where the poles are located on the complex z
plane. If one compares the location of poles 1–5 and their
conjugate poles 1!–5!, 1! is much farther than 1 from the
physical region, but 2! and 3! are much nearer than 2 and 3
to the physical region. In fact, among all the poles, 1–5 and

FIG. 5. The (locally) uniformized complex z plane for the πJ=ψ − ρηc − D̄D! coupled-channel S matrix. πJ=ψ , ρηc, and D̄D! denote
the corresponding thresholds on the physical energy, respectively. The z plane is a two-sheeted Riemann surface connected by the two
branch cuts running along the unit circle. Both the S-matrix poles given in Ref. [20], 1–5, and their conjugate poles 1!–5!, (not given in
Ref. [20]) are shown by filled and unfilled circles.
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Pole positions and residues calculated by solving the Lippmann-Scheinger
equation with the HAL potential → residues of pole 2∗ and 3∗ dominant on the
C/Z2-plane of ��/#-��2-��̄∗

/2(3900) is a threshold cusp enhanced by poles on [CC1]+
Global coupled-channel analysis of 4+4− → 22̄ by S. Nakamura et al. obtain a pole
near HALQCD results (Private communication)
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Survival amplitude: General behavior
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Survival amplitude

A(C) = 〈#(0)|#(C)〉 =
∑
�

| 〈#(0)|�〉 |24−8��C − 1
2�8

∫ ∞

0
3� 4−8�Cdisc G(�)

Small C: Non-exponential decay due to time-reversal invariance
Intermidiate C: Exponential decay
Large C (ΓC � 1): Only contribution from the end point (threshold)

t

log |A(t)|2

Short time: Quadratic decay (C ∼ 1/|�' |)
Quantum Zeno Effect
Intermidiate time: Exponential decay
Large time: Inverse power decay
L. A. Khalfin, Sov. Phys. JETP 6, 1053 (1958)

c.f. imaginary-time correlations L.Maiani M.Testa Phys.Lett.B 245 (1990) 585-590
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Pole expansion of survival amplitude: single-channel
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G. Ordonez and N. Hatano J. Phys. A 50, 40, 405304 (2017)

1D tight-binding model consisting of a quantum dot connected to two
semi-infinite leads: electron hopping from site to site2

The T-symmetric decomposition gives the following de-
scription of an evolving quantum state: If at t = 0 the state
is even with respect to time reversal, complex-conjugate reso-
nant and anti-resonant components have equal weights in the
decomposition. However, for t != 0, the weights change. For
example for t > 0, after a time scale we will discuss, the anti-
resonance component of a pair becomes negligible compared
to the resonance component. The resonance-antiresonance
symmetry is broken. The time evolution of the complex-
conjugate pair then closely matches the irreversible time evo-
lution of the resonant component alone. Thus, in this new
approach, like in the previous approach described in the third
paragraph, the time evolution is separated into components
that break T-invariance separately. The critical difference
is that in the present new approach the time evolution au-
tomatically selects irreversible components; we do not have
to select them by hand. Moreover, all components are free
from unbounded exponential growth in time or space (see also
Ref. [16], where an expansion free of unbounded exponential
growth in space was obtained for a continuous-space model).

Note that in our previous paper [11] we already considered
the survival probability of an excited state prepared at t = 0
and we showed that the time evolution is dominated by the
resonant components for t > 0 and by anti-resonant compo-
nents for t < 0. However, in that paper we did not discuss
how this transition occurs dynamically. This is the main new
point of the present paper. Other new results are summarized
in Sec. X.

The present paper is organized as follows. In Section II we
review the concepts of T-invariance that we will discuss. In
Section III we introduce the model that we will use as an ex-
ample of a system with irreversible behavior. The system con-
sists of an impurity coupled to an infinite wire (discrete lattice)
with a single electron. We calculate the survival probability
that the electron, when placed at the impurity at t = 0, stays
there for t != 0. In Sections IV and V we formulate the sur-
vival amplitude and review the approach in which non-Hilbert
eigenstates of the Hamiltonian are singled out to obtain irre-
versibility. In Section VI we summarize the T-symmetric ex-
pansion obtained in Ref. [11], and apply it to calculate the sur-
vival probability in our model. In Section VII we show that the
resonance-antiresonance symmetry of the initial state is bro-
ken by time evolution, and associate this with irreversibility.
In Section VIII we estimate the time scale for the breaking of
the resonace-antiresonance symmetry. In Section IX we show
that our formulation can also be applied to a model with con-
tinuous space, namely the Friedrics model, and in Section X
we present some concluding remarks. The details of some
calculations are presented in several Appendices.

II. TIME-REVERSAL INVARIANCE

We start with the time-reversal operator T , which com-
mutes with H and is an anti-linear operator. An initial state
|ψ(0)〉 evolves as |ψ(t)〉 = e−iHt|ψ(0)〉. Therefore we have

T |ψ(t)〉 = Te−iHt|ψ(0)〉 = eiHtT |ψ(0)〉. (1)

d1

d2 x2Rx2L
1 2 3 …

ε1

ε2

FIG. 1. The T-shaped quantum dot model. The gray area represents
the quantum dot.

Assuming T 2 = 1, we have

|ψ(t)〉 = TeiHtT |ψ(0)〉. (2)

This equation expresses time-reversal invariance. It means
that a state that evolves forward in time (for t > 0) can be
obtained by first time-reversing the initial state, next evolving
it backwards in time, and finally reversing it again.

Moreover, let us assume that the state at t = 0 is even with
respect to time reversal:

T |ψ(0)〉 = |ψ(0)〉. (3)

Due to the anti-linearity of T we have

〈ψ(0)|T |φ〉 = 〈ψ(0)|φ〉∗. (4)

for any |φ〉. Then, from Eq. (1), we obtain

T |ψ(t)〉 = |ψ(−t)〉 (5)

and hence

〈ψ(0)|ψ(t)〉 = 〈ψ(0)|ψ(−t)〉∗, (6)

which implies

|〈ψ(0)|ψ(t)〉|2 = |〈ψ(0)|ψ(−t)〉|2 . (7)

In other words, for a system that is T-invariant, the survival
probability of a state that is even with respect to time inversion
must be an even function of time.

A recent experiment by Foroozani et al. [20] that monitored
a quantum system continuously indeed demonstrated this fact.
By selecting quantum trajectories that were consistent with a
final (terminal) condition C, they assembled an exponentially
growing Rabi oscillation signal (Fig. 2 of Ref. [20]). This
is the time-reversed curve of an exponentially decaying Rabi
oscillation, which follows after the condition C was prepared
as an initial condition (Fig. 1 of Ref. [20]).

III. A SIMPLE OPEN QUANTUM SYSTEM

We will consider a tight-binding model consisting of a
quantum dot connected to two semi-infinite leads; see Fig. 1.
A single electron can move throughout the system, hopping
from site to site.

A quantity associated with irreversible behavior is the “sur-
vival” probability, which is the probability that the electron,
when placed at a specific site at t = 0, remains there for t != 0.
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IV. SURVIVAL AMPLITUDE

The survival probability of the ‘excited state’ |d1〉 is given
by P (t) = |A(t)|2, where A(t) is the survival amplitude:

A(t) ≡ 〈d1|e−iHt|d1〉 =
∑

n∈bound

〈d1|φn〉e−iEnt〈φn|d1〉

+
R
∑

α=L

∫ π

−π

dk

2π
〈d1|φkα〉e−iEkt〈φkα|d1〉, (14)

which follows from Eq. (12). As shown in Appendix B, intro-
ducing the variable λ = eik such that E = −b(λ+ λ−1), we
can express the survival amplitude in the form

A(t) =

∫

C

dλ

2πiλ

(

−λ+
1

λ

)

eib(λ+
1

λ )t bg2

h(λ)

1

f(λ)
, (15)

where

f(λ) =

[

−b

(

λ+
1

λ

)

− ε1

]

×

[

−b

(

λ+
1

λ

)

− ε2 + λ
∑

α

t22α
b

]

− g2, (16)

h(λ) ≡ −b

(

λ+
1

λ

)

− ε1, (17)

and the contour C is shown in Fig. 3; we have assumed that
the model is in such a parameter region that f(λ) has a pair of
complex-conjugate roots λR and λAR corresponding to res-
onance and anti-resonance poles, respectively, and two real
roots λB1 and λB2 corresponding to the two bound states,
namely in the region to the right of the EP in Fig. 2. As shown
in Appendix C, the poles of h(λ) do not contribute to the in-
tegral.

When t > 0 in Eq. (15), we can deform the contour C in
Fig. 3 so that we may isolate the contribution from the residue
resonant pole λR as shown in Fig. 4(a):

A(t) = 〈d1|φR〉e−iERt〈φ̃R|d1〉

+

∫

C′

dλ

2πiλ

(

−λ+
1

λ

)

eib(λ+
1

λ )t bg2

h(λ)

1

f(λ)
, (18)

The first term is the residue at λR and is written in terms of the
right and left resonant eigenstates of the Hamiltonian, |φR〉
and 〈φ̃R| respectively, which satisfy

H |φR〉 = ER|φR〉, 〈φ̃R|H = 〈φ̃R|ER, (19)

where ER = −b(λR + λR
−1) is equal to the complex

resonance energy. These states are normalized such that
〈φ̃R|φR〉 = 1, but they are not in the Hilbert space be-

cause the Hilbert norms 〈φR|φR〉 or 〈φ̃R|φ̃R〉 diverge [6].
It is worth noting that although these states grow exponen-
tially in space representation, the normalization constant giv-
ing 〈φ̃R|φR〉 = 1 can be obtained by adding a convergence
factor, as shown in Appendix D of Ref. [11].

1

−1

C

FIG. 3. The contour C used in Eq. (15). It includes the unit circle and
integrations around the bound-state poles λB1 and λB2. Also shown
are the resonance (λR) and anti-resonance (λAR) poles as well as the
pole at the origin.

Since the energy eigenvalue ER has a negative imaginary
part, the first term in Eq. (18) represents an exponential decay
for t > 0. The anti-resonant eigenstate (associated with the
anti-resonant pole) is the complex conjugate of the resonant
eigenstate as |φAR〉 = |φR〉∗, which, however, does not ex-
plicitly contribute to Eq. (18). The contributions from both the
infinitesimal half circle around the origin and the infinite half
circle in the upper half plane vanish for t > 0 because of the
exponential factor in the integrand, which is indeed the moti-
vation for modifying the contour to C′ in the first place. The
integration on the real axis in Fig. 4 can be evaluated by dif-
ferent approximations, for example the saddle-point approxi-
mation for large t [11] (see also Appendix F) or the short-time
approximation in Section VIII.

When t < 0 in Eq. (15), we are compelled to deform the
contour as shown in Fig. 4(b), because contributions from
both the infinitesimal half circle around the origin and the in-
finite half circle in the lower half plane vanish for t < 0. After
the contour deformation we obtain

A(t) = 〈d1|φAR〉e−iEARt〈φ̃AR|d1〉

+

∫

C′′

dλ

2πiλ

(

−λ+
1

λ

)

eib(λ+
1

λ )t bg2

h(λ)

1

f(λ)
. (20)

Now the anti-resonant pole contributes instead of the resonant
pole. Since the energy eigenvalue EAR has a positive imag-
inary part, the first term in Eq. (20) grows exponentially as
negative t increases, approaching the origin. The integration
over the real axis can be evaluated by the same approxima-
tions used for the t > 0 case.

Note that these countour deformations are the most natural
choice for the evaluation of the integral in the respective cases
of t > 0 and t < 0 because we should nullify the essential
singularities at λ = 0 and |λ| = ∞. We will show in Sec-
tion VI by numerically evaluating the integral that the above
arguments indeed give the correct behavior.
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FIG. 6. (a) Contributions to the total survival probability |A(t)|2
of the ‘excited state’ (red line with the highest peak) corresponding
to: the resonant state |〈d1|χR(t)〉|2 (blue line with a lower peak on
the right); the anti-resonant state |〈d1|χAR(t)〉|2 (yellow line with
a lower peak on the left) and bound states |〈d1|χB(t)〉|2 (green line
almost indistinguishable from the horizontal axis). We here plot as
the contributions the square modulus of each component, which do
not add up to the plotted total survival probability. The parameters
are b = 1, ε1 = 0.2, ε2 = 0, g = 0.4, and t2L = t2R = 1. Sim-
ilarly, the probability |〈d1|ψθ(t)〉|2 with |ψθ(0)〉 given by Eq. (31),
(b) for θ = 0 and (c) for θ = π/2. For θ = π/2 the resonant and
anti-resonant components of the state |ψθ(0)〉 have different weights.
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FIG. 7. (a) The resonant component of the survival probability,
|〈d1|χR(t)〉|2 (solid line) compared to the non-Hilbert state com-
ponent |〈d1|φR(t)〉|2 (dashed line). The parameters are the same as
in Fig. 6. (b) The resonant component |〈x|χR(t)〉|2 (solid line) com-
pared to the non-Hilbert state component |〈x|φR(t)〉|2 (dashed line)
in the position representation. This figure is similar to Fig. 7.11 in
Ref. [16] or Fig. 2 in Ref. [10], although the latter two display the
complete probability density in space representation rather than the
resonance component alone.

which is generally not even with respect to time-inversion.
Under the time reversal we have

〈d1|T |ψθ(t)〉 = 〈d1|Te−iHt|ψθ(0)〉 = 〈d1|ψ−θ(−t)〉 (32)

Thus, from Eq. (6) we obtain

〈d1|ψ−θ(−t)〉 = 〈d1|ψθ(t)〉∗, (33)

which means that the probability |〈d1|ψθ(t)〉|2 is no longer
an even function of time, unless θ = 0 or θ = π. This is
demonstrated in Fig. 6 (b) and (c).

The components of |ψθ(t)〉,

|χn(t, θ)〉 =
1

2πi

∫

C
dλ

(

−λ+
1

λ

)

exp

[

ib

(

λ+
1

λ

)

t

]

× |ψn〉
λn

λ− λn
〈ψ̃n|ψθ〉, (34)

satisfy

〈d1|χR(t, θ)〉 = 〈d1|χAR(−t,−θ)〉∗ (35)

and

〈d1|χB(t, θ)〉 = 〈d1|χB(−t,−θ)〉∗, (36)

Total

| 〈31 |"'〉 |2| 〈31 |"�'〉 |2

Time-reversal symmetry

| 〈31 |"'(C)〉 + 〈31 |"�'(C)〉 |2

= | 〈31 |"'(−C)〉 + 〈31 |"�'(−C)〉 |2

Exponential decay in intermidiate C > 0
(C < 0) region dominated by resonance
(anti-resonance) contribution



“Survival Amplitude” in coupled-channels
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Extension of J. Phys. A 50, 40, 405304 (2017) to coupled-channel systems

Pole Expansion of “Survival Amplitude” (2-channel)

PRD 108, L071502(2023) W. Yamada, O. Morimatsu, T. Sato, K. Yazaki

Unstable state |31〉

A(C) = 〈31 |4−8�C |31〉 =
∑
�

| 〈31 |)�〉 |4−8��C +
∑
=

A=A=(C; I=)

A=(C; I=) =
8

4�

[(
1 − 1

I2
=

)
�(C; �=) +

(
1 + 1

I2
=

)
4−8C �(C; �= − 1) + 28

I=
�(C; �=)

]
�(C; �=) =

√
�
8C

− 8�√�= 4
−8C�= erfc(8

√
8C�=), �(C; �=) =

∫ 1

0
3�

√
�
√

1 − �

� − �=
4−8C�

�(C; �=) matches the analytic expression for the single-channel case
Contributions from each channel (first term, second term)
Interference term: �(C; �=) involving both channels



“Survival Amplitude” in coupled-channels
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Survival amplitude: Toy model

V̂ = 61

∫
3®@1

(2�)3
E(@1)

[
|®@1〉 〈3 | + |3〉 〈®@1 |

]
+ 62

∫
3®@2

(2�)3
E(@2)

[
|®@2〉 〈3 | + |3〉 〈®@2 |

]

case[A] Resonance pole: Exponential decay → inverse-power decay
case[B] Enhanced threshold cusp: Non-exponential decay in all time regions
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Analytic structure of the S-matrix
• 2-channel CP1

• 3-channel C/Z2

General behavior of the spectral function
• Resonance peaks: [(1)1C]−, [(1)11]−, [1CC]−
• Enhanced threshold cusps: [(C)C1]+, [C1C]+

Survival amplitude
• Resonance: Exponential decay → inverse-power decay
• Enhanced threshold cusp: Non-exponential decay in all time regions
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�̄# interaction from HALQCD
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Studies on the �̄# system
Exotic channel: 2̄@ + @@@
No @@̄ annihilation of constituent quarks
Bound state → Pentaquark
Possibility of Charmed nuclei
Approximate degenarate states from HQSS
in-medium effects to the �̄-meson

q
q

q

N

q
c̄

D̄

D̄N

D̄∗N

DN

D∗N

πΛc

πΣc

πΣ∗
c

No open channels (↔ �# system has lower open channels e.g. �Λ2 , �Σ
(∗)
2 )

No @@̄ annihilation suited for Lattice simulations
(@@̄ annihilation → large computational cost, Murakami-san’s Talk 10.28)
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Experimental constraints insufficient (almost none)

Results of various theoretical models
Table from Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, PPNP 96, 88 (2017)

122 A. Hosaka et al. / Progress in Particle and Nuclear Physics 96 (2017) 88–153

Table 6

Scattering lengths in the DN channel in various models. The isospin averaged scattering length aD is defined
in Eq. (4.1.25). All numbers are given in units of fm. The negative (positive) scattering length corresponds to
the repulsive (attractive) scattering at threshold. When a shallow bound state exists, the scattering length
becomes negative with a large magnitude. The results of Ref. [185] are given in Ref. [223] where the imag-
inary parts are found to be negligible. The results of Refs. [186,190] are shown in Ref. [191].

Model aI=0
DN aI=1

DN aD
SU(4) contact [185] �0.43 �0.41 �0.42
SU(4) contact [186] �0.57 + i 0.001 �1.47 + i 0.65 �1.25 + i 0.49
SU(8) contact [190] 0.004 + i 0.002 0.33 + i 0.05 0.29 + i 0.038
Meson exchange [191] �0.41 + i 0.04 �2.07 + i 0.57 �1.66 + i 0.44

Table 7

Scattering lengths in the D̄N channel in various models. The isospin averaged scattering
length aD̄ is defined in Eq. (4.1.25). All numbers are given in units of fm. The negative (posi-
tive) scattering length corresponds to the repulsive (attractive) scattering at threshold.When
a shallow bound state exists, the scattering length becomes negative with a large magni-
tude. Results of Ref. [192] are those in the ⇡⇢! model. The results of Ref. [185] are given in
Ref. [223].

Model aI=0
D̄N aI=1

D̄N aD̄
SU(4) contact [185] �0.16 �0.26 �0.24
Meson exchange [194] 0.07 �0.45 �0.32
Pion exchange [192] �4.38 �0.07 �1.15
Chiral quark model [219] 0.03–0.16 0.20–0.25 0.16–0.23

We summarize theDN scattering lengths in the SU(4) contact interactionmodels [185,186], the SU(8) contact interaction
model [190], and themeson exchangemodel [191,205] in Table 6. In the I = 0 sector, all models give amoderately repulsive
scattering length, except for the SU(8) contact interactionmodelwhich predicts veryweakly attractive value. It is remarkable
that the imaginary part is very small in all cases, indicating the transition to the ⇡⌃c channel is suppressed. In the I = 1
sector, the results are more scattered. The imaginary part is very small in Refs. [185,190] while it is sizable in Refs. [186,191].
A large negative scattering length of DN(I = 1) of the meson exchange model [191] is a consequence of the shallow quasi-
bound state which corresponds to ⌃c(2800).

As shown in Table 7, the D̄N scattering lengths are calculated in the SU(4) contact interaction model [185], the meson
exchange model [194], the pion-exchange model [192], and the chiral quark model [219]. The scattering lengths are in
general not very large and comparable with the ⇡N sector, except for the pion-exchange model where the I = 0 scattering
length is enhanced by the near-threshold bound state (see Table 4). We comment that the pion-exchange model without
the ⇢ and ! exchanges provides an attractive scattering length (aI=1

D̄N = 0.22 fm). However, the ⇢ and ! exchanges in the
diagonal component lead to the repulsive scattering length as shown in Table 7.

The DN/D̄N scattering length can be used to estimate the mass shift of the D/D̄ in the nuclear medium. Under the linear
density approximation [224], the mass shift of the D/D̄ meson in the symmetric nuclear matter is given by

�mD/D̄ = �2⇡
MN + mD

MNmD
⇢NaD/D̄, (4.1.24)

with the nucleonmassMN , theDmesonmassmD, and the normal nuclearmatter density ⇢N . The isospin averaged scattering
length is defined as

aD/D̄ =

aI=0
DN/D̄N + 3aI=1

DN/D̄N

4
. (4.1.25)

We see that the attractive scattering length aD/D̄ > 0 (repulsive scattering length aD/D̄ < 0) induces the decrease (increase)
of theD/D̄mass in nuclearmatter. In Tables 6 and 7, we show the results of the averaged scattering lengths (4.1.25).We note
that the scattering length in the I = 1 channel is important for the in-medium property of the D/D̄ meson, because of the
larger weight in Eq. (4.1.25). We however remind that Eq. (4.1.24) is a simple estimation, and more detailed analysis of the
mass shift will be discussed in Section 4.3. In Ref. [177], the two-body scattering length is evaluated by the QCD sum rules,
in order to study the in-medium modification of the D meson mass. The averaged scattering length of D and D̄ is estimated
as (aD + aD̄)/2 = 0.72 ± 0.12 fm. This suggests the decrease of the averaged mass of D and D̄ by about ' � 48M ± 8 MeV,
while the later studies indicate the increase of the D meson masses. Again, thorough discussion on the mass shift will be
given in Section 4.3.

4.2. Few-body systems

We have seen several studies with an attractive DN/D̄N interaction, some of which predict a (quasi-)bound state below
the threshold. These observations suggest the possible formation of a bound state of D/D̄ with a few nucleons. If it exists,

[185] J.Hofmann, M.F.M.Lutz, Nucl.Phys. A763 (2005) 90-139
[192] Y. Yamaguchi, S. Ohkoda, S. Yasui, A. Hosaka, Phys.Rev. D 84 (2011) 014032
[193] D.Gamermann, C.Garcia-Recio, J.Nieves, L.L.Salcedo, L.Tolos, Phys.Rev. D81 (2010) 094016
[194] J.Haidenbauer, G.Krein, U.-G.Meissner, A.Sibirtsev, Eur.Phys.J. A33 (2007) 107-117
[195] T.F.Carames, A.Valcarce, Phys.Rev. D85 (2012) 094017
[219] C.E. Fontoura, G. Krein, V.E. Vizcarra, Phys.Rev. C 87 (2) (2013) 025206

ρ, ω, σ, a0
π, ρ

π, ρ
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First experimental study of the two-body scattering of �̄#
S. Acharya et al. ALICE collab. Phys.Rev.D 106 (2022) 5, 052010

�−? correlation from ?? collision
Assuming negligible interaction in the � = 1 channel

Attractive �̄# strong interaction + coulomb
inverse scattering length 0−1

0 : −0.4 ∼ +0.9 fm
→ Existance of bound state or shallow virtual state
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Objective

Study the �̄# interaction on the Lattice by the HALQCD method

configs at physical point (<� ' 137 MeV)



HALQCD method
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Scattering information (Phase shift) from correlation function:

C(C , ®A) =
∑
®G

〈O1(C , ®G + ®A)O2(C , ®G)J̄ (0)〉

=
∑
=

�=#(®A;�=)4−�= C

Lüscher’s finite volume method
M. Lüscher, Nucl.Phys.B 354 531-578 (1991)
Energy spectra in finite volume {�=} → quatization condition (e.g. Lüscher’s
formula) → Phase shift

HALQCD method
N. Ishii, S. Aoki, and T. Hatsuda PRL 99, 022001 (2007)
Temporal + spacial info. #(®A;�=) → Potential → Phase shift
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HALQCD C(C , ®A) =
∑
®G

〈O1(C , ®G + ®A)O2(C , ®G)J̄ (0)〉

=
∑
=

�=#(®A;�=)4−�= C

#(®A) → sin(:A − ;�/2 + �(:))
:A

4 8�(:) (A � ')

(∇2 + :2)#(®A;�=) =
∫

3®A′+(®A, ®A′)#(®A′;�=)

+(®A, ®A′) is a potential that produces the correct phase shift of the QCD S-matrix

Time-dependent method Ishii et al. (HAL QCD), PLB712, 437(2012)

'(C , ®A) = C(C , ®A)
√
/1/24−(<1+<2)C[

1 + 3�2

8�
%2

%C2
− %

%C
+ ∇2

2�

]
'(C , ®A) =

∫
3®A′+(®A, ®A′)'(C , ®A′)

Excited-state contamination surpressed
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configuation: F-conf

0 = 0.084372(54) [fm]

! = 96, + = !3 × 96

Iwasaki gauge action (� = 1.82)
2+1 flavor
O(a)-improved Wilson quark action
slightly heavy 2-quark

Lattice [MeV] PDG [MeV]
� 137.1 138
# 939.7 938

�̄# (threshold) 2819.8 2807
�̄∗# (threshold) 2957.5 2949

statistics: 360 configurations × 96 source × 4

L ' 8 fm
mπ ' 137 MeV

HALQCD Analysis: Single-channel �̄# system (� = 0, � = 1)



�̄# potential: �+
1 , Derivative expansion LO
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LO term of the derivative expansion computed from the �+
1 projected NBS function

+(®A, ®A′) = +LO(A)�(®A − ®A′) +O(∇)�(®A − ®A′)

+LO(A) = '−1(A, C)
[
1 + 3�2

8�
%2

%C2
− %

%C
+ ∇2

2�

]
'(A, C)

� = 0: Short-range repulsive core + Attractive pocket (∼10 MeV)
� = 1: Short-range repulsive core



�̄# potential: �+
1 , Derivative expansion LO
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Phenomenological fit of +LO (uncorrelated)

+LO(A) ≈ 004
−01A2 + 024

−03A2 + 04(1 − 4−05A2 )2 4
−06A

A2
≡ +fit(A)

"2/dof
C = 12 C = 13 C = 14

� = 0 1.28 1.25 1.16
� = 1 1.74 1.36 1.17
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Computed phase shift by solving the schrödinger equation with potential +(�=0)
fit

#(') = sin(:' + �)
:'

4 8� (' = 480)

0 20 40 60 80 100 120
�CM [MeV]

−4

−2

0

2

4

6

8

� 0
[d

eg
] � = 0

C = 12
C = 13
C = 14

10−1 100 101

�CM [GeV]

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

� 0
[d

eg
]

� = 0

C = 12
C = 13
C = 14

Attractive behavior (small attraction) in the low-energy region
Repulsive behavior in the higher energy region
No bound-state: �0(0) − �0(∞) = 0



Phase shift �0 (� = 1)
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Computed phase shift by solving the schrödinger equation with potential +(�=1)
fit

#(') = sin(:' + �)
:'

4 8� (' = 480)

0 20 40 60 80 100 120
�CM [MeV]
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−15.0
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−10.0

−7.5
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0.0

� 0
[d

eg
] � = 1

C = 12
C = 13
C = 14

10−1 100 101

�CM [GeV]

−25

−20

−15

−10

−5

0

� 0
[d

eg
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� = 1

C = 12
C = 13
C = 14

Repulsive behavior in all energy regions
No bound-state: �0(0) − �0(∞) = 0
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Effective-Range expansion:

: cot �0(:) =
1
00

+ 1
2 A0:

2 + · · ·

0.0 0.2 0.4 0.6 0.8 1.0
(:/<�)2

−5

0

5

10

15

20

25

:
co

t�
0/<

�

� = 0 C = 12
C = 13
C = 14

0.0 0.2 0.4 0.6 0.8 1.0
(:/<�)2

−30

−20

−10

0

10

:
co

t�
0/<

�

� = 1 C = 12
C = 13
C = 14

Scattering length 00 [fm]

� = 0 � = 1
C = 12 0.370 (42) −0.110 (18)
C = 13 0.320 (65) −0.080 (30)
C = 14 0.267 (93) −0.081 (54)

Effective Range A0 [fm]
� = 0 � = 1

C = 12 10.26 ± 0.71 8.24 ± 5.33
C = 13 9.84 ± 1.41 24.09 ± 23.74
C = 14 9.20 ± 2.60 26.88 ± 50.19
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Comparison to results with heavier pion mass <� = 410 MeV (PACS-CS config.)
Y. Ikeda slides 10th APCTP-BLTP/JINR-RCNP-RIKEN Joint Workshop Aug.2016

� = 0: smaller pion mass, shallower attrictive pocket
(<� ' 137 MeV case) has smaller scattering length but is still positive
� = 1: (<� ' 137 MeV case) has slightly smaller repulsion
scattering length closer to zero



Comparison: EFT Models, Femtoscopy
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Preliminary Results from HALQCD <� ' 137 MeV
No bound state in � = 0, � = 1
Scattering length 00 [fm]

� = 0 � = 1
C = 12 0.370 (42) −0.110 (18)
C = 13 0.320 (65) −0.080 (30)
C = 14 0.267 (93) −0.081 (54)

Scattering length of various models
Table from Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, PPNP 96, 88 (2017)

122 A. Hosaka et al. / Progress in Particle and Nuclear Physics 96 (2017) 88–153

Table 6

Scattering lengths in the DN channel in various models. The isospin averaged scattering length aD is defined
in Eq. (4.1.25). All numbers are given in units of fm. The negative (positive) scattering length corresponds to
the repulsive (attractive) scattering at threshold. When a shallow bound state exists, the scattering length
becomes negative with a large magnitude. The results of Ref. [185] are given in Ref. [223] where the imag-
inary parts are found to be negligible. The results of Refs. [186,190] are shown in Ref. [191].

Model aI=0
DN aI=1

DN aD
SU(4) contact [185] �0.43 �0.41 �0.42
SU(4) contact [186] �0.57 + i 0.001 �1.47 + i 0.65 �1.25 + i 0.49
SU(8) contact [190] 0.004 + i 0.002 0.33 + i 0.05 0.29 + i 0.038
Meson exchange [191] �0.41 + i 0.04 �2.07 + i 0.57 �1.66 + i 0.44

Table 7

Scattering lengths in the D̄N channel in various models. The isospin averaged scattering
length aD̄ is defined in Eq. (4.1.25). All numbers are given in units of fm. The negative (posi-
tive) scattering length corresponds to the repulsive (attractive) scattering at threshold.When
a shallow bound state exists, the scattering length becomes negative with a large magni-
tude. Results of Ref. [192] are those in the ⇡⇢! model. The results of Ref. [185] are given in
Ref. [223].

Model aI=0
D̄N aI=1

D̄N aD̄
SU(4) contact [185] �0.16 �0.26 �0.24
Meson exchange [194] 0.07 �0.45 �0.32
Pion exchange [192] �4.38 �0.07 �1.15
Chiral quark model [219] 0.03–0.16 0.20–0.25 0.16–0.23

We summarize theDN scattering lengths in the SU(4) contact interactionmodels [185,186], the SU(8) contact interaction
model [190], and themeson exchangemodel [191,205] in Table 6. In the I = 0 sector, all models give amoderately repulsive
scattering length, except for the SU(8) contact interactionmodelwhich predicts veryweakly attractive value. It is remarkable
that the imaginary part is very small in all cases, indicating the transition to the ⇡⌃c channel is suppressed. In the I = 1
sector, the results are more scattered. The imaginary part is very small in Refs. [185,190] while it is sizable in Refs. [186,191].
A large negative scattering length of DN(I = 1) of the meson exchange model [191] is a consequence of the shallow quasi-
bound state which corresponds to ⌃c(2800).

As shown in Table 7, the D̄N scattering lengths are calculated in the SU(4) contact interaction model [185], the meson
exchange model [194], the pion-exchange model [192], and the chiral quark model [219]. The scattering lengths are in
general not very large and comparable with the ⇡N sector, except for the pion-exchange model where the I = 0 scattering
length is enhanced by the near-threshold bound state (see Table 4). We comment that the pion-exchange model without
the ⇢ and ! exchanges provides an attractive scattering length (aI=1

D̄N = 0.22 fm). However, the ⇢ and ! exchanges in the
diagonal component lead to the repulsive scattering length as shown in Table 7.

The DN/D̄N scattering length can be used to estimate the mass shift of the D/D̄ in the nuclear medium. Under the linear
density approximation [224], the mass shift of the D/D̄ meson in the symmetric nuclear matter is given by

�mD/D̄ = �2⇡
MN + mD

MNmD
⇢NaD/D̄, (4.1.24)

with the nucleonmassMN , theDmesonmassmD, and the normal nuclearmatter density ⇢N . The isospin averaged scattering
length is defined as

aD/D̄ =

aI=0
DN/D̄N + 3aI=1

DN/D̄N

4
. (4.1.25)

We see that the attractive scattering length aD/D̄ > 0 (repulsive scattering length aD/D̄ < 0) induces the decrease (increase)
of theD/D̄mass in nuclearmatter. In Tables 6 and 7, we show the results of the averaged scattering lengths (4.1.25).We note
that the scattering length in the I = 1 channel is important for the in-medium property of the D/D̄ meson, because of the
larger weight in Eq. (4.1.25). We however remind that Eq. (4.1.24) is a simple estimation, and more detailed analysis of the
mass shift will be discussed in Section 4.3. In Ref. [177], the two-body scattering length is evaluated by the QCD sum rules,
in order to study the in-medium modification of the D meson mass. The averaged scattering length of D and D̄ is estimated
as (aD + aD̄)/2 = 0.72 ± 0.12 fm. This suggests the decrease of the averaged mass of D and D̄ by about ' � 48M ± 8 MeV,
while the later studies indicate the increase of the D meson masses. Again, thorough discussion on the mass shift will be
given in Section 4.3.

4.2. Few-body systems

We have seen several studies with an attractive DN/D̄N interaction, some of which predict a (quasi-)bound state below
the threshold. These observations suggest the possible formation of a bound state of D/D̄ with a few nucleons. If it exists,

�−? correlation function (femtoscopy): ALICE PRD 106, 052010 (2022)
0−1
�=0 ∈ [−0.4, 0.9] fm−1
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Summary

�̄# system
Possibility of Pentaquark, Charmed nuclei…
Limited experimental data, No lower open channels, no @@̄ annihilation
→ good system for Lattice simulations
Preliminary results HALQCD (<� ' 137 MeV)
• (Small) Attractive behavior in the low energy region of � = 0 channel
• Repulsive behavior in the � = 1 channel
• No bound states

Future work
Coupled-channel analysis of �̄#-�̄∗#

Coupling of �̄#-�̄∗# is important to explain the attraction in � = 0 channel
Femtoscopy analysis using the �̄# HAL potential
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