S-matrix theory with near-threshold states $&$ \overline{DN} interaction from HALQCD

HHIQCD 2024 @ YITP, October 29, 2024

Wren Yamada (Rento Yamada)

RIKEN iTHEMS (HALQCD Collaboration)

General behavior of spectral function and time evolution in the Presence of Near-threshold states

W.Yamada, O.Morimatsu, Phys.Rev. C 102, 055201

W.Yamada, O.Morimatsu, T.Sato, K.Yazaki, Phys.Rev. D 108, L071502

Preliminary results of the $\bar{D}N$ interaction from HALQCD HALQCD collab.

[Spectral Function and Time Evolution](#page-2-0) [in the Presence of Near-threshold states](#page-2-0)

Introduction tion にほんしょうかい

Many candidates of exotic hadrons $(qq\bar{q}\bar{q}, qqq\bar{q}, \cdots)$ observed in the vicinity of the hadronic 2-body thresholds e.g. $X(3872)$, T_{cc} , P_c

- pentaquark in *J*/ ⇤ @ pentaquark *P^c* @ LHCb R. Aaij et al. (LHCb Collaboration), arXiv:2109.01038 R. Aaij et al. (LHCb Collaboration), Phys.Rev.Lett. 115, 072001 (2015)
- Determination of the pole position is important for a better understanding of the nature of such states

Single-channel 2-body Scattering

Descrete states (e.g. Bound state, Virtual state, Resonance state) Solutions of wave functions under the out-going-wave boudary condition A. F. J. Siegert, Phys. Rev. 56, 750 (1939)

Descrete States \leftrightarrow Poles of the S-matrix

In the following assume that:

- Analytic continuation of the S-matrix is possible to complex momenta
- \blacksquare LH-cut contributions from *t*-channel, *u*-channel negligible

Single-channel 2-body Scattering

S-matrix: meromorphic function of CM momentum k \rightarrow Mittag-Leffler theorem

Mittag-Leffler Expansion (ML Expansion) J. Humblet, L.Rosenfeld, Nucl. Physics 26 (1961) D. Ramírez Jiménez, N. Kelkar, Annals of Physics 396, 18 (2018)

$$
\mathcal{A}(k) = \sum_{n} \left[\frac{r_n}{k - k_n} - \frac{r_n^*}{k + k_n^*} \right] + \left[\text{subtractions (entire function)} \right]
$$

c.f.

$$
\mathcal{A}(s) = \frac{1}{2i\pi} \int_{s_0}^{\infty} ds' \frac{\text{disc}\mathcal{A}(s')}{s' - s - i\epsilon} + \text{[subtractions (entire function)]}
$$

 \rightarrow Extension to coupled-channels

CP¹ **Representation of the 2-channel S-matrix**

 E -plane $|4$ -sheeted Riemann Surface (RS)

CP¹ **Representation of the 2-channel S-matrix**

 z -plane M. Kato, Annals of Physics 31, 130 (1965)

$$
z = \frac{1}{\Delta}(k_1 + k_2), \quad k_i = (\epsilon - \epsilon_i)^{1/2}, \quad \Delta = (\epsilon_2^2 - \epsilon_1^2)^{1/2}
$$

2-channel Mittag-Leffler Expansion W. Yamada, O. Morimatsu, Phys. Rev. C 102, 055201 (2020) $\overline{}$

$$
\mathcal{A}(z) = \sum_{i} \left[\frac{r_n}{z - z_n} - \frac{r_n^*}{z + z_n^*} \right] + \text{(subtraction)}
$$

 $\mathcal{A}(z) = \sum_{i} \left[\frac{1}{z - z_{n}} - \frac{1}{z + z_{n}^{*}} \right] + \text{(subtraction)}$
Spectral decomposition invariant under: $Aut(\mathbb{CP}^{1}) \simeq PGL(2,\mathbb{C})$

8/34

Spectral Function: Lineshapes

Lineshapes of the spectral function in the presence a near-threshold pole (near upper threshold)

■ Peak position ≈ Closest Physical Point on z (\neq Re E_R)

9/34 ■ Peak position \approx Closest Physical Point on z (\neq Re E_R)

■ Width of Structure \propto Minimal Distance from Physical Domain on z (\neq $|\text{Im } E_R|$)

C/Z ² **Representation of the 3-channel S-matrix**

2-sheeted z_{12} -plane $(z$ -plane using channel mass ϵ_1 , ϵ_2)

$$
q_1 = \frac{\Delta_{12}}{2} \left[z_{12} + 1/z_{12} \right], \quad q_2 = \frac{\Delta_{12}}{2} \left[z_{12} - 1/z_{12} \right], \quad q_3 = \frac{\Delta_{12}}{2z_{12}} \underbrace{\sqrt{(1 - z_{12}^2 \gamma^2)(1 - z_{12}^2/\gamma^2)}}_{\text{(1 - z_{12}^2 \gamma^2)}} \right], \quad \left(\gamma = \frac{\sqrt{\varepsilon_3^2 - \varepsilon_1^2 + \sqrt{\varepsilon_3^2 - \varepsilon_2^2}}}{\Delta_{12}} \right)
$$

W.Y. O.M. T.S. arXiv:2203.17069 [hep-ph], Fig.1 (楕円積分と楕円関数 おとぎの国の歩き方)

10/34

3-channel ML Expansion W. Yamada, O. Morimatsu, T. Sato, PRL 129, 192001 (2022)

$$
\mathcal{A}(z) = \sum_{z_i \in \Lambda^*} \left[r_i \left[\zeta(z - z_i) + \zeta(z_i) \right] \right] z[\tau] = \frac{1}{4K(k)} \int_0^{\gamma/z_{12}} \frac{d\xi}{\sqrt{1 - \xi^2} \sqrt{1 - k^2 \xi^2}}
$$

$Z_c(3900)$

M. Ablikim et al., Phys. Rev. Lett. 110, 252001 (BESIII) M. Ablikim et al., Phys. Rev. Lett. 112, 022001 (BESIII) Z. Q. Liu et al., Phys. Rev. Lett. 110, 252002 (Belle) $f_{\rm t}$ these events decreases with increasing DD $f_{\rm t}$ \mathcal{L} acceptance variation is not sufficient to produce a peak in \mathcal{L}

Enhancement at $D\bar{D}^*$ threshold Enhancement at $D\bar{D}^*$ threshold

■ Resonance?

■ Threshold cusp?
 $\frac{11}{34}$

result of a phase space (PHSP) MC simulation; and the green

- **Resonance?** \blacksquare resolutive:
- \blacksquare Threshold cusp?

meson is not, in fact, recoiling from a D α - α

No. Collaborative Research Center CRC-1044; Istituto

are described in the text.

Z_c (3900)
Nagarisku (11400

Y. Ikeda et.al. (HALQCD collab.), Phys. Rev. Lett. 117, 242001 (2016) $\pi J/\psi$ -ρη_c-DD^{*}, *s*-wave interactions, (2+1)-flavor, m_{π} =410-700 MeV

 $V(\mathcal{A})$ the red circles turn into the black crosses with any \mathcal{A}

$Z_c(3900)$ $F(\lambda)$ this observation, they concluded that λ usual resonance but a threshold cusp.

Pole positions from the HALQCD result $(m_{\pi} = 410 \text{ MeV})$ \mathbb{CP}^1 plane of channels $\pi J/\psi$ and $D\bar{D}^*$

 $\mathcal{F}_{\mathcal{A}}$ shows where the poles are located on the complex $\mathcal{F}_{\mathcal{A}}$

- Pole positions and residues calculated by solving the Lippmann-Scheinger equation with the HAL potential \rightarrow residues of pole 2^{*} and 3^{*} dominant on the \mathbb{C}/\mathbb{Z}^2 -plane of $\pi J/\psi$ - $\rho \eta_c$ - $D\bar{D}^*$
- Z_c (3900) is a threshold cusp enhanced by poles on $[ttb]_+$
- 13/34 Global coupled-channel analysis of $e^+e^- \rightarrow c\bar{c}$ by S. Nakamura et al. obtain a pole
near HALOCD results (Private communication) 𝑒 near HALQCD results (Private communication)

Survival amplitude: General behavior

Survival amplitude

$$
\mathcal{A}(t) = \langle \psi(0) | \psi(t) \rangle = \sum_{B} |\langle \psi(0) | B \rangle|^{2} e^{-iE_{B}t} - \frac{1}{2\pi i} \int_{0}^{\infty} dE \ e^{-iEt} \text{disc } \mathcal{G}(E)
$$

- Small *t*: Non-exponential decay due to time-reversal invariance
- Intermidiate *t*: Exponential decay
- **Large** *t* ($\Gamma t \gg 1$): Only contribution from the end point (threshold) $\log |\mathcal{A}(t)|^2$

- Short time: Quadratic decay $(t \sim 1/|E_R|)$ Quantum Zeno Effect
- \blacksquare Intermidiate time: Exponential decay
- Large time: Inverse power decay L. A. Khalfin, Sov. Phys. JETP 6, 1053 (1958)

c.f. imaginary-time correlations L.Maiani M.Testa Phys.Lett.B 245 (1990) 585-590

$$
\langle \pi(t, \vec{q} = 0) \pi(t, \vec{q} = 0) \mathcal{J}(0) \rangle \rightarrow \frac{Z_{\pi}}{(2M_{\pi})^2} e^{-2M_{\pi}t} f(4M_{\pi}^2) \left[1 - a \sqrt{\frac{M_{\pi}}{4\pi t}} + \cdots \right]
$$

Pole expansion of survival amplitude: single-channel

G. Ordonez and N. Hatano J. Phys. A 50, 40, 405304 (2017)

■ 1D tight-binding model consisting of a quantum dot connected to two semi-infinite leads: *electron hopping from site to site* 2

 $\mathcal{L}_{\mathcal{M}}$, $\mathcal{L}_{\mathcal{M}}$

"Survival Amplitude" in coupled-channels

Extension of J. Phys. A 50, 40, 405304 (2017) to coupled-channel systems

Pole Expansion of "Survival Amplitude" (2-channel)

PRD 108, L071502(2023) W. Yamada, O. Morimatsu, T. Sato, K. Yazaki Unstable state $|d_1\rangle$

$$
\mathcal{A}(t) = \langle d_1|e^{-iHt}|d_1\rangle = \sum_B |\langle d_1|\phi_B\rangle|e^{-iE_Bt} + \sum_n r_n \mathcal{A}_n(t;z_n)
$$

$$
\mathcal{A}_n(t;z_n) = \frac{i}{4\pi} \left[\left(1 - \frac{1}{z_n^2}\right) I(t;\varepsilon_n) + \left(1 + \frac{1}{z_n^2}\right) e^{-it} I(t;\varepsilon_n - 1) + \frac{2i}{z_n} J(t;\varepsilon_n) \right]
$$

$$
I(t;\varepsilon_n) = \sqrt{\frac{\pi}{it}} - i\pi \sqrt{\varepsilon_n} e^{-it\varepsilon_n} \text{erfc}(i\sqrt{it\varepsilon_n}), \quad J(t;\varepsilon_n) = \int_0^1 de \frac{\sqrt{\varepsilon}\sqrt{1-\varepsilon}}{\varepsilon - \varepsilon_n} e^{-it\varepsilon}
$$

- \blacksquare $I(t; \varepsilon_n)$ matches the analytic expression for the single-channel case Contributions from each channel (first term, second term)
- Interference term: $J(t; \varepsilon_n)$ involving both channels

Survival amplitude: Toy model

$$
\hat{\mathcal{V}}=g_1\int\,\frac{d\vec{q}_1}{(2\pi)^3}v(q_1)\Bigg[|\vec{q}_1\rangle\,\langle d|+|d\rangle\,\langle\vec{q}_1|\Bigg]+g_2\int\,\frac{d\vec{q}_2}{(2\pi)^3}v(q_2)\Bigg[|\vec{q}_2\rangle\,\langle d|+|d\rangle\,\langle\vec{q}_2|\Bigg]
$$

■ case[A] Resonance pole: Exponential decay \rightarrow inverse-power decay case[B] Enhanced threshold cusp: Non-exponential decay in all time regions

- Analytic structure of the S-matrix
	- 2-channel \mathbb{CP}^1
	- 3-channel \mathbb{C}/\mathbb{Z}^2
- General behavior of the spectral function
	- Resonance peaks: $[(b)bt]_$, $[(b)bb]_$, $[bt]_$
	- Enhanced threshold cusps: $[(t)tb]_{+}$, $[tbt]_{+}$
- **Survival amplitude**
	- Resonance: Exponential decay \rightarrow inverse-power decay
	- Enhanced threshold cusp: Non-exponential decay in all time regions

 $\bar{D}N$ [interaction from HALQCD](#page-18-0)

Introduction

- Studies on the $\bar{D}N$ system
	- Exotic channel: $\bar{c}q + qqq$ No $q\bar{q}$ annihilation of constituent quarks Bound state → Pentaquark
	- Possibility of Charmed nuclei П Approximate degenarate states from HQSS in-medium effects to the \bar{D} -meson

- No open channels $(\leftrightarrow DN$ system has lower open channels e.g. $\pi \Lambda_c$, $\pi \Sigma_c^{(*)}$
- \blacksquare No $q\bar{q}$ annihilation suited for Lattice simulations ($q\bar{q}$ annihilation \rightarrow large computational cost, Murakami-san's Talk 10.28)

Introduction

Experimental constraints insufficient (almost none) **Table 7**

Results of various theoretical models

 s interaction contact for the SU(8) contact interaction model which predicts very weakly attractive value. It is remarkable that the imaginary part in all cases, indicate the transition to the *I* channel is suppressed. In the *I* suppressed. In the *I* cases, in the *I* cases, in the *I* and *I* sector, the results are more scattered. The imaginary part is very small in Refs. [185,190] while it is sizable in Refs. [186,191].

Meson exchange [191] 0*.*⁴¹ + *ⁱ* ⁰*.*⁰⁴ 2*.*⁰⁷ + *ⁱ* ⁰*.*⁵⁷ 1*.*⁶⁶ + *ⁱ* ⁰*.*⁴⁴

Table from Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, PPNP 96, 88 (2017)

[185] J.Hofmann, M.F.M.Lutz, Nucl.Phys. A763 (2005) 90-139

bound state which corresponds to ⌃*^c* (2800). [192] Y. Yamaguchi, S. Ohkoda, S. Yasui, A. Hosaka, Phys.Rev. D 84 (2011) 014032

As shown in Table 7, the *DN*¯ scattering lengths are calculated in the SU(4) contact interaction model [185], the meson [193] D.Gamermann, C.Garcia-Recio, J.Nieves, L.L.Salcedo, L.Tolos, Phys.Rev. D81 (2010) 094016

[196] Extending Collection (Collection Collection Collection Collection Collection Collection Collection Collection (1974)
[194] J.Haidenbauer, G.Krein, U.-G.Meissner, A.Sibirtsev, Eur.Phys.J. A33 (2007) 107-117

[195] T.F.Carames, A.Valcarce, Phys.Rev. D85 (2012) 094017

[219] C.E. Fontoura, G. Krein, V.E. Vizcarra, Phys.Rev. C 87 (2) (2013) 025206

Introduction

First experimental study of the two-body scattering of $\bar{D}N$

S. Acharya et al. ALICE collab. Phys.Rev.D 106 (2022) 5, 052010

- \blacksquare D^-p correlation from pp collision
- Assuming negligible interaction in the $I = 1$ channel

- Attractive $\bar{D}N$ strong interaction + coulomb
- inverse scattering length a_0^{-1} : −0.4 ∼ +0.9 fm
	- \rightarrow Existance of bound state or shallow virtual state

Objective

Study the $\bar{D}N$ interaction on the Lattice by the HALQCD method

configs at physical point ($m_{\pi} \approx 137$ MeV)

HALQCD method

Scattering information (Phase shift) from correlation function:

$$
\mathcal{C}(t, \vec{r}) = \sum_{\vec{x}} \langle \mathcal{O}_1(t, \vec{x} + \vec{r}) \mathcal{O}_2(t, \vec{x}) \bar{\mathcal{J}}(0) \rangle
$$

$$
= \sum_n A_n \psi(\vec{r}; E_n) e^{-E_n t}
$$

Lüscher's finite volume method

M. Lüscher, Nucl.Phys.B 354 531-578 (1991) Energy spectra in finite volume ${E_n}$ \rightarrow quatization condition (e.g. Lüscher's formula) \rightarrow Phase shift

■ HALOCD method

N. Ishii, S. Aoki, and T. Hatsuda PRL 99, 022001 (2007) Temporal + spacial info. $\psi(\vec{r}; E_n) \rightarrow$ Potential \rightarrow Phase shift

HALQCD method

[HALQCD]

$$
\mathcal{C}(t, \vec{r}) = \sum_{\vec{x}} \langle \mathcal{O}_1(t, \vec{x} + \vec{r}) \mathcal{O}_2(t, \vec{x}) \bar{\mathcal{J}}(0) \rangle
$$

$$
= \sum_n A_n \psi(\vec{r}; E_n) e^{-E_n t}
$$

$$
\psi(\vec{r}) \to \frac{\sin(kr - l\pi/2 + \delta(k))}{kr} e^{i\delta(k)} \quad (r \gg R)
$$

$$
(\nabla^2 + k^2)\psi(\vec{r}; E_n) = \int d\vec{r}' V(\vec{r}, \vec{r}')\psi(\vec{r}'; E_n)
$$

 $V(\vec{r}, \vec{r}')$ is a potential that produces the correct phase shift of the QCD S-matrix

Time-dependent method Ishii et al. (HAL QCD), PLB712, 437(2012)

$$
R(t, \vec{r}) = \frac{C(t, \vec{r})}{\sqrt{Z_1 Z_2} e^{-(m_1 + m_2)t}}
$$

$$
\left[\frac{1 + 3\delta^2}{8\mu} \frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} + \frac{\nabla^2}{2\mu}\right] R(t, \vec{r}) = \int d\vec{r}' V(\vec{r}, \vec{r}') R(t, \vec{r}')
$$

Excited-state contamination surpressed

Setup

configuation: F-conf

 $a = 0.084372(54)$ [fm] $L = 96, \quad V = L^3 \times 96$

- Iwasaki gauge action (β = 1.82)
- 2+1 flavor \blacksquare
- $O(a)$ -improved Wilson quark action $\mathcal{L}_{\mathcal{A}}$
- \blacksquare slightly heavy c-quark

statistics: 360 configurations \times 96 source \times 4

HALQCD Analysis: Single-channel $\bar{D}N$ system ($I = 0$, $I = 1$)

$\bar{D}N$ potential: A_1^+ 1 **, Derivative expansion LO**

LO term of the derivative expansion computed from the A_1^+ $_1^+$ projected NBS function

$$
\begin{split} V(\vec{r},\vec{r}') &= V_{\rm LO}(r)\delta(\vec{r}-\vec{r}') + \mathcal{O}(\nabla)\delta(\vec{r}-\vec{r}') \\ V_{\rm LO}(r) &= R^{-1}(r,t)\Bigg[\frac{1+3\delta^2}{8\mu}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} + \frac{\nabla^2}{2\mu}\Bigg]R(r,t) \end{split}
$$

 $I = 0$: Short-range repulsive core + Attractive pocket (∼10 MeV)

 $I = 1$: Short-range repulsive core

$\bar{D}N$ potential: A_1^+ 1 **, Derivative expansion LO**

Phenomenological fit of V_{LO} (uncorrelated)

$$
V_{\text{LO}}(r) \approx a_0 e^{-a_1 r^2} + a_2 e^{-a_3 r^2} + a_4 (1 - e^{-a_5 r^2})^2 \frac{e^{-a_6 r}}{r^2} \equiv V_{\text{fit}}(r)
$$

 χ^2 /dof

Phase shift δ_0 ($I = 0$)

Computed phase shift by solving the schrödinger equation with potential $V_{\text{fit}}^{(I=0)}$

$$
\psi(R) = \frac{\sin(kR + \delta)}{kR} e^{i\delta} \quad (R = 48a)
$$

Attractive behavior (small attraction) in the low-energy region m, Repulsive behavior in the higher energy region

No bound-state:
$$
\delta_0(0) - \delta_0(\infty) = 0
$$

Phase shift δ_0 ($I = 1$)

Computed phase shift by solving the schrödinger equation with potential $V_{\text{fit}}^{(I=1)}$

$$
\psi(R) = \frac{\sin(kR + \delta)}{kR} e^{i\delta} \quad (R = 48a)
$$

- Repulsive behavior in all energy regions
- No bound-state: $\delta_0(0) \delta_0(\infty) = 0$

Scattering Length, Effective Range

Effective-Range expansion:

$$
k \cot \delta_0(k) = \frac{1}{a_0} + \frac{1}{2}r_0k^2 + \cdots
$$

m_{π} dependence

Comparison to results with heavier pion mass $m_{\pi} = 410$ MeV (PACS-CS config.) Y. Ikeda slides 10th APCTP-BLTP/JINR-RCNP-RIKEN Joint Workshop Aug.2016

 $I = 0$: smaller pion mass, shallower attrictive pocket $(m_\pi \approx 137 \text{ MeV} \text{ case})$ has smaller scattering length but is still positive $I = 1$: ($m_{\pi} \approx 137$ MeV case) has slightly smaller repulsion scattering length closer to zero

Comparison: EFT Models, Femtoscopy Comparison: EFT Models, Femtoscopy

Preliminary Results from HALQCD $m_{\pi} \approx 137$ MeV

- No bound state in $I = 0$, $I = 1$
- Scattering length a_0 [fm] \blacksquare scattering religin *u*₀ [*i*.iii]

becomes negative with a large magnitude. The results of Ref. [185] are given in Ref. [223] where the imag-

Scattering length of various models a shallow bound states, the scattering length becomes negative with a large magni-

Table from Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, PPNP 96, 88 (2017)

Model	$a_{\bar{D}N}^{l=0}$	$a_{\bar{D}N}^{l=1}$	$a_{\bar{D}}$
$SU(4)$ contact [185]	-0.16	-0.26	-0.24
Meson exchange [194]	0.07	-0.45	-0.32
Pion exchange [192]	-4.38	-0.07	-1.15
Chiral quark model [219]	$0.03 - 0.16$	$0.20 - 0.25$	$0.16 - 0.23$

length *aD*¯ is defined in Eq. (4.1.25). All numbers are given in units of fm. The negative (posi-

 σ^{-2} ϵ [-0.4, 0.9] fm⁻¹ D[−]p correlation function (femtoscopy): ALICE PRD 106, 052010 (2022)

$$
a_{I=0}^{-1} \in [-0.4, 0.9] \text{ fm}^{-1}
$$

Summary

 $\bar{D}N$ system

Possibility of Pentaquark, Charmed nuclei…

- **Limited experimental data, No lower open channels, no** $q\bar{q}$ **annihilation**
	- \rightarrow good system for Lattice simulations
- Preliminary results HALQCD ($m_{\pi} \approx 137$ MeV)
	- (Small) Attractive behavior in the low energy region of $I = 0$ channel
	- Repulsive behavior in the $I = 1$ channel
	- No bound states

Future work

■ Coupled-channel analysis of $\bar{D}N$ - \bar{D}^*N

Coupling of $\bar{D}N-\bar{D}^*N$ is important to explain the attraction in $I = 0$ channel

Femtoscopy analysis using the $\overline{D}N$ HAL potential