Lectures on Lattice QCD study of Hadron interactions (II)

Takumi Doi (RIKEN iTHEMS)

Lectures at HHIQCD2024 workshop @ YITP

Outline

- Introduction
- Brief review of scattering theory
- Scattering on the lattice
 - Luscher's finite volume method
 - HAL QCD method
- S/N problem
- More on HAL QCD method
- Reliability issue and NN controversy
- Summary

The Challenge

Myth of ground state saturation

(example w/ Luscher's method)

Calculate the energy spectrum of 2-hadron on finite V lattice
 – Temporal correlation in Euclidean time → energy

 $G(t) = \langle 0|\mathcal{O}(t)\overline{\mathcal{O}}(0)|0| \rangle = \sum_{n} A_{n}e^{-E_{n}t} \to A_{0}e^{-E_{0}t} \quad (t \to \infty)$

- Convert the energy shift to phase shift by Luscher's formula $E \rightarrow \Delta E = E - 2m$ (effect of int.) $\rightarrow k$ (asymp. mom.) $\rightarrow \delta_E$
 - Determination of energies
 - Take t >> 1/(E₁-E₀) and find a "plateau" (G.S. saturation)

$$E_{\text{eff}}(t) = \ln \left[\frac{G(t)}{G(t+1)}\right] \xrightarrow[t \to \infty]{} E_0$$

In the old (time-independent) HAL QCD method, similar procedure is necessary to obtain NBS w.f. for the ground state

Challenges in multi-baryons on the lattice

Excitation energy ~ binding energy or finite V effect $E_1 - E_0 \simeq \frac{\vec{p}^2}{m_N} \simeq \frac{1}{m_N} \frac{(2\pi)^2}{L^2}$ (very small) $M\pi = 0.5 \text{ GeV}$ L=3fm L = 3 fm L = 6 fm L = 8 fm $L = \infty$ $M\pi = 0.3 \text{ GeV}$ Inelastic L=6fm $NN\pi$ Elastic NN

Physical Mπ

L=8fm

New Challenge for multi-body systems

System ~w/o Gap

The Challenge in multi-baryons on the lattice

Signal / Noise issue

Parisi ('84), Lepage ('89)

– G.S. saturation by t $\rightarrow \infty$ required in LQCD

$$G(r,t) = \langle 0 | \mathcal{O}(r,t) \overline{\mathcal{O}}(0) | 0 | \rangle = \sum_{n} \alpha_{n} \psi_{n}(r) e^{-E_{n}t} \xrightarrow[t \to \infty]{} \alpha_{0} \psi_{0}(r) e^{-E_{0}t}$$

each (dressed) quark propagator carries info of pions, nucleons, ... $\sim \exp(-1/2 \mathbf{m}_{\pi} \mathbf{t}) + \exp(-1/3 \mathbf{m}_{N} \mathbf{t}) + \cdots$

a la D. Kaplan (via A. Walker-Loud)

<u>pion</u>

<u>quark</u>

signal from the lowest (=dominant) mode $\frac{\text{Signal}}{\text{Noise}} \sim \frac{\langle \pi(t)\pi(0) \rangle}{\sqrt{\langle \pi\pi(t)\pi\pi(0) \rangle}} \sim \frac{\exp(-\mathbf{m}_{\pi}\mathbf{t})}{\sqrt{\exp(-2\mathbf{m}_{\pi}\mathbf{t})}} \sim \text{const.}$

nucleon

small signal after the cancellation of dominant modes

$$\frac{\text{Signal}}{\text{Noise}} \sim \frac{\langle N^{\mathbf{A}}(t)\bar{N}^{\mathbf{A}}(0)\rangle}{\sqrt{\langle |N^{\mathbf{A}}(t)\bar{N}^{\mathbf{A}}(0)|^{2}\rangle}} \sim \frac{\exp(-\mathbf{A}\mathbf{m}_{\mathbf{N}}\mathbf{t})}{\sqrt{\exp(-3\mathbf{A}\mathbf{m}_{\pi}\mathbf{t})}}$$
$$\rightarrow \exp[-\mathbf{A}(\mathbf{m}_{\mathbf{N}}-\mathbf{3}/2\mathbf{m}_{\pi})\mathbf{t}]$$

(A: mass number)

The Challenge in multi-baryons on the lattice

Existence of elastic scatt. states

- → (almost) No Excitation Energy
- ➔ LQCD method based on G.S. saturation impossible

Signal/Noise issue

 $S/N \sim \exp[-\mathbf{A} \times (\mathbf{m_N} - \mathbf{3}/\mathbf{2m_\pi}) \times \mathbf{t}]$

Parisi('84), Lepage('89)

L=8fm @ physical point $(E_1 - E_0) \simeq 25 \text{MeV} \Longrightarrow t > 10 \text{fm}$ $S/N \sim 10^{-32}$

Naïve plateau fitting at t ~ 1fm is unreliable ("mirage" of true signal)

T. Iritani et al. (HAL) JHEP1610(2016)101

T. Iritani et al. (HAL) PRD96(2017)034521

The solution in HAL method

We cannot avoid the excited states. We have to confront them !

Time-dependent HAL QCD method

N.Ishii et al. (HAL QCD Coll.) PLB712(2012)437

E-indep of potential U(r,r') → (excited) scatt states share the same U(r,r') <u>They are not contaminations, but signals</u>

Original (t-indep) HAL method

$$G_{NN}(\vec{r},t) = \langle 0|N(\vec{r},t)N(\vec{0},t)\overline{\mathcal{J}_{Src}(t_0)}|0\rangle$$

$$R(r,t) \equiv G_{NN}(r,t)/G_N(t)^2 = \sum A_{W_i}\psi_{W_i}(r)e^{-(W_i-2m)t}$$

$$\int dr' U(r,r')\underline{\psi_{W_0}(r')} = (\underline{E}_{W_0} - H_0)\underline{\psi_{W_0}(r)}$$

$$\int dr' U(r,r')\underline{\psi_{W_0}(r')} = (\underline{E}_{W_1} - H_0)\underline{\psi_{W_1}(r)}$$

$$= (\underline{E}_{W_1} - H_0)\underline{\psi_{W_1}(r)}$$

New t-dep HAL method

All equations can be combined as

$$\int d\mathbf{r}' \mathbf{U}(\mathbf{r}, \mathbf{r}') \underline{R}(\mathbf{r}', t) = (-\frac{\partial}{\partial t} + \frac{1}{4m} \frac{\partial^2}{\partial t^2} - H_0) \underline{R}(\mathbf{r}, t)$$

G.S. saturation \rightarrow "Elastic state" saturation

System w/ Gap

Coupled Channel systems

(beyond inelastic threshold)

- Time-dep method is very useful for coupled channel
 - Interesting physics (e.g. resonances) embedded in the continuum

Examine the reliability of the HAL QCD method

Convergence of the derivative expansion of potential Contaminations from inelastic states

T. Iritani et al. (HAL) PRD99(2019)014514

Demonstration how derivative expansion works

Aoki-Doi, Front.Phys.8(2020)307

Derivative expansion for a non-local potential

 $U(\mathbf{r},\mathbf{r}') = \omega v(\mathbf{r})v(\mathbf{r}'), \quad v(\mathbf{r}) \equiv e^{-\mu r}.$

Source op. dependence in HAL

Source op. dependence in HAL

Smeared/Wall almost agree : t-dep HAL method works excellently Smeared tends to converge to Wall w/ larger t, but deviation still exists

Higher Order Approximation (N²LO) (1)

$$U(r,r') \simeq \left[V_0^{\mathrm{N}^2\mathrm{LO}}(r) + \frac{V_2^{\mathrm{N}^2\mathrm{LO}}(r)\nabla^2}{2} \right] \delta(r-r')$$

Higher Order Approximation (N²LO) (2)

$$U(r,r') \simeq \left[V_0^{\mathrm{N}^2 \mathrm{LO}}(r) + \frac{V_2^{\mathrm{N}^2 \mathrm{LO}}(r) \nabla^2}{2} \right] \delta(r - r')$$

Phase Shift and Uncertainties in Velocity Expansion

 Wall src. LO approx. (standard of HAL QCD studies) works well at low energy.

potential & observable are stable even at early time

On the NN controversy in Lattice QCD

Direct method vs HAL method (NN @ heavy quark masses)

HAL method (HAL) :unboundDirect method (PACS-CS (Yamazaki et al.)/NPL/CalLat):bound

Direct method = naïve plateau fitting + Luscher's formula

Direct method vs HAL method (NN @ heavy quark masses)

HAL method (HAL) : unbound Direct method (PACS-CS (Yamazaki et al.)/NPL/CalLat): bound

Direct method = naïve plateau fitting + Luscher's formula

The Challenge in multi-baryons on the lattice

Existence of elastic scatt. states

- → (almost) No Excitation Energy
- ➔ LQCD method based on G.S. saturation impossible

Signal/Noise issue

 $S/N \sim \exp[-\mathbf{A} \times (\mathbf{m_N} - \mathbf{3}/\mathbf{2m_\pi}) \times \mathbf{t}]$

Parisi('84), Lepage('89)

L=8fm @ physical point $(E_1 - E_0) \simeq 25 \text{MeV} \Longrightarrow t > 10 \text{fm}$ $S/N \sim 10^{-32}$

Naïve plateau fitting at t ~ 1fm is unreliable ("mirage" of true signal)

T. Iritani et al. (HAL) JHEP1610(2016)101

T. Iritani et al. (HAL) PRD96(2017)034521

Anatomy of the Direct method and the consistency between Luscher's formula and HAL method

T. Iritani et al. (HAL) JHEP03(2019) 007

Ideal and real of "optimized" smeared src

Smeared src: Optimized to suppress 1-body inelastic states

Recall the real challenge for two-baryon systems:

- ➔ Noises from 2-body elastic excited states
- Traditional smeared src is NOT optimized for two-body systems !

Detailed implementation of smeared src all 6-quarks are smeared at the same spacial point

→ Large contaminations from 2-body elastic excited states are "rather natural"

r

Operator optimized for 2-body system by HAL

- HAL method \rightarrow HAL pot \rightarrow 2-body wave func. @ finite V
- 2-body wave func. → optimized operator
 - Applicable for sink and/or src op : Here we apply for sink op
- While utilizing info by HAL, formulation is Luscher's formula

Effective energy shift ΔE from "HAL-optimized op"

HAL-optimized sink op \rightarrow projected to each state \rightarrow "True" plateaux

Understand the origin of "pseudo-plateaux"

Decompose NBS correlator to each eigenstates

<u>Understand the origin of "pseudo-plateaux"</u>

We are now ready to "predict" the behavior of m(eff) of ΔE at any "t"

<u>Understand the origin of "pseudo-plateaux"</u>

We are now ready to "predict" the behavior of m(eff) of ΔE at any "t"

Direct method vs HAL method (NN @ heavy quark masses)

HAL method (HAL) :unboundDirect method (PACS-CS (Yamazaki et al.)/NPL/CalLat):bound

Direct method = naïve plateau fitting + Luscher's formula

Direct method vs HAL method (NN @ heavy quark masses)

HAL method (HAL) :unboundDirect method (PACS-CS (Yamazaki et al.)/NPL/CalLat):bound

Direct method = naïve plateau fitting + Luscher's formula

New LQCD calc also confirms our HAL results

New calc w/ Luscher's FV formula does not use naïve plateau fitting (variational study is used)

A. Walker-Loud @ Lat2023 "I believe the old results are wrong (including those I was involved with)"

LQCD Results with (deeply) bound di-nucleons

2006	NPLQCD - first (dynamical LQCD calculations of NN
2011	NPLQCD	$M\pi \simeq 390 \text{ MeV}$
2012	Yamazaki et al.	$M\pi \approx 510 \text{ MeV}$
2012	NPLQCD	$M\pi \approx 800 \text{ MeV}$
2015	Yamazaki et al.	$M\pi \simeq 310 \text{ MeV}$
2015	CalLat	$M\pi \approx 800 \text{ MeV} + P, D, F \text{ waves}$
2015	NPLQCD	$M\pi \simeq 450 \text{ MeV}$
2020	NPLQCD	$M\pi \simeq 450 \text{ MeV}$

LQCD Results without bound di-nucleons (or inconclusive)

2012	HAL QCD	$M\pi \simeq 710 \text{ MeV}$
2012	HAL QCD	$\mathrm{M}\pi\simeq469-1171~\mathrm{MeV}$
2019	"Mainz"	$M\pi \simeq 960 \text{ MeV}$
2020	CoSMoN	$M\pi \simeq 714 \text{ MeV}$
2021	NPLQCD	$M\pi \approx 800 \text{ MeV}$

Could (chiral) effective theories invalidate old finite volume data?

Unfortunately, the answer seems "No".

The chiral EFTs and old lattice data seemed consistent if EFT parameters were fixed by the same lattice data.

It is hard for EFTs to tell whether lattice data are correct or not.

S. Aoki @ CD2024

In my opinion, NN controversy was over

> but with some lessons which may be useful for young researchers...

- Hadron Forces from LQCD
- Exponentially better S/N
- <u>Coupled channel systems</u>

Ishii-Aoki-Hatsuda (PRL99)

Ishii et al. (PLB712)

Aoki et al. (Proc.Jpn.Acad.Ser.B87)

[Theory] = HAL QCD method

Hadron Interactions from Lattice QCD simulations

[Software]

- = Unified Contraction Algorithm
- Exponential speedup Doi-Endres (CPC184)
 - ${}^{3}\text{H}/{}^{3}\text{He}$: $\times 192$ ${}^{4}\text{He}$: $\times 20736$ ${}^{8}\text{Be}$: $\times 10^{11}$

[Hardware]

- = Supercomputers
 - Monte Carlo Integration w/ 10⁹ dof
 - Extensive use of top supercomputers

<u>Summary</u>

- Hadron forces: Bridge between particle/nuclear/astro-physics
- LQCD study of Hadron forces is the frontier!
 - Luscher's finite volume method
 - HAL QCD method
 - Energy-indep non-local potential useful for reliable calc
 - We can calculate phase shifts (in infinite V) from simulations on finite V
 - Systematic error carefully investigated
- LQCD results @ phys point will make huge impact

