QCD in the chiral SU(3) limit from baryon masses on Lattice **QCD** ensembles

Yonggoo Heo¹

¹GSI Helmholtzzentrum für Schwerionenforschung GmbH

October 16, Y TP 🔿 Kyōto Univ., Japan

Outline

Hadron masses from the chiral Lagrangian

- Meson and baryon masses at the one-loop level
- ► Large-*N_c* constraints on low-energy constants (LECs)

Chiral extrapolations for Lattice QCD data

- Lattice QCD data on CLS ensembles
- Our global Fit with finite-volume and discretization effects
- Result

Summary and future work

Hadron masses from the chiral Lagrangian

- Meson and baryon masses at the one-loop level
- ► Large-*N_c* constraints on low-energy constants (LECs)

The chiral SU(3) Lagrangian

A few terms of the chiral Lagrangian for hadron masses

$$\begin{aligned} \mathscr{L} &= -f^2 \operatorname{tr} U_{\mu} U^{\mu} + \frac{1}{2} f^2 \operatorname{tr} \chi_{+} + 4 L_6 (\operatorname{tr} \chi_{+})^2 + 4 L_7 (\operatorname{tr} \chi_{-})^2 \\ &- 8 L_4 \operatorname{tr} U_{\mu} U^{\mu} \operatorname{tr} \chi_{+} - 8 L_5 \operatorname{tr} U_{\mu} U^{\mu} \chi_{+} \\ &+ \operatorname{tr} \bar{B} (i \gamma^{\mu} D_{\mu} - M_{[8]}) B \\ &+ F \operatorname{tr} \bar{B} \gamma^{\mu} \gamma_5 [i U_{\mu}, B] + D \operatorname{tr} \bar{B} \gamma^{\mu} \gamma_5 \{i U_{\mu}, B\} + \cdots, \end{aligned}$$

with

$$\begin{split} U_{\mu} &= \frac{1}{2} \, u^{\dagger} \left(\partial_{\mu} e^{i \Phi/f} \right) u^{\dagger} \,, \qquad u = e^{i \Phi/2f} \,, \\ D_{\mu} B &= \partial_{\mu} B + \left[\Gamma_{\mu}, \, B \right] \,, \qquad \Gamma_{\mu} &= \frac{1}{2} \, u \left(\partial_{\mu} u^{\dagger} \right) + \frac{1}{2} \, u^{\dagger} \left(\partial_{\mu} u \right) \,, \\ \chi_{\pm} &= \frac{1}{2} \left(u \, \chi_{0} \, u \pm u^{\dagger} \chi_{0} \, u^{\dagger} \right) \,, \quad \chi_{0} = 2 \, B_{0} \operatorname{diag}(m, \, m, \, m_{s}) \,, \end{split}$$

The chiral SU(3) Lagrangian

A few terms of the chiral Lagrangian for hadron masses

$$\begin{aligned} \mathscr{L} &= -f^2 \operatorname{tr} U_{\mu} U^{\mu} + \frac{1}{2} f^2 \operatorname{tr} \chi_{+} + 4 L_6 (\operatorname{tr} \chi_{+})^2 + 4 L_7 (\operatorname{tr} \chi_{-})^2 \\ &- 8 L_4 \operatorname{tr} U_{\mu} U^{\mu} \operatorname{tr} \chi_{+} - 8 L_5 \operatorname{tr} U_{\mu} U^{\mu} \chi_{+} \\ &+ \operatorname{tr} \bar{B} (i \gamma^{\mu} D_{\mu} - M_{[8]}) B \\ &+ F \operatorname{tr} \bar{B} \gamma^{\mu} \gamma_5 [i U_{\mu}, B] + D \operatorname{tr} \bar{B} \gamma^{\mu} \gamma_5 \{i U_{\mu}, B\} + \cdots, \end{aligned}$$

$$\Phi = \sqrt{2} \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^0 \\ K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}} \eta \end{pmatrix}, B = \begin{pmatrix} \frac{\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^+ & p \\ \Sigma^- & -\frac{\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ -\Xi^- & \Xi^0 & -\frac{2}{\sqrt{6}} \Lambda \end{pmatrix}$$

▶ More LECs for hadron masses up to N³LO

- Even more LECs for decuplet baryons involved
- ► For scattering processes, we need additional LECs.

Meson masses at 1 loop with on-shell masses

$$\begin{split} m_{\pi}^{2} &= 2 B_{0} m + \frac{10 m_{\pi}^{2} - 4 m_{K}^{2} + 3 m_{\eta}^{2}}{18 f^{2}} \bar{I}_{\pi} - \frac{m_{\pi}^{2}}{6 f^{2}} \bar{I}_{\eta} \\ &+ \frac{m_{\pi}^{2}}{f^{2}} \left\{ 8 \left(m_{\pi}^{2} + 2 m_{K}^{2}\right) \left(2 L_{6} - L_{4}\right) + 8 m_{\pi}^{2} \left(2 L_{8} - L_{5}\right) \right\}, \\ &\text{with chiral logs } \bar{I}_{Q} = \frac{m_{Q}^{2}}{(4 \pi)^{2}} \ln \frac{m_{Q}^{2}}{\mu^{2}}, \quad \text{similar for } m_{K}^{2} \text{ and } m_{\eta}^{2} \;. \end{split}$$

- ▶ 1+3 LECs: f, $(2L_6 L_4)$, $(2L_8 L_5)$, and $(3L_7 + L_8)$
- Set of 3 nonlinear equations with LECs, quark masses, m, m_s, and on-shell meson masses, m²_π, m²_K and m²_η
 - μ dependence from \overline{I}_Q is balanced by L_j .
- Different from conventional chiral perturbation theory (χ PT)

Towards baryon masses

LECs & diagrams for baryon masses

$$B \longrightarrow B \qquad B \in \{N, \Lambda, \Sigma, \Xi, \Delta, \Sigma^*, \Xi^*, \Omega\}$$

There are 2 LECs: $M_{[8]}, M_{[10]}$.

There are 5 LECs proportional to m, m_s (or $m_{\pi}^2, m_K^2, m_{\eta}^2$).

$$\begin{array}{l} Q \in \{\pi, K, \eta\} \\ R \in \{N, \Lambda, \Sigma, \Xi, \Delta, \Sigma^*, \Xi^*, \Omega\} \end{array}$$

There are 4 LECs: F, D, C, H.

Loops have on-shell hadron masses^a

- Not only meson, but baryon masses as well
- Different from conventional *x*PT approach

^{*a*}Lutz,Heo,Guo,Semke [arXiv:1801.06417,1801.10122,nucl-th/0511061]

LECs & diagrams for baryon masses ..cont'd

There are 12 LECs proportional to m^2 , $m m_s$, m_s^2 .

There are 17 LECs proportional to $m \bar{I}_Q, m_s \bar{I}_Q$.

The set of 8 nonlinear equations with

• $2^{\text{LO}} + 5^{\text{NLO}} + 4^{\text{N2-LO}} + 12 + 17 = 40 \text{ LECs}$

- On-shell baryon masses, $M_N, M_\Lambda, M_\Sigma, M_\Xi, M_\Delta, M_{\Sigma^*}, M_{\Xi^*}, M_\Omega$
- On-shell meson masses, m_{π}, m_{K}, m_{η}
- μ dependence from loops is balanced by LECs.

40 LECs?

Large-*N_c* constraints on low-energy constants

	LECs	Large-N _c LO	Large- N_c NLO
Q (F, I)	D, C, H)		
$\sum_{Q,R} B - \bigcup_{R} B$	4	1	2
$B \longrightarrow B$	12	5	8
$\sum_{Q} B \xrightarrow{\bullet} B$	17	5	11

- There were early works on large-N_c analysis. ^a b
- ▶ Novel large-*N_c* sum rules have been published by our group. ^{*c*}
- What do we do with those?

^a't Hooft [Nucl.Phys.B 72 (1974) 461] Witten [Nucl.Phys.B 160 (1979) 57-115] ^bLuty,M-Russell,Dashen,Jenkins,Manohar [arXiv:hep-ph/9310369,9310379,9411234] ^cLutz,Semke [arXiv:1012.4365] **Heo,Kobdaj,Lutz,Guo [arXiv:1908.11816,1801.06417]**

Chiral extrapolations for Lattice QCD data

• We consider Lattice QCD data on CLS ensembles

▶ 3 classes: $m_s = m$, $m_s \sim \text{const.}$, and $2m + m_s \sim \text{const.}$

- Our global Fit w/ finite-volume and discretization effects
- Result

Flavor-symm. ensembles: comparison

From RQCD Collaboration · Bali et al [arXiv:2211.03744]

 \Rightarrow Such ensembles are of the utmost importance to SU(3) χ PT.

Flavor-symm. ensembles: comparison ..cont'd

Reevaluated baryon masses on some CLS ensembles

RQCD Collaboration · Bali et al [arXiv:2211.03744]

Hudspith,Lutz,Mohler [arXiv:2404.02769] Lutz,Heo,Hudspith [arXiv:2406.07442]

Flavor-symm. ensembles ..cont'd

Effective mass plots of baryons on the X251 ensemble

Much-improved statistical precision

- A single exponential ansatz for the correlation functions
- On gauge-fixed wall sources

Finite-box effects

Loop contributions evaluated in the finite box ^{a b}

^{*a*}Lutz,Heo,Guo [arXiv:1801.06417,2301.06837]

^bLutz,Bavontaweepanya,Kobdaj,Schwarz [arXiv:1401.7805]

From tadpoles,

$$\bar{I}_Q = \frac{m_Q^2}{(4\pi)^2} \ln \frac{m_Q^2}{\mu^2} + \frac{1}{4\pi^2} \sum_{\vec{n} \in \mathbb{Z}^3}^{\vec{n} \neq 0} \frac{m_Q}{L|\vec{n}|} K_1(m_Q L|\vec{n}|) \,,$$

From bubbles,

$$\begin{split} \Delta \bar{I}_{QR}(M_B) &= \frac{1}{8\pi^2} \sum_{\vec{n} \in \mathbb{Z}^3}^{\vec{n} \neq 0} \left(\int_0^1 \!\! \mathrm{d}z \, K_0 \big(L |\vec{n}| \, \mu(z) \big) - \frac{2 \, m_Q \, K_1(m_Q \, L |\vec{n}|)}{L |\vec{n}| \, (M_R^2 - m_Q^2)} \right), \\ \mu^2(z) &= z \, M_R^2 + (1-z) \, m_Q^2 - z \, (1-z) \, M_B^2, \end{split}$$

where $V = L^3$ and $K_n(x)$ is the modified Bessel function of 2nd kind.

Discretization effects

We implement its effects ^{*a*} by the spurion-field approach ^{*b*}.

^aLutz,Heo,Guo,Hudspith [arXiv:2301.06837,2406.07442]
 ^bAoki et al [arXiv:hep-lat/0509049]

- O(a)-improved Wilson quark action^b
- We use $O(a^2)$ -dependent leading order LECs.

$$\begin{split} M_{[8]} &\to M_{[8]} + a^2 \gamma_{M_8} \,, \quad M_{[10]} \to M_{[10]} + a^2 \gamma_{M_{10}} \,, \\ b_0 &\to b_0 + a^2 \gamma_{b_0} \,, \qquad d_0 \to d_0 + a^2 \gamma_{d_0} \,, \\ b_D &\to b_F + a^2 \gamma_{b_D} \,, \qquad d_D \to d_D + a^2 \gamma_{d_D} \,, \\ b_F &\to b_F + a^2 \gamma_{b_F} \,, \end{split}$$

where *a* depends upon the 6 sets of ensembles at fixed values of β .

$$\implies a_{\mathrm{CLS}}^{\beta=3.34} \ , a_{\mathrm{CLS}}^{\beta=3.40} \ , a_{\mathrm{CLS}}^{\beta=3.46} \ , a_{\mathrm{CLS}}^{\beta=3.55} \ , a_{\mathrm{CLS}}^{\beta=3.70} \ , a_{\mathrm{CLS}}^{\beta=3.85}$$

Discretization effects ..cont'd

To octet and decuplet masses on flavor-symm. ensembles

Lutz,Heo,Hudspith [arXiv:2406.07442] Towards our Fit strategy

Our global Fit strategy for LECs

- We consider Lattice QCD data points on CLS ensembles.^a b
 - $m_{\pi} \& m_K$ are inputs and chosen smaller than 0.55 GeV.
 - m_{η} is determined as a solution of coupled nonlinear equations, together with $m \& m_s$.
 - 348 data points for baryon (N, Λ, Σ, Ξ, Δ, Σ*, Ξ*, Ω) masses, which are solutions of our set of coupled nonlinear equations.
- Unconventional scale setting is performed in terms of the empirical values of isospin-averaged 8 baryon masses.
- We assume residual systematic error of 7 MeV in the baryon masses at N³LO, based on the flavor-SU(3) chiral Lagrangian.
- $44 = 30_{\text{LEC}} + 14_{\text{Lattice}}$ Fit parameters
 - ▶ Large-*N_c* relations for LECs enter only at N³LO
 - Lattice parameters, together with a few of LECs

 ^aRQCD Collaboration · Bali et al [arXiv:2211.03744]
 ^bHudspith,Lutz,Mohler [arXiv:2404.02769] Lutz,Heo,Hudspith [arXiv:2406.07442]

Result

Some octet masses on 3 coarsest lattices

Result ...cont'd

Some octet masses on 3 finest lattices

Result ...cont'd

Some decuplet masses on 3 coarsest lattices

Result ...cont'd

Some decuplet masses on 3 finest lattices

LECs in the meson sector

	MILC ¹	HPQCD ²	previous Fit ³	current Fit ⁴
$10^3 (2L_6 - L_4)$	0.04(24)	0.23(17)	0.0411(3)	0.0296(41)
$10^3 \left(2 L_8 - L_5\right)$	-0.20(11)	-0.15(20)	0.0826(12)	-0.0769(51)
$10^3 \left(L_8 + 3 L_7 \right)$		-	-0.4768(4)	-0.3145(28)
m_s/m			26.15(1)	27.62(4)
f [MeV]			92.4*	82.35(68)

¹Bazavov et al [arXiv:1012.0868] ²Dowdall,Davies,Lepage,McNeile [arXiv:1303.1670] ³Lutz,Heo,Guo [arXiv:2301.06837] ⁴Lutz,Heo,Hudspith [arXiv:2406.07442]

- ▶ FLAG values: $m_s/m = 27.42(12)$ and f = 80.3(6.0) MeV ^{*a*}
- We do not fit to the quark-mass ratios, because they are not given by the Regensburg group ^b.

^{*a*} Aoki et al [arXiv:2111.09849] ^{*b*} RQCD Collaboration · Bali et al [arXiv:2211.03744]

What is the difference between our 2 Fits?

Further	LECs	from	baryon	masses
---------	------	------	--------	--------

	previous Fit ⁵	current Fit ⁶
f [MeV]	92.4*	82.35(68)
F	0.51*	0.4852(73)
D	0.72^{*}	0.4855(85)
C	1.44*	0.9740(415)
H	2.43^{*}	1.8390(188)
M [MeV]	804.3(1)	840.3(15.7)
$M + \Delta [MeV]$	1115.2(1)	1091.2(13.8)

⁵Lutz,Heo,Guo [arXiv:2301.06837] ⁶Lutz,Heo,Hudspith [arXiv:2406.07442]

Important features of our current Fit

- The updated baryon masses on flavor-symm. ensembles
- ► *f* as part of our global Fit parameters
- ▶ No use of C = 2D and H = 9F 3D anymore

Further LECs from baryon masses ..cont'd

▶ 11 left by the NLO Large-*N*_c relations from 17 for tadpoles

	current Fit		current Fit
$g_0^{(S)} [{\rm GeV}^{-1}]$	-6.2128(1.5691)	$g_0^{(V)} [{\rm GeV}^{-2}]$	5.0764(740)
$g_1^{(S)} [{\rm GeV^{-1}}]$	-3.4537(3612)	$g_1^{(V)} [{ m GeV}^{-2}]$	-4.0551(576)
$g_D^{(S)} \left[{ m GeV^{-1}} ight]$	0.9229(6918)	$g_D^{(V)} [{ m GeV^{-2}}]$	6.1611(1525)
$g_F^{(S)} [{ m GeV^{-1}}]$	-3.8802(6657)	$g_{F}^{(V)} [{ m GeV^{-2}}]$	1.3456(1208)
$h_1^{(S)} [{ m GeV^{-1}}]$	-3.3828(7795)	$h_1^{(V)} [{\rm GeV}^{-2}]$	4.1857(2760)
$h_2^{(S)} [\text{GeV}^{-1}]$	0.	$h_2^{(V)} [{\rm GeV}^{-2}]$	7.7346(2270)
$h_3^{(S)} [{ m GeV}^{-1}]$	-5.6282(5798)	$h_3^{(V)} [{\rm GeV}^{-2}]$	-1.5500(765)
$h_4^{(S)} [{ m GeV^{-1}}]$	-6.3879(6177)	$h_5^{(S)} [{\rm GeV^{-1}}]$	-4.0818(3811)
$h_6^{(S)} [{ m GeV^{-1}}]$	6.3879(6177)		

More in Lutz, Heo, Hudspith [arXiv:2406.07442]

 \Rightarrow They play an important role in the meson-baryon scattering.

Summary and future work

Towards hadron spectroscopy

- Many LECs that are relevant for scattering processes can be determined via Lattice QCD data for hadron masses.
 - 1-loop contributions in terms of their on-shell masses
 - Baryon octet and decuplet masses at N³LO
 - Quark-mass dependence taken into account

• Those can be used in systematic coupled-channel computations.

- A generalized potential approach would be required for dealing with left- and right-hand cuts.^a
- Chiral long-range forces, such as u-ch. exchanges, and more 1 loops, e.g. triangle and box diagrams, were studied for the open-charm system already.^b
- Such work will be a challenge to baryon systems.

^aLutz,Gasparyan,Danilkin,Epelbaum [arXiv:1003.3426,1009.5928,1212.3057] ^bLutz,Guo,Heo,Korpa,Isken [arXiv:2209.10601,2309.09695]

Thanks to Matthias F.M. Lutz and Renwick J. Hudspith

Thank you