

ANTON PANNEKOEK Instituut

X-ray pulse profile modeling - Recent NICER analyses

Tuomo Salmi, University of Helsinki / Amsterdam

tuomo.salmi@helsinki.fi

In collaboration with: Anna Watts, Devarshi Choudhury, Bas Dorsman, Yves Kini, Serena Vinciguerra, NICER team, Joonas Nättilä, Juri Poutanen, Valery Suleimanov, Anna Bobrikova, Vladislav Loktev, Alessandro Di Marco, John Rankin, Alessandro Papitto, ...

European Research Council Established by the European Commission

Neutron Stars: Mass-Radius vs Equation of State (EOS)

Watts et al. 2016, Rev. Mod. Phys.

Pulse Profile Modeling

Credit: Morsink/Moir/Arzoumanian/NASA-GSFC

Rotation-powered millisecond pulsars (RMPs)

- Primary NICER targets
- Persistent pulsations
- Return-current heated polar caps
- Recycled pulsar with no accretion

Oblate+Schwarzshild space-time (Poutanen & Gierlinski 2003, Morsink et al. 2007)

Oblate+Schwarzshild space-time (Poutanen & Gierlinski 2003, Morsink et al. 2007)

Neutron star atmosphere models (<u>Ho & Lai 2001</u>, <u>Salmi et al. 2020</u>)

Oblate+Schwarzshild space-time (Poutanen & Gierlinski 2003, Morsink et al. 2007)

Neutron star atmosphere models (<u>Ho & Lai 2001</u>, <u>Salmi et al. 2020</u>)

Observed flux (Bogdanov et al. 2019):

 $\mathrm{d}F_E = I_E \mathrm{d}\Omega = (1-u)^{1/2} \delta^4 I'(\sigma', E') \cos \sigma \frac{\mathrm{d}\cos\alpha}{\mathrm{d}\cos\psi} \frac{\mathrm{d}S'}{D^2}$

<u>Salmi et al. 2018</u>

Oblate+Schwarzshild space-time (Poutanen & Gierlinski 2003, Morsink et al. 2007)

Neutron star atmosphere models (<u>Ho & Lai 2001</u>, <u>Salmi et al. 2020</u>)

Observed flux (<u>Bogdanov et al. 2019</u>):

$$\mathrm{d}F_E = I_E \mathrm{d}\Omega = (1-u)^{1/2} \delta^4 l'(\sigma', E') \cos \sigma \frac{\mathrm{d}\cos\alpha}{\mathrm{d}\cos\psi} \frac{\mathrm{d}S'}{D^2}$$

Hot region surface models (circles)

Oblate+Schwarzshild space-time (Poutanen & Gierlinski 2003, Morsink et al. 2007)

Neutron star atmosphere models (<u>Ho & Lai 2001</u>, <u>Salmi et al. 2020</u>)

Observed flux (<u>Bogdanov et al. 2019</u>):

$$\mathrm{d}F_E = I_E \mathrm{d}\Omega = (1-u)^{1/2} \delta^4 l'(\sigma', E') \cos \sigma \frac{\mathrm{d}\cos \alpha}{\mathrm{d}\cos \psi} \frac{\mathrm{d}S'}{D^2}$$

Hot region surface models (circles)

Interstellar medium

Oblate+Schwarzshild space-time (Poutanen & Gierlinski 2003, Morsink et al. 2007)

Neutron star atmosphere models (<u>Ho & Lai 2001</u>, <u>Salmi et al. 2020</u>)

Observed flux (<u>Bogdanov et al. 2019</u>):

$$\mathrm{d}F_E = I_E \mathrm{d}\Omega = (1-u)^{1/2} \delta^4 l'(\sigma', E') \cos \sigma \frac{\mathrm{d}\cos\alpha}{\mathrm{d}\cos\psi} \frac{\mathrm{d}S'}{D^2}$$

Hot region surface models (circles)

Interstellar medium

Instrumental properties

Oblate+Schwarzshild space-time (Poutanen & Gierlinski 2003, Morsink et al. 2007)

Neutron star atmosphere models (<u>Ho & Lai 2001</u>, <u>Salmi et al. 2020</u>)

Observed flux (<u>Bogdanov et al. 2019</u>):

$$\mathrm{d}F_E = I_E \mathrm{d}\Omega = (1-u)^{1/2} \delta^4 l'(\sigma', E') \cos \sigma \frac{\mathrm{d}\cos \alpha}{\mathrm{d}\cos \psi} \frac{\mathrm{d}S'}{D^2}$$

Hot region surface models (circles)

Interstellar medium

Instrumental properties

Background model

X-ray Pulse Simulation and Inference (X-PSI)

https://github.com/xpsigroup/xpsi (Riley et al. 2023)

Light curve model vs data

Sampling with MultiNest (Feroz et al. 2009)

Image credit: Bogdanov/Morsink/NASA/Riley/Watts

THE PULSE PROFILE MODELING PROCESS

NICER results: Analyses so far

PSR J0030+0451: 2019, 2024

PSR J0740+6620: 2021, 2022, 2024

PSR J0437-4715: 2024

PSR J1231-1411: 2024

Other stars to come: PSR J0614-3329, PSR J1614-2230, PSR J2124-3358

PSR J0030+0451: Isolated pulsar spinning at 205 Hz.

First analysis by <u>Miller et al. 2019</u> (IM); <u>Riley et al. 2019</u> (X-PSI): Highly non-antipodal hot region geometry.

PSR J0030+0451: Isolated pulsar spinning at 205 Hz.

First analysis by <u>Miller et al. 2019</u> (IM); <u>Riley et al. 2019</u> (X-PSI): Highly non-antipodal hot region geometry.

Updated analysis by <u>Vinciguerra et al. 2024</u> (X-PSI): Other modes also possible and agree better with XMM-Newton data.

PSR J0030+0451: Isolated pulsar spinning at 205 Hz.

First analysis by <u>Miller et al. 2019</u> (IM); <u>Riley et al. 2019</u> (X-PSI): Highly non-antipodal hot region geometry.

Updated analysis by <u>Vinciguerra et al. 2024</u> (X-PSI): Other modes also possible and agree better with XMM-Newton data.

Different modes correspond to different masses and radii (see later!)

PSR J0740+6620: Faint but spinning at 346 Hz in a binary system with a known mass:

 $M = 2.1 M_{\odot}$ (Cromartie et al. 2020, Fonseca et al. 2021, Wolff et al. 2021)

New J0740 NICER data with 90% more counts

J0740 results: Hot Spot Properties

J0740 results: Radius

<u>Riley et al. 2021</u> (1.6 yr data): R = 12.4 + 1.3 - 1.0 km (Cl 68%) Salmi et al. 2024a (3.6 yr data, better sampling): R = 12.5 + 1.3 - 0.9 km

- E.g. 95% lower limit: 10.7 km -> 11.0 km
- Rules out softest EOS
- Consequences for e.g quark matter, colorsuperconducting gap (<u>Annala et al. 2023</u>, <u>Kurkela et al. 2024</u>)

PSR J0437-4715: The nearest and brightest pulsar spinning at 174 Hz. In a binary system with a known mass: $M = 1.4 M_{\odot}$ (Reardon et al. 2024)

Choudhury et al. 2024

<u>Choudhury et al. 2024</u>: Likely an offset dipolar or quadrudipolar magnetic field.

Choudhury et al. 2024a: Radius: $11.36^{+0.95}_{-0.63}$ km (68% CI) Mass: $1.418 \pm 0.037 M_{\odot}$ (68% CI)

Consistent with GW obs:

• $M = 1.36 - 1.62 M_{\odot}$, $R = 10.7^{+2.1}_{-1.5}$ km (Abbott et al. 2018, 90% Cl)

Less consistent with PREX:

• $R_{1.4M_{\odot}} \ge 13.25 \text{ km}$ (Reed et al. 2021, 1σ)

Consistent with models satisfying PREX and CREX:

• $R_{1.4M_{\odot}} = 11.6 \pm 1.0$ km (Lattimer 2023, 68% Cl)

EOS inference using NICER + GW + new- χ EFT:

• $R_{1.4M_{\odot}} = 12.01^{+0.56}_{-0.75}$ km (CS); $12.28^{+0.50}_{-0.76}$ km (PP) (95% CI constraint of ~ \pm 5.4%) (<u>Rutherford et al. 2024</u>)

NICER results: Summary

Image credit: A. Watts

PSR J1231-1411:

A complex case with a weak interpulse (Salmi et al. 2024b, in press)

In a binary, but only broad mass constraints from radio (Cromartie et al. in prep.)

Salmi et al. 2024b (in press)

Salmi et al. 2024b:

Simple 2-circle (ST-U) model not enough

2+2 circles (PDT-U) can explain the data, but very expensive:

Results likely converged only if limiting the radius prior.

Salmi et al. 2024b:

Best-fit obtained only if limiting radius to 10 – 14 km. Small mass and non-antipodal geometry.

NICER: Studies of systematics

Influence of atmospheric assumptions (see beaming patterns right, <u>Salmi et al. 2023</u>): M&R of J0030 affected, M&R of J0740 not.

Comparison of waveforms between codes (Choudhury et al. 2024b, in press)

Parameter inferences with synthetic data (Bogdanov et al. 2021, Vinciguerra et al. 2023)

Accretion-powered millisecond pulsars (AMPs)

- Spots heated by accreted gas
- Pulsations during outbursts
- Bright and rapid rotators
- Accretion disk and column
- Compton scattering: X-rays polarized and higher energy (<u>Salmi et al. 2018</u>, <u>Bobrikova et al. 2023</u>)
- NICER may still infer M&R from AMPs with ± 5-10% accuracy (<u>Dorsman et al. 2024, submitted</u>)

Credit: B. Dorsman

Thermonuclear-powered millisecond pulsars (TMPs)

- Spots heated by thermonuclear burning of accreted matter
- Burst oscillations (pulsations) for some bursts, but not always
- Bright and rapid rotators
- Origin of the surface anisotropy still debated
- Spot properties variable during the burst: More expensive modeling (<u>Kini et al. 2023a</u>, <u>2023b</u>, <u>2024</u>)
- Modeling J1814–338 RXTE data with a single spot model gave R ~ 7 km, M ~ 1.2 M_☉, but bad fit to the first harmonic. (Kini et al. 2024)

Conclusions

- X-ray pulse profile modeling has been applied to infer neutron star M, R and other parameters.
- RMPs (re-)analyzed with NICER:
 - J0030: Multiple solutions with different geometries and M&R
 - J0740: Excluding the softest EOS, tighter constraints with new data
 - J0437: Tightest constraints so far: Softer EOS.
 - J1231: A complex case, but likely a small mass
- AMPs: Promising targets for new analyses, including polarimetry to constrain the geometry (recent IXPE discovery of a polarized AMP J1444 by <u>Papitto et al. 2024</u>)
- TMPs: Challenge with variable spot properties, but analyses can inform about burst physics

Extra comparisons

