A study of neutron star property based on the PDM-NJL crossover model

Masayasu Harada (Nagoya University) @ Compact Stars in the QCD phase diagram (CSQCD2024) (October 7, 2024)

Based on

T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 103, 045205 (2021). T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 104, 065201 (2021). T. Minamikawa, B. Gao, T. Kojo and M. Harada, Symmetry 15, 745 (2023).

Introduction

One of the Interesting problems of QCD

Spontaneous chiral symmetry breaking

- The spontaneous chiral symmetry breaking is expected to generate a part of hadron masses.
- It causes mass difference between chiral partners.
- How much mass of nucleon is from the spontaneous chiral symmetry breaking ?
- What is the chiral partner of the nucleon?

Parity Doublet models for nucleons

- How much mass of nucleon is from the spontaneous chiral symmetry breaking ?
- A Parity doublet model for light baryons
	- In [C.DeTar, T.Kunihiro, PRD39, 2805 (1989)], N(1535) is regarded as the chiral partner to the N(939) having the chiral invariant mass.

 $\bm{m}_N^{} = \bm{m}_0^{} \; + \; \bm{m}_{\langle \overline{\bm{q}} \bm{q}\rangle}$ \ll spontaneous chiral symmetry breaking

chiral invariant mass

• A Lattice QCD analysis at non-zero T supports parity doublet structure.

\Rightarrow What happens in dense nuclear matter?

e.g. Finite-T lattice calculation

G. Aarts et al. (2018)

5

udy of nuclear matter using parity doublet models (PDMs)

- 1. Construction of nuclear matter from a PDM Y.Motohiro, Y.Kim, M.Harada, Phys. Rev. C 92, 025201 (2015)
- 2. Study of effect of $\Delta(1232)$ to the chiral symmetry breaking in a PDM
	- Y. Takeda, Y. Kim and M. Harada, Phys. Rev. C 97, 065202 (2018).
- 3. Study of a new dual chiral density wave (DCDW) in a PDM. Y. Takeda, H. Abuki and M. Harada, Phys. Rev. D 97, 094032 (2018).
- 4. Study of a constraint to the chiral invariant mass in a PDM from the neutron star properties T. Yamazaki and M. Harada, Phys. Rev. C 100, 025205 (2019).
- 5. Construction of a unified EOS connecting a PDM and an NJL-type quark model, and study of a constraint to the chiral invariant mass in a PDM from the neutron star properties
	- T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 103, 045205 (2021).
- 6. Study of density dependence of the chiral condensate from the unified EOS. T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 104, 065201 (2021).
- 7. Study of effect of $U(1)$ axial anomaly
	- B. Gao, T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 106, 065205 (2022)
- 8. Review of the above 3 analysis
	- T. Minamikawa, B. Gao, T. Kojo and M. Harada, Symmetry 15, 745 (2023)
- 9. Study of effect of iso-triplet a0(980) meson \rightarrow > Kong's presentation Y. K. Kong, T. Minamikawa and M. Harada, Phys. Rev. C 108, 055206 (2023).
- 10. Reconciling constraints from the supernova remnant HESS J1731-347 with the parity doublet model B. Gao, Y. Yan and M. Harada, Phys. Rev. C 109, 065807 (2024) . \sim \sim Gao's presentation
- 11. Nuclear matter and finite nuclei: recent studies based on Parity Doublet Model Y.K. Kong, Y. Kim and M. Harada, Symmetry 2024, 16(9), 1238.
- 12. Exploring the first-order phase transition in neutron stars using the parity doublet model and NJL-type quark model B. Gao, W. L. Yuan, M. Harada and Y.L. Ma, To appear in Phys. Rev. C. [arXiv:2407.13990 [nucl-th]].

Outline

- 1. Introduction
- 2. Nuclear matter from a PDM
- 3. A unified EOS for NS and M-R relation
- 4. Summary

2. Nuclear matter from PDM

A relativistic mean field (RMF) approach based on the parity doublet model \Box N(939), N*(1535) as chiral partners $\triangleright m_{\pm} =$ $\mathbf{1}$ $\frac{1}{2} \left| \sqrt{(g_1 + g_2)^2 \sigma^2 + 4m_0^2 + (g_1 - g_2) \sigma^2} \right|$ $\mathcal{P} m_+ = m(N(939)), m_- = m(N^*(1535)).$ \triangleright m_0 : chiral invariant mass \triangleright g_1 , g_2 : Yukawa couplings to σ meson \Box mean fields \triangleright σ : reflects the spontaneous chiral symmetry breaking ; attractive force \triangleright ω : repulsive force \triangleright \circ : iso-spin dependent force 2024/10/7 M. Harada @ 対称性と有効模型で切り拓くクォーク・ハドロン物理の最前線 10

Nuclear Matter at normal nuclear density

Y. Motohiro, Y. Kim, M. Harada, Phys. Rev. C 92, 025201 (2015); Erratum: Phys. Rev. C 95, 059903 (2017).

2024/10/7 オンファイル M. Harada @ 対称性と有効模型で切り拓くクォーク・ハドロン物理の最前線 インファイル 21

3. A unified EOS for NS and M-R relation

T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 103, 045205 (2021). T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 104, 065201 (2021).

Three-Region Structure

Quark Matter (High density region)

- The Color-Super Conductivity is expected to occur in the high density limit of QCD, in which two quarks make a Cooper pair breaking the color symmetry and the chiral symmetry.
- In the present analysis, we use a model of NJL-type including the following 4-point interaction terms:
	- Attractive force between two quarks

$$
H \sum_{A,A'=2,5,7} \left[\left(\overline{q} i \gamma_5 \tau_A \lambda_{A'} C \overline{q}^T \right) \left(q^T C i \gamma_5 \tau_A \lambda_{A'} q \right) + \left(\overline{q} \tau_A \lambda_{A'} C \overline{q}^T \right) \left(q^T C \tau_A \lambda_{A'} q \right) \right]
$$

– Repulsive force between two quarks

$$
-g_{\rm V} (\overline{q}\gamma^\mu q)^2
$$

Unified EOS for NS in 3-window picture

G. Baym et al., Rept. Prog. Phys. 81, 056902 (2018). T. Minamikawa, T. Kojo and M.H., Phys. Rev. C 103, 045205 (2021).

M-R relation T. Minamikawa, T. Kojo and M.H., Phys. Rev. C 103, 045205 (2021).

Density dependence of chiral condensate

T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 104, 065201 (2021).

Summary

- NS properties such as M-R relation (macroscopic information) gives constraint to the chiral invariant mass and chiral condensate (microscopic information).
	- \triangleright R \leq 13.5 km for M ~ 1.4M_o $≥ 600 ≤ m₀ ≤ 900MeV$ $\left| \sum \frac{\langle \overline{q} q \rangle_{n_B}}{\langle \overline{q} q \rangle_{n_B}} \right|$ $\overline{q}q_0 \geq 0.4$ at $n_B = 2n_0$
- Future works:
	- \triangleright Inclusion of hyperons or Δ baryon

Thank you very much for your attention !