Reconciling constraints from the supernova remnant HESS J1731-347 with the parity doublet model

Bikai Gao, Yan Yan, Masayasu Harada

Dept. of Phys, Nagoya University

Fundamental questions in dense QCD

How does dense matter respond to compression, the EOS?

How hadronic matter dissolves into quark matter?

Correlation between EoS and M-R

Neutron Star	Mass (M _O)	Radius (km)	Source
J0740+6620	2.14 ± 0.10	12.35 ± 0.75	NICER
J0030+0451	1.44 ± 0.15	12.45 ± 0.65	NICER
GW170817	1.33-1.60	11.9 ± 1.4	LIGO/Virgo

11 - 13km

Strange CCO HESS J1731-347

Nature Astronomy volume **6**, 1444–1451 (2022)

Neutron Star	Mass (M \odot)	Radius (km)	Sou
J0740+6620	2.14 ± 0.10	12.35 ± 0.75	NIC
J0030+0451	1.44 ± 0.15	$12.45{\pm}~0.65$	NIC
GW170817	1.33-1.60	11.9 ± 1.4	LIGO/

HESS J1731-347

A Strange light central compact object supernova remnant

From soft to stiff

16

Unified Equation of State

An effective hadron model (Parity doublet model) ($n_B <= 2n_0$, blue curve)

Two baryons with positive and negative-parity are introduced. They have a degenerate chiral **invariant mass** when the chiral symmetry is restored.

Interpolated(red curve)

interpolate w/ polynomial: $P = \sum_{n=1}^{J} c_n \mu_B^n$

An effective quark model (Nambu–Jona-Lasinio(NJL)-type model) $(n_B > = 5n_0, \text{ green curve})$

Parity Doublet Model

mass formula of nucleons N(939) and N*(153

$$M_{N\pm} = \sqrt{m_0^2 + g_+^2 \sigma^2} \mp g_- \sigma \xrightarrow{\sigma \to 0}$$

Two parameters mo, L (density dependence of the nuclear symmetry energy around the saturation density)

35)	Parameters saturation p	in the model a properties	are determined	d by the
m_0	$n_0 [{\rm fm}^{-3}]$	B_0 [MeV]	K_0 [MeV]	<i>S</i> ₀ [M
	0.16	16	240	31

NJL-type quark model

$$\mathscr{L} = \mathscr{L}_{\text{NJL}} - H(q^T \Gamma_A q)(\bar{q} \Gamma^A \bar{q}^T) + g_V(\bar{q} \gamma^0 q)^2 + \sum_i \mu_i Q_i$$

- U(1) axial anomaly $-K \det(\overline{\psi}\psi)$

H: coupling for diquark condensates gV: coupling for vector (repulsive) interaction

(H,gV): not well-constrained before → survey wide range for given nuclear EOS + NS constraints

- Original NJL-type model(Hatsuda and Kunihiro) includes four point interaction $+G(\psi\psi)^2$

$G\Lambda^2 = 1.835, \quad K\Lambda^5 = 9.29$ HK parameters: $\Lambda = 631.4 \mathrm{MeV}$

1. Introduction

2. Construction of Unified Equation of State Parity doublet model NJL-type quark model

Results

The hadronic matter EoS (From soft to stiff)

The hadronic matter EoS is crucial to determine the radius of a NS.

Results

H: coupling for diquark condensates gV: coupling for vector (repulsive) interaction

 $(m_0, L) \leftrightarrow (H,gV)$ constrain each other

Slope parameter L = 40 MeV

Causality + Mmax

Results

Check for the ambiguity from the interpolation range:

At
$$M \sim 1 M_{\odot}$$

Radius only change around 0.3 km

At $M \sim 1.4 M_{\odot}$

Radius only change around 0.6 km

Our approach is robust!

15

We use the parity double model together with the NJL-type quark model to construct the unified EoS.

The outer core EoS (described by PDM) is crucial to determine the radius of a NS.

We successfully reconcile with the multi-messenger constraints at the same time and the best fitted value is

for L =40 MeV

Thank you for your attention!

THANK YOU 🔍

