Constraining Coupling Parameters of NJL Color Superconductivity for Compact Stars

Compact Stars

Ishfaq Ahmad Rather

- Institute for Theoretical Physics, Goethe University, 60438 Frankfurt am Main, Germany
 - In Collaboration with:
- Hosein Gholami, Marco Hoffman, Michael Buballa
 - (TU Darmstadt)
 - Jurgen Schaffner-Bielich (ITP, GU)
- Compact Stars in the QCD phase diagram (CSQCD) YITP, JAPAN 7-11 OCT 2024

NJL Model

- Equation of State Constraining the Model Parameters ***** EoS within the Allowed Parameter range Conclusion

Introduction

米

CSC phases in the context of NS and quark stars have been studied in extensive detail, including the 2SC and CFL phases.

- *The NJL model and its extension to CSC is a popular effective model for investigating dense QM.
- *However, the reliability of its results is challenged by cutoff artifacts which emerge if T/μ are of the order of the cutoff energy scales.

In this work, we explore the astrophysical implications of the **renormalization group**consistent (RG-consistent) NJL model. (arXiv:2408.06704.)

We extend the model with a repulsive vector interaction and vary the value of the diquark and vector couplings.

M. G. Alford, Nucl. Phys. B 537, 443–458 (1999). M. G. Alford, Rev. Mod. Phys. 80, 1455–1515 (2008). R. Anglani, Rev. Mod. Phys. 86, 509–561 (2014). G. Baym, Rept. Prog. Phys. 81, 056902 (2018), D. Blaschke, Phys. Rev. D 107, 063034 (2023).

NJL Model

- Following the recent advancement for a RG-consistent description of the NJL model.
- Removes artifacts of the conventional regularization.
- Provides a consistent investigation of the phase structure at high chemical potentials.

$$\mathscr{L} = \mathscr{L}_0 + \mathscr{L}_{\bar{q}q} + \mathscr{L}_{\bar{q}q} + \mathscr{L}_0 = \bar{\psi}(i\partial + \gamma^0\hat{\mu} - \hat{m})\psi \qquad \mathscr{L}_{\bar{q}q} = G_s \sum_{q=0}^8$$

kinetic Lagrangian for the quark fields

$$\mathscr{L}_V = -G_V \left(\bar{\psi} \gamma^0 \psi \right)^2,$$

Repulsive four-point vector interaction with vector coupling G_V

$$\mathcal{L}_{L} = \sum_{L=e,\mu} \bar{\psi}_{L} (i\partial - m_{L}) \psi_{L}$$

The mean-field effective potential per volume in the RGconsistent regularization

kinetic terms for electrons and muons

We model quark matter within an NJL model with a diquark interaction, allowing for the formation of CSC condensates.

$$\begin{split} \mathcal{L}_{0} &+ \mathcal{L}_{\bar{q}q} + \mathcal{L}_{qq} + \mathcal{L}_{V} + \mathcal{L}_{L} \\ \mathcal{L}_{\bar{q}q} &= G_{S} \sum_{a=0}^{8} \left[(\bar{\psi}\tau_{a}\psi)^{2} + (\bar{\psi}i\gamma_{5}\tau_{a}\psi)^{2} \right] \\ -K[\det_{f}(\bar{\psi}(1+\gamma_{5})\psi) + \det_{f}(\bar{\psi}(1-\gamma_{5})\psi)] \\ \mathcal{U}(3)_{L} \times \mathcal{U}(3)_{R} \text{- symmetric scalar and pseudoscalar four-point interactions of the NJL model with the NJL coupling constant } G_{S} \\ \mathcal{L}_{qq} &= G_{D} \sum_{\gamma,c} (\bar{\psi}_{\alpha}^{a}i\gamma_{5}c^{a}\psi)^{2} \\ \mathcal{L}_{qq} &= G_{D} \sum_{\gamma,c} (\bar{\psi}_{\alpha}^{a}i\gamma_{5}c^{a}\psi)^{2} \\ ((\bar{\psi}_{C})_{\rho}^{r}i\gamma_{5}\psi)^{2} \\ \mathcal{L}_{qq} &= G_{D} \sum_{\gamma,c} (\bar{\psi}_{\alpha}^{a}i\gamma_{5}c^{a}\psi)^{2} \\ \mathcal{L}_{qq} &= G_{D} \sum_{\gamma,c} (\bar{\psi}_{\alpha}^{a}i\gamma_{5$$

$$\begin{split} \Omega_{\text{eff}}(\boldsymbol{\mu},T,\boldsymbol{\chi},\tilde{\boldsymbol{\mu}}) &= \mathcal{V}(\boldsymbol{\chi},\tilde{\boldsymbol{\mu}}) - \frac{1}{2\pi^2} \bigg(\int_0^{\Lambda} dp \, p^2 \mathcal{A}(\boldsymbol{\mu},T,\boldsymbol{\chi}) \\ &- \int_{\Lambda'}^{\Lambda} dp \, p^2 \mathcal{A}_{\text{vac}}(\boldsymbol{\chi}) \\ &- \int_{\Lambda'}^{\Lambda} d_{F\,F} \sum \frac{1}{2} \mu_{\alpha a,\beta b}^2 \\ &\times \left(\frac{\partial^2}{\partial \mu_{\alpha a,\beta b}^2} \mathcal{A}(\boldsymbol{\mu},0,\boldsymbol{\chi}) \right) \bigg|_{\boldsymbol{\mu} = \tilde{\boldsymbol{\mu}} = \mathbf{M} = 0;\mathcal{A}} \\ &+ \Omega_L(\boldsymbol{\mu}_e,T). \end{split}$$

SoS and Ys

Mass-Radius Plots

More CFL

Low η_V

Self-Bound (low η_V)

2SC to CFL

${\rm High}\,\eta_V$

• • •	
	1
	-
	-
	-
	-
	-
	4
	1
	-
	-
	1
	-
	-
	1
	-
	-
	1
	-
	20
	_ •

Constraining the Model Parameters

All astrophysical constraints

0.9

2SC to CFL Phase Transition at different density points. **Different amount of 2SC and CFL phases** Pure 2SC phase also.

 \approx Similar Maximum mass. **Self-bound as well as Gravitationally** bound. **CFL stars and pure 2SC stars.**

Different (η_V, η_D)

Low η_V = CFL self-bound

• For a fixed η_V , the amount of CFL phase decreases with increasin • For η_D = 1.80, a very small amount of stable CFL is present.

• Increasing η_V changes the MR profile from SB to GB stars because of th 2SC phase at low densities.

	(η_V,η_D)	(0.10, 1.80)	(0.35, 1.67)	(0.80, 1.50)	(1.20)
	M_{max}	2.31	2.04	2.08	
	R_{max}	13.92	11.33	11.80	1
ng η_D .	$R_{1.4}$	12.60	11.28	12.16	1
	$R_{2.0}$	13.67	12.13	12.18	1
ne extended	$\Lambda_{1.4}$	511	216	432	Z
10	Phase	CFL (SB)	CFL (SB)	CFL (GB)	2SC

 DDME2
 1

- NJL model with a RG-consistent treatment.
- Change in response to variations in the η_V and η_D parameters.
- of the resulting compact stars.
- Self-bound
- Pure 2SC star configurations.
- CFL phase is generally stable (except at high η_V).
- This enable us to set constraints on the existence of CSC phases in neutron stars and emphasize the importance of incorporating CSC phases into neutron star models to meet astrophysical constraints

Ongoing work:

- tidal deformation.

• We investigated a range of astrophysical properties of compact stars in the context of CSC phases using the

• Adjusting the η_V and η_D parameters significantly influence the stiffness of the EoS and, consequently, the MR

Gravitationally bound stars

Hybrid stars with CSC phases.

Neutron star merger simulations.

Empirical relations connecting f-mode frequencies with

Behaviour of Diquark

Behaviour of Diquark

This limit serves as a criterion for gravitational stability during a sudden phase transition in a neutron star

 $\Delta\epsilon$

If $(\Delta \epsilon / \epsilon)$ exceeds this limit, the star cannot maintain hydrostatic equilibrium and becomes gravitationally unstable.

