## Equation of state in neutron stars from a bottom-up holographic QCD model

### Akihiro Iwanaka (RCNP, Osaka U.)

Collaborators : Daisuke Fujii (JAEA), Atsushi Hosaka (RCNP, JAEA), Tadakatsu Sakai (KMI, Nagoya U.), Motoi Tachibana (Saga U.) 2024/10/07

Compact Stars in the QCD Phase diagram@YITP



# An ultimate purpose of QCD studies To obtain the QCD phase diagram

## To challenge it Focus on neutron stars

## QCD phase diagram



K. Fukushima and T. Hatsuda, Rep. Prog. Phys. **74** 014001 (2011)



## Which model is better?

## Holographic QCD **O** Finite density **O2** Strong coupling **OB** Chiral transition



## Holographic QCD





### Note: Large N<sub>c</sub> limit



## Previous study

### Hard-wall model Lorenzo Bartolini, et al., Phys. Rev. D 105, 126014 (2022)



## Problems

- . Definition of  $\mu_B$
- Selection of IR b.c.
- Selection of variables
- Renormalization

## Revisit the model



## Nethod

## Hard-wall model

Cut-off AdS (Confined phase)





## **01.** Action of matters



**Bi-fundamental Scalar fields** 

### Potential on the hard-wall

$$_{\mathrm{V}}\hat{L}^{MN} + \{R \leftrightarrow L\}\Big],$$

$$\frac{1}{5}\hat{L}_{NP}\hat{L}_{QR}\right) - \{R \leftrightarrow L\},$$

$$\left[ \Phi^{\dagger}\Phi
ight] ig\},$$

$$\mathcal{R}_z = 0$$
 (gauge fixing)

 $L_M, R_M : SU(2)$  gauge field  $\hat{L}_M, \hat{R}_M : U(1)$  gauge field  $\Phi$  :scalar field  $M, N, \dots = 0, 1, 2, 3, z$ 

$$L_{MN} = \partial_M L_N - \partial_N L_M - i[L_M + L_M]$$

$$L_{MN}^a = \partial_M L_N^a - \partial_N L_M^a + f^{abc} R$$

$$D_M \Phi = \partial_M \Phi - i \mathscr{L}_M \Phi + i \Phi \mathscr{L}_M$$

$$\mathscr{L}_M = L_M^a \frac{\tau^a}{2} + \hat{L}_M \frac{I_2}{2}$$

$$(\tau^a : \text{Pauli matrix}, a = N_c = 3, L = 1.$$







## Ansatz

## Homogeneous Ansatz "Mean-field approximation"

 $\longleftrightarrow$ 

 $\longleftrightarrow$ 

 $\Phi = \omega_0(z) \frac{I_2}{2}$ 

 $\mathscr{L}_0 = -\mathscr{R}_0 = \hat{a}_0(z)\frac{I_2}{2}$ 

 $\mathscr{L}_i = -\mathscr{R}_i = -H(z)\frac{1}{2}$ 

Current quark mass Chiral condensate

Baryon chemical potential Baryon number density

Axial vector potential Axial vector meson condensate





## Mesonic IR b.c. $(z = z_{IR})$



b.c.

### Neumann

$$\begin{split} \partial_z \omega_0(z_{\rm IR}) &= -\frac{12\pi^2}{N_c} \left( 3kH^2 \omega_0 + m_b^2 \omega_0 + \frac{\lambda}{4} \omega_0^3 \right), \\ \partial_z \hat{a}_0(z_{\rm IR}) &= 0, \\ \partial_z H(z_{\rm IR}) &= 0. \end{split}$$







## ←→ Current quark mass ←→ Baryon chemical potential

Make "no difference of potential"  $\phi \propto \phi - B = 0$ 





## Parameters

AdS radius 01 place of the hard-wall Fit from M-R plot  $L = z_{\rm IR} = (800 \text{ MeV})^{-1}$ Chiral condensate  $\left( 02\right)$ in the mesonic phase Lattice result  $\xi_0 = (251 \text{ MeV})^3$ H. Fukaya, et al., PRL 98, 172001 (2007)



## Results

## Grand potential density

### Two transitions

- Chirality
- Baryon number density

## All transitions are st transition

Critical chemical potential -0.6  $\mu_R \sim 270 \text{ MeV}$ 

0.0

-0.2

-0.4

0/V [GeV/fm<sup>3</sup>]



## Chiral condensate

Chiral condensate remains



Maximally

## Partial restoration of Chiral symmetry

T. D. Cohen, et al., PRC. 45. 1881 (1992)M.C. Birse, J.Phys. Nucl. Part. Phys. 20. 1537 (1994)K. Suzuki, et. al. PRL. 92. 072302 (2004)

### Chiral condensate (baryonic phase)

B = 160 MeV B = 320 MeV A B = 480 MeV







## EoS & Speed of sound

EoS (baryonic phase)





Speed of sound  $\simeq 1$ 

## Discussion

## What is the matter?

## Properties

- Six times  $n_0 \simeq 1.7 \text{ fm}^{-3}$
- Self-binding matter (?)
- Speed of sound ~ 1
- Color confinement

# High density nuclear matter



## What is the matter?

## Properties

- Six times  $n_0 \simeq 1.7 \text{ fm}^{-3}$  Unreliable
- Self-binding matter (?)
- Speed of sound ~ 1
- Color confinement

# High density nuclear matter



## Abstract

- Pourpose

## Method

## Result

Discussion

### Studying the QCD EoS from holographic QCD

Hard-wall model + Switching IR b.c.

 Baryonic matter appears with first transition Partial restoration of chiral symmetry

The matter is a high density nuclear matter • We need low density Ansatz



Fin.