# Quark nucleation in compact stars

#### Mirco Guerrini

PhD student - University of Ferrara (Italy) G. Pagliara (Ferrara U.), A. Drago (Ferrara U.), A. Lavagno (Poli Turin)



Università degli Studi di Ferrara

Compact Stars in the QCD phase diagram 2024 Yukawa Institute for Theoretical Physics, Kyoto



## QCD phase diagram



- the high-density regime is poorly known
- <sup>o</sup> quarks d.o.f. expected at  $n_B \sim \text{few } n_0$

### QCD phase diagram



- the high-density regime is poorly known
- ° quarks d.o.f. expected at  $n_B \sim \text{few } n_0$
- extreme densities are reached in astrophysical phenomena related to compact objects

|   | Astrophysical systems           | <i>п<sub>В</sub>/п</i> 0 | T [MeV]  | Y    |
|---|---------------------------------|--------------------------|----------|------|
|   | Isolated NS                     | $10^{-8} - 8$            | $\sim 0$ | 0.01 |
|   | Core Collapse Supernovae (CCSN) | $10^{-8} - 8$            | 0 - 50   | 0.25 |
| - | Proto NS (PNS)                  | $10^{-8} - 8$            | 0 - 50   | 0.01 |
|   | Binary NS Mergers (BNSM)        | $10^{-8} - 8$            | 0 - 100  | 0.01 |
|   |                                 |                          |          |      |



### The "Two families scenario"

- new d.o.f.  $\rightarrow$  EOS softening  $\rightarrow$  lower NS masses
- very massive  $\sim (2 2.6) M_{\odot}$  compact objects observed

...one more possible solution...





#### **"Hyperons Puzzle"**

many different solutions have been proposed [for a review: <u>Vidaña (2022)</u>]

### The "Two families scenario"

- $\rightarrow$  EOS softening  $\rightarrow$  lower NS masses – new d.o.f.
- very massive  $\sim (2 2.6) M_{\odot}$  compact objects observed

...one more possible solution...







#### "Hyperons Puzzle"

many different solutions have been proposed [for a review: <u>Vidaña (2022)</u>]



- based on the strange matter hypothesis [Witten (1984)]
- hadronic stars up to  $\sim 1.6 \text{ M}_{\odot}$  at low radius
- quark stars fulfill massive and subsolar objects constraints
- once reached deconfinement conditions, **HS** converts to **QS**



# **Deconfinement in astrophysical systems**



**Nucleation** first droplet of quark matter



**Diffusive regime** 

slow conversion of the outer part [e.g. <u>Drago et al. (2015)</u>]



# **Deconfinement in astrophysical systems**



first droplet of

quark matter

This work



**Diffusive regime** 

slow conversion of the outer part [e.g. <u>Drago et al. (2015)</u>]

### goal: identify the thermodynamic conditions at which nucleation happens in astrophysical systems



### Nucleation

#### if $P_H(\mu_H) < P_Q(\mu_Q) \longrightarrow$ H is a **metastable** phase $\longrightarrow$ virtual drops of Q created



#### is a finite-size problem

the first seed is generated when a drop overcomes the potential barrier

$$W(P,T) = \frac{4}{3}\pi R^3 n_Q(\mu_Q - \mu_H) + 4\pi\sigma R^2$$

bulk energy gain surface effect (negative if H is metastable) (always positive)

The barrier can be overcome:

- Thermal: 
$$\mathscr{P} \sim e^{\frac{-W(R_C)}{T}}$$
 [Lan

- Quantum:  $\mathscr{P} \sim e^{\frac{-A(E_0)}{\hbar}}$  [lida et al. (1998)]

<u>iger (1969)]</u>

### Nucleation: state of the art

#### Nucleation is due to **strong interactions**

strong timescale  $\ll$  weak timescale



#### Flavor composition is conserved during the nucleation

[see e.g. Bombaci et al. (2016)]



### Nucleation: role of thermal fluctuations



Key idea:

at  $T \neq 0$  the hadronic **composition fluctuates** around the average values  $\langle y_i^H \rangle$  the nucleation is a **local process** 

#### Nucleation could happens in a subsystem in which the local composition makes nucleation easier

[Guerrini et al. (2024)]



### **Nucleation: role of thermal fluctuations**





### **Results: two flavors case**



P and T at which the typical nucleation time is  $\sim 1$  s

#### Take home message:

composition fluctuations lead to a much faster nucleation (i.e. deconfinement can start at lower P) in compact objects at intermediate and high temperature



[<u>Guerrini et al. (2024)</u>]

#### **Effect of thermal fluctuation (F)** in the hadronic composition

 $T \gtrsim 10$  MeV:

Thermal nucleation

Quantum nucleation

- nucleation at lower P than no fluc. (NF) case
- most massive PSNs could nucleate

1 keV  $\lesssim T \lesssim 10$  MeV:

- nucleation at lower P than NF case
- PSNs can not nucleate

 $T \lesssim 1$  keV:

negligible contribution



### More ingredients: global conservation?



#### [work in progress]





### [work in progress] More ingredients: color-superconductivity

to reach  $\sim 2.5 M_{\odot}$  we need superconducting quark matter (e.g. CFL) [e.g. <u>Bombaci et al. (2021)</u>]



droplet of Q  $R \leq 1/\Delta$ unpaired phase ....but...

gaps could **vanish** in very **small systems** (as first quark seed is) [eg. <u>Amore at al. (2002) PRD</u>]





### Nucleation in "two families scenario"?



[work in progress]

 $R < R_{\rm x}$ : unpaired matter,  $~B_{\rm unp}$  ,  $\alpha = 0.1\pi/2$  ,  $\Delta = 0~{\rm MeV}$ 

 $R > R_x$ : CFL matter,  $B_{CFL}$  ,  $\alpha = 0.1\pi/2$  ,  $\Delta = 80~{
m MeV}$ 

#### Can (some) PNS be converted into QS? Is the two fam. scenario compatible with our nucleation calculations?

| 01/4<br><i>CFL</i><br>MeV] | $\begin{vmatrix} R_{\chi} \\ [\Delta^{-1} \text{ fm}] \end{vmatrix}$ | $\sigma$<br>[MeV fm $^{-2}$ ] | $Y_S$ | $M_{PNS}^{crit}$ [M $_{\odot}$ ] | $M_{QS}$ [M $_{\odot}$ ] | $\frac{E_{conv}}{[10^{53}\mathrm{erg}]}$ | Two f    |
|----------------------------|----------------------------------------------------------------------|-------------------------------|-------|----------------------------------|--------------------------|------------------------------------------|----------|
| 135                        | 0.8                                                                  | 10                            | 0.02  | 0.89                             | 0.69                     | 3.6                                      | all C    |
| 135                        | 0.9                                                                  | 10                            | 0.15  | 1.43                             | 1.12                     | 5.4                                      | QSs+     |
| 135                        | 1.0                                                                  | 10                            | 1.03  | Х                                | Х                        | Х                                        | no QSs a |
| 145                        | 0.9                                                                  | 10                            | 0.15  | 1.43                             | 1.19                     | 4.1                                      | QSs+     |
| 135                        | 1.2                                                                  | 30                            | 0.04  | 1.11                             | 0.87                     | 4.4                                      | all C    |

#### We are working on that!



# **Summary and conclusions**

#### Background

- exotic d.o.f. expected at compact object densities
- **nucleation** is the starting point for first order phase transitions
- "two families" of compact objects may exist if the Witten hypothesis is correct
- flavor composition is conserved during **nucleation**

#### **Method**

- State of the art: the first droplet of **Q matter** has the same flavor composition as the initial bulk H phase
- Guerrini et al. 2024: take into account that at finite T the hadronic composition **fluctuates**

#### Results

- and high T
- three flavors: work in progress

#### **Outlooks**

- **global** or **local** flavor conservation in nucleation?
- behavior and role of **color-superconducting** matter in nucleation
- using nucleation to study the **phenomenology** of the "Two families scenario"
- how to include those **finite-size effects in simulations**?



#### Any other questions or suggestions? *mirco.guerrini@unife.it*

- two flavors: composition fluctuations lead to faster nucleation (i.e. deconfinement can start at lower P) at intermediate





### **Deconfinement in astrophysical systems**





### **Backup: role of thermal fluctuations**



[complete calculations in Guerrini et al. (2024), arXiv:2404.06463]



### **Backup: two flavors EOSs**

Numerical Fermi Integrals: Johns Ellis Lattimer (1996) ApJ

$$\varepsilon_{j} = \gamma_{j} \int_{0}^{\infty} \frac{d^{3}k_{j}}{(2\pi)^{3}} \frac{E_{k_{j}}}{e^{(E_{k_{j}} - \mu_{K,j})/T} + 1} + V_{j}$$

Zhao-Lattimer EOS: Zhao, Lattimer (2020) PRD  $V_H = V_p + V_n$ 

$$=4n_B^2 y_n y_p \left\{ \frac{a_0}{n_0} + \frac{b_0}{n_0^{\gamma}} [n_B (y_n + y_p)]^{\gamma - 1} \right\}$$
  
+  $n_B^2 (y_n - y_p)^2 \left\{ \frac{a_1}{n_0} + \frac{b_1}{n_0^{\gamma_1}} [n_B (y_n + y_p)]^{\gamma_1 - 1} \right\}$ 

vMIT EOS: Gomes et al. (2019) ApJ

$$V_Q = \sum_q V_q$$
$$= \frac{1}{2}a \left[ n_B \left( \sum_q y_q \right) \right]^2 + B$$

Details will be in Constantinou, Guerrini, Zhao, Prakash (in preparation) and references therein



| Model         | Parameter  | Value  | Units           |
|---------------|------------|--------|-----------------|
|               | $a_0$      | -96.64 | MeV             |
|               | $b_0$      | 58.85  | MeV             |
| $\mathbf{ZL}$ | $\gamma$   | 1.40   |                 |
|               | $a_1$      | -26.06 | MeV             |
|               | $b_1$      | 7.34   | MeV             |
|               | $\gamma_1$ | 2.45   |                 |
|               | $m_u$      | 5      | MeV             |
|               | $m_d$      | 7      | MeV             |
| vMIT          | $m_s$      | 150    | MeV             |
|               | a          | 0.2    | $\mathrm{fm}^2$ |
|               | $B^{1/4}$  | 165    | MeV             |
|               | $\hbar c$  | 197.3  | MeV fm          |
| Constants     | $m_p, m_n$ | 939.5  | MeV             |
|               | $m_e$      | 0.511  | MeV             |

### **Backup: three flavors EOSs**

$$P_Q = \sum_{q=u,d,s} P_{k,q} + \frac{1}{\pi^2} \left( \sum_{q=u,d,s} \mu_q^2 \right) \Delta^2 - B$$

$$\Delta(T) = \Theta(T_c - T) \Delta_0 \sqrt{1 - \frac{T}{T_c}} \qquad T_C = 2^{1/3} \cdot C$$

Fischer et al. (2011) ApJ  

$$p_i(m_i, T, \mu_i, \alpha_s) = p_i(m_i, T, \mu_i, 0)$$



$$Y_u = Y_d = Y_s$$

#### $0.57\Delta_0$ Schmitt (2010) Lec. Not. Phys

### + $[p_i(0, T, \mu_i, \alpha_s) - p_i(0, T, \mu_i, 0)]$

### **Backup: more on two flavors**

$$\begin{split} W_1 &= n_{B,Q^*} V_{Q^*} \sum_i y_i^{H^*} \left( \mu_i^{H_\beta} - \mu_i^{H^*} \right) \\ &= n_{B,Q^*} \frac{4}{3} \pi R^3 \sum_i y_i^{H^*} \left( \mu_i^{H_\beta} - \mu_i^{H^*} \right). \end{split}$$

$$= n_{B,Q^*} V_{Q^*} \sum_i y_i^{H^*} \left( \mu_i^{H_\beta} - \mu_i^{H^*} \right)$$
$$= n_{B,Q^*} \frac{4}{3} \pi R^3 \sum_i y_i^{H^*} \left( \mu_i^{H_\beta} - \mu_i^{H^*} \right).$$

$$W_2 = \frac{4}{3}\pi R^3 n_{B,Q^*} \left(\mu_{Q^*} - \mu_{H^*}\right) + 4\pi\sigma R^2.$$

$$\tau^{th}(P_H, \{\Delta y_i\}, T) = \left[V_{nuc}\frac{\kappa}{2\pi}\Omega_0 \mathcal{P}_1^{th} \mathcal{P}_2^{th}\right]^{-1}$$

### Backup: more on two flavors results



### **Backup: more on three flavors**

![](_page_22_Figure_1.jpeg)

R [fm]