CSQCD 2024, KYOTO

Constraining Quark Matter in Neutron Stars

Swarnim Shirke Inter-University Centre for Astronomy & Astrophysics (IUCAA), Pune, India

08/10/24: Yukawa Hall, YITP

In collaboration with: Suprovo Ghosh, Prof. Debarati Chatterjee

 ω_{D}

1) Constrain Quark Matter (QM) model and hybrid equation of state (EoS) using multi-disciplinary physics constraints

- 1) Constrain Quark Matter (QM) model and hybrid equation of state (EoS) using multi-disciplinary physics constraints
- 2) Check the effect of the low-density chiral effective field theory, high-density astrophysics and very high-density perturbative QCD (pQCD) calculations on EoS

- 1) Constrain Quark Matter (QM) model and hybrid equation of state (EoS) using multi-disciplinary physics constraints
- 2) Check the effect of the low-density chiral effective field theory, high-density astrophysics and very high-density perturbative QCD (pQCD) calculations on EoS
- 3) Probe the existence and phase of QM inside Neutron Stars

1) There might be a hadron-quark phase transition in NS cores

ווווו

- 1) There might be a hadron-quark phase transition in NS cores
- 2) Theory: χEFT & pQCD reduces NS EoS uncertainty

иш

- 1) There might be a hadron-quark phase transition in NS cores
- 2) Theory: χEFT & pQCD reduces NS EoS uncertainty
- 3) Observations: M_{max} and tidal deformability of GW170817 can constrain EoSs

иш

- 1) There might be a hadron-quark phase transition in NS cores
- 2) Theory: χEFT & pQCD reduces NS EoS uncertainty
- 3) Observations: M_{max} and tidal deformability of GW170817 can constrain EoSs
- 4) Strong evidence of quark matter core in NSs

uw

Many more works exist along the same line doing the same with different models

(too many to cite here!)

MOTIVATION МW

Many more works exist along the same line doing the same with different models

(too many to cite here!)

However, most make use:

- 1) Parametric EOSs
	- Speed of sound parametrization, piecewise polytropes, interpolation methods for mixed phase, etc.
- 2) Select phenomenological EOSs / select parameters varied
- 3) Deploy maxwell construction with no mixed phase (Mixed hadron-quark phase is allowed - Glendenning 1992)

WHAT WE DO

- 1) Employ realistic phenomenological EoS that can be used to constrain not just EoS but also physical parameters.
	- a) Relativistic Mean Field model for nuclear matter
	- b) Original MIT Bag model (Farhi & Jaffe 1984) along with first-order correction in strong-coupling $\text{constant}(\alpha_{\mathrm{s}})$

uw

-
-
- -
	-
	-
	-

MODEL $\eta_{\mathcal{W}}$

• Hadronic Matter Phase: Relativistic Mean-Field Model (RMF) [Hornick+ 2018] ○ Nucleons interacting via exchange of mesons

$$
\mathcal{L}_{int} = \sum_{N} \bar{\psi}_{N} \left[g_{\sigma} \sigma - \bar{g}_{\omega} \gamma^{\mu} \omega_{\mu} - \frac{\bar{g}_{\rho}}{2} \gamma^{\mu} \tau \cdot \rho_{\mu} \right] \psi_{N} - \frac{1}{3} b \bar{m}_{N} (g_{\sigma} \sigma)^{3} - \frac{1}{4} c (\bar{g}_{\sigma} \sigma)^{4} \n+ \underline{\Lambda}_{\omega} (g_{\rho}^{2} \rho^{\mu} \cdot \rho_{\mu}) (g_{\omega}^{2} \omega^{\nu} \omega_{\nu}) + \frac{\zeta}{4!} (\bar{g}_{\omega}^{2} \omega^{\mu} \omega_{\mu})^{2} \qquad \text{Model parameters:} \n\{n_{sat'} \, \mathbf{E}_{sat'} \, \mathbf{K}_{sat'} \, \mathbf{E}_{sym'} \, \mathbf{L}_{sym'} \, \mathbf{m}^{*} / \mathbf{m} \}
$$

MODEL МW

• Hadronic Matter Phase: Relativistic Mean-Field Model (RMF) [Hornick+ 2018] ○ Nucleons interacting via exchange of mesons

$$
\mathcal{L}_{int} = \sum_{N} \bar{\psi}_{N} \left[g_{\sigma} \sigma - \bar{g}_{\omega} \gamma^{\mu} \omega_{\mu} - \frac{\bar{g}_{\rho}}{2} \gamma^{\mu} \tau \cdot \rho_{\mu} \right] \psi_{N} - \frac{1}{3} b m_{N} (g_{\sigma} \sigma)^{3} - \frac{1}{4} c (g_{\sigma} \sigma)^{4} \n+ \left[\Lambda_{\omega} (g_{\rho}^{2} \rho^{\mu} \cdot \rho_{\mu}) (g_{\omega}^{2} \omega^{\nu} \omega_{\nu}) + \frac{\zeta}{4!} (\bar{g}_{\omega}^{2} \omega^{\mu} \omega_{\mu})^{2} \right] \text{Model parameters:}
$$
\n
$$
\left\{ \mathbf{n}_{\text{sat'}} \mathbf{E}_{\text{sat'}} \mathbf{K}_{\text{sat'}} \mathbf{E}_{\text{sym'}} \mathbf{L}_{\text{sym'}} \mathbf{m}^{\star} / \mathbf{m} \right\}
$$

MODEL m_n

• Hadronic Matter Phase: Relativistic Mean-Field Model (RMF) [Hornick+ 2018] ○ Nucleons interacting via exchange of mesons

$$
\mathcal{L}_{int} = \sum_{N} \bar{\psi}_{N} \left[g_{\sigma} \sigma - g_{\omega} \gamma^{\mu} \omega_{\mu} - \frac{g_{\rho}}{2} \gamma^{\mu} \tau \cdot \rho_{\mu} \right] \psi_{N} - \frac{1}{3} \overline{b} m_{N} (g_{\sigma} \sigma)^{3} - \frac{1}{4} \overline{c} (g_{\sigma} \sigma)^{4} \n+ \underline{\Lambda}_{\omega} (g_{\rho}^{2} \rho^{\mu} \cdot \rho_{\mu}) (g_{\omega}^{2} \omega^{\nu} \omega_{\nu}) + \frac{\zeta}{4!} (\overline{g}_{\omega}^{2} \omega^{\mu} \omega_{\mu})^{2} \qquad \text{Model parameters:} \n\{\mathbf{n}_{sat'} \mathbf{E}_{sat'} \mathbf{K}_{sat'} \mathbf{E}_{sym'} \mathbf{L}_{sym'} \mathbf{m}^{*} / \mathbf{m} \}
$$

• Quark Matter Phase: MIT Bag Model (with 1st order correction) [Farhi & Jaffe 1984, Glendenning 1997]

$$
\Omega = \sum_{f=u,d,s} \Omega_f + \sum_{l=e,\mu} \Omega_{l,free} + \frac{B}{B}
$$
\n
$$
\Omega_i = \Omega_{i,free} + \frac{1}{4\pi^2} \frac{2\alpha}{\pi} \left[3\left(\mu_i k_{F_i} - m_i^2 \ln \frac{\mu_i + k_{F_i}}{\mu_i}\right)^2 + 6\ln \frac{\tilde{\Lambda}}{\mu_i} \left(m_i^2 \mu_i k_{F_i} - m_i^4 \ln \frac{\mu_i + k_{F_i}}{m_i}\right)\right]
$$
\n
$$
m_u = m_d = 5 \text{ MeV, } m_s = 100 \text{ MeV}
$$
\n
$$
1 - a_4 = \frac{2}{\pi} \alpha_s
$$
\nModel parameters: {B, a₄}

WHAT WE DO

- 1) Employ realistic phenomenological EoS that can be used to constrain not just EoS but also physical parameters.
	- a) Relativistic Mean Field model for nuclear matter
	- b) Original MIT Bag model (Farhi & Jaffe 1984) along with first-order correction in strong-coupling $\text{constant}(\alpha_{\mathrm{s}})$

uw

- 2) Allow for a mixed phase (Gibbs construction)
-
- -
	-
	-
	-

WHAT WE DO

- 1) Employ realistic phenomenological EoS that can be used to constrain not just EoS but also physical parameters.
	- a) Relativistic Mean Field model for nuclear matter
	- b) Original MIT Bag model (Farhi & Jaffe 1984) along with first-order correction in strong-coupling $\text{constant}(\alpha_{\mathrm{s}})$

 mn

- 2) Allow for a mixed phase (Gibbs construction)
- 3) Vary the model parameters to span the full parameter space rather than select cases
- -
	-
	-
	-

Range of parameters: (Uniform Priors within their uncertainty ranges) **[Suprovo** Ghosh+ EPJA 2022]

ווללן

Range of parameters: (Uniform Priors within their uncertainty ranges) **[Suprovo** Ghosh+ EPJA 2022]

- **Constraints:** (Filter Functions)
	- 1. Low density: χ EFT (0.07 0.2 fm⁻³)

Range of parameters: (Uniform Priors within their uncertainty ranges) **[Suprovo** Ghosh+ EPJA 2022]

- **Constraints: (Filter Functions)**
	- 1. Low density: χ EFT (0.07 0.2 fm⁻³)
	- 2. High density: Astrophysics $M \geq$ 2.01*M*[⊙] (Fonseca+ ApJL 2021; PSR J0740+6620) and $Λ_{1.4}$ ≤ 580 (LIGO Virgo PRL 2018; GW170817)

Range of parameters: (Uniform Priors within their uncertainty ranges) **[Suprovo** Ghosh+ EPJA 2022]

- **Constraints: (Filter Functions)**
	- 1. Low density: χ EFT (0.07 0.2 fm⁻³)
	- 2. High density: Astrophysics $M \geq$ 2.01*M*[⊙] (Fonseca+ ApJL 2021; PSR J0740+6620) and $Λ_{14} \leq 580$ (LIGO Virgo PRL 2018; GW170817)
	- 3. Very-high density: pQCD at μ_в= 2.6 GeV (Fraga+ ApJL 2014, Komoltsev+ PRL 2022)

WHAT WE DO

- 1) Employ realistic phenomenological EoS that can be used to constrain not just EoS but also physical parameters.
	- a) Relativistic Mean Field model for nuclear matter
	- b) Original MIT Bag model (Farhi & Jaffe 1984) along with first-order correction in strong-coupling $\text{constant}(\alpha_{\mathrm{s}})$

 m_n

- 2) Allow for a mixed phase (Gibbs construction)
- 3) Vary the model parameters to span the full parameter space rather than studying select cases
- **4) This formalism now allows us to**
	- **a) Constrain the microscopic nuclear and original bag model parameters**
	- **b) Check the effect of various constraints individually (we will focus on pQCD)**
	- **c) Study the existence of any physical correlations between model parameters**
	- **d) Comment on the phase of matter present in NS cores**

Side note: We also find a peak in speed of sound!

 $a\bar{m}$

RESULTS ω_{ν}

 $a\bar{m}$

 $v_{\ell W}$

 u_{w}

Mixed Phase **Hadronic** Phase

300

- **Region I:** No Hybrid Star solutions
- **Region II: Pure Quark-Matter Core**
- **Region III: Mixed-Phase Core**
- **Region IV: No Phase Transition**
- **Mixed-phase favoured** at the core of NSs and **not the pure quark phase**
- **● Evidence for quark matter in NS core**

SUMMARY

- **Realistic** phenomenological RMF model (hadronic phase) and MIT Bag model (quark phase) via **Gibbs phase transition**
- **● Vary all the parameters (100,000 EOSs!)**
- **● Multi-disciplinary physics constraints**
	- CEFT
	- Multi-messenger astrophysical observations
	- pQCD
- **Constraints** on microscopic parameters, EoS and properties at the NS centre
- Study of **physical correlations** (can discuss later)
- $pQCD$ + Astro filters significantly restricts B-a₄ quark parameter space
- pQCD constrains the QCD strong coupling constant (a_4/a_s)
- Astrophysical observations disfavour pure quark matter core in NSs
- pQCD calculation disfavours hadronic matter -> hadron-quark mixed-phase core in NSs is preferred (evidence for existence for hybrid stars)