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Recent reviews of current theory of core-collapse supernova

Proc. Jpn. Acad., Ser. B 100 (2024) [Vol. 100,

Review

Physical mechanism of core-collapse supernovae that neutrinos drive

FEDIBLEEERD
1 &, #l

By Shoichi YAMADA,***! ©© Hiroki NAGAKURA,** © Ryuichiro AKAHO,*! ©© Akira HARADA,**
Shun FURUSAWA,* © Wakana IWAKAMI,*! ©© Hirotada OKAWA,*6
Hideo MATSUFURU*” © and Kohsuke SUMIYOSHI*®

(Edited by Katsuhiko SATO, M.J.A.)

Abstract: The current understanding of the mechanism of core-collapse supernovae
(CCSNe), one of the most energetic events in the universe associated with the death of massive
stars and the main formation channel of compact objects such as neutron stars and black holes, is
reviewed for broad readers from different disciplines of science who may not be familiar with the
object. Therefore, we emphasize the physical aspects than the results of individual model
simulations, although large-scale high-fidelity simulations have played the most important roles in
the progress we have witnessed in the past few decades. It is now believed that neutrinos are the
most important agent in producing the commonest type of CCSNe. The so-called neutrino-heating
mechanism will be the focus of this review and its crucial ingredients in micro- and macrophysics
and in numerics will be explained one by one. We will also try to elucidate the remaining issues.
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A Chronological table: progress of SN (and NS) research FOlIE

2015-: Multi-dimensional CCSN models with high-fidelity of input physics
Successful CCSN explosions on bigiron - Connecting observations
2019-: Diversity

2001-: Establishing 1D-Boltzmann CCSN models (SL-SNe, FBOT etc..)

(Liebendorfer et al., Sumiyoshi et al.....)
2015: Dawn of GW-astronomy
1990-: Recognizing importance of fluid instabilities

on CCSNe (Mezacappa, Janka, and Burrows......) 2010: Discovery of 2 Msun NS

1985-: Bruenn edited “Core” of CCSN theory 1998: GRB-CCSN connection

1987: IMB, Kamiokande-Il made the first direct
detections of supernova neutrinos

1985: Neutrino-heating explosion
was proposed by Bethe and Wilson

1966: Colgate and White 1974: Observation of Hulse-Taylor binary

Neutrino emission from

_ _ 1967-: Discovery of the first radio pulsar (Hewish et al. and Gold)
stellar implosion

193 8-: Observations of extragalactic supernova and their remnants
(See e.g., Baade 1938)

193 3-: Baade and Zwicky
Past Hypothesized Connection between neutron star and “super-nova”



As of 2024, more than 50 thousands supernovae have been detected (CBAT)
(ZTF and Pan-STARRS observe dozens of supernovae per day!)
There are more than 50 thousands papers regarding “supernova” (ADS)

- Observational Phenomenology
1987A: Optical image

. A ok : e .
\/ Progenitor mass: > 10 Msun ’9“,‘ Lk S '“’*'j‘, N AR
WY, SRR, © T CCRER . SR, © Sy g
Vv 1 event /galaxy/ 100 yrs S ® Kamiokande
% o IMB
. 51 C e A Baksan
\/ Explosion energy: 10 erg K 3
\/ Nickel mass: 0.1Msun s
\/ Neutron star remnant '
: .. 53 ot
\/ Neutrino emission: 10 "erg —

Time (sec)

Adapted from J-Features (M. Nakahata)



Standard Model of Core-Collapse Supernovae
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Neutrino-heating mechanism

Janka 2001

v Neutrino Heating Rate

2
L T
* = 160Mev/ s —Ye:52 e
Qv Ma rZ{u,) \ 4MeV

v Neutrino Cooling Rate

6
_ 0 T
= 145M
Q > eV/Sma (ZMeV)

Mass accretion
(pre-shock region)

Neutrino absé?b

B
N

Neutrino cooling
region

Proto-neutron star




(Nowadays) CCSN explosions can be reproduced in numerical simulations

Nagakura et al. 2019



Comparison between theory (CCSN simulation) and observation

Explosion energy:
Theoretical Explosion Energies (this paper)
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Comparison between theory (CCSN simulation) and observation

Nucleosynthesis:

a—network
to NSE
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Gravitational waves:
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Neutrino signal:

1. Explosion models have low
neutrino luminosity than those
with non-explosions

(due to less accretion components)

2. The average energy of electro-
type neutrinos and their anti-
partners are lower in 3D than 1D.
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3. Neutrino luminosity of heavy-
leptonic neutrinos are higher in 3D
than 1D.

(due to PNS convection)
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- There remain many "holes” in CCSN simulations
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Weak Interactions Hadron Sectors (Nucleon scatterin
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CCSN driven by a first-order QCD phase transition

Kuroda et al. 2022

Post-phase transition phase
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- There remain many "holes” in CCSN simulations

Dimensionality Neutrino
(for Hyd ro) Full Boltzmanmn Tra nsport

7!5

i
1
, i
1
2D % .
Approximite
1D Tra nspol't
i
1
i
i

Minimuhm weak
interactjon sets

ewtonian

4

Most advanced
Weak interaction

. EOS
Gravity Weak Interactions

15

-_--?------

Full GR



Modeling of neutrino radiation field: necessitating a kinetic treatment

Figure by Janka 2017
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General relativistic
full Boltzmann neutrino transport

Nagakura et al. 2014, 2017, 2019
Akaho et al. 2021
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\/ GR simulations with full Boltzmann neutrino transport
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- There remain many “holes” in CCSN/BNSM simulations
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Neutrino oscillations

There are many experimental evidences that neutrinos
can go through flavor conversion.

Neutrinos have at least three different masses.

Flavor eigenstates are different from mass eigenstates.

Credit:BBC
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Neutrino oscillation induced by self-interactions

Pantalone 1992

Sea of neutrinos

1. Refractions by self-interactions induce neutrino flavor conversions, which is analogy
to matter effects (e.g., MSW resonance).

2. The oscillation timescale is much shorter than the global scale of CCSN/BNSM.

3. Collective neutrino oscillation induced by neutrino-self interactions commonly
occurs in CCSNe and BNSM environments.
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Rich flavor-conversion phenomena
driven by neutrino-neutrino self-interactions

- Slow-mode (Duan et al. 2010) Vacuum: =

Matter: ) = v2Gpn,,
- Energy-dependent flavor conversion occurs. Self-int: |, = V26,
= The frequency of the flavor conversion is proportional to -\

- Fast-mode (FFC) (sawyer 2005)

* Collective neutrino oscillation in the limit of w = 0.
- The frequency of the flavor conversion is proportional to
= Anisotropy of neutrino angular distributions drives the fast flavor-conversion.

- Collisional instability (Johns 2021)

= Asymmetries of matter interactions between neutrinos and anti-neutrinos

drive flavor conversion. Fr+r .
g | [ Matter-interaction rate

p: -
(D)2 + 4! uSs
- Matter-neutrino resonance (Malkus et al. 2012)

* The resonance potentially occur in BNSM/Collapsar environment (but not in CCSN).

A+ pf ~ Jw]

- Essentially the same mechanism as MSW resonance.
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Neutrino flavor conversions are omnipresent in CCSN environments

Collisional instability

Fast flavor conversions (FFC)

Space-time diagram of ELN-angular crossings in CCSNe

Shock wave Type | crossings [Exp-only]

Type Il crossings (nucleon-scattering + a~1 + cold matter)
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Type Il crossings [Exp-only] e,

(asymmetric v emission)

C Any type of crossings (PNS convection)

Nagakura et al. 2021
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Quantum Kinetics neutrino transport: Vlasenko et al. 2014, Volpe 2015,
Blaschke et al. 2016, Richers et al. 2019
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- Global Simulations of FFC (in CCSN) nagakura PRL 2023

Numerical setup:

Collision terms are switched on.

Fluid-profiles are taken from a
CCSN simulation.

General relativistic effects are

! NFC(H=R=0) — taken into account.

M3F ——
M3FGR
M2F —— Three-flavor framework
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- Neutron star kick powered by neutrino flavor conversions
Nagakura and Sumiyoshi 2024
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Summary:

Remarkable progress on numerical modeling of CCSN have been made
during the last decade.

Observable signals can be discussed with realistic theoretical models.

However, there are still many uncertainties in input physics.
e.g., equation-of-state, weak interactions, and neutrino quantum kinetics

These uncertainties should not be underestimated. They could be a game-
changing ingredient in CCSN theory.

Do not forget other mechanisms: MHD-driven, BH-driven, Phase-transition
of NS etc.
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