
Gravitational waves from the hadronicquark matter interface (HQMI) in hybrid stars?

C.-J. U. Osakwe Supervisor: Dr. Rachid Ouyed University of Calgary

Project goal

- I want to model the gravitational waves (GWs) from the HQMI in hybrid stars using full general relativity (GR) in three dimensions
- My first step is to perturb the HQMI and obtain the GWs
- The next step is to find the GWs from a HQMI that is both perturbed and moving
 - Interface could be slow or fast moving

GW Source	Strain	Frequency (Hz)	Mass (M_{\odot})	Characteristic size (km)	Distance to source (Mpc)
Supernova	10 ⁻²¹	-	1.4	-	10
NS-NS inspiral	10 ⁻²¹	100	2.8	90	15
MBH-MBH inspiral	10 ⁻¹⁶	10 ⁻⁴	107	10	1000
HQMI	~10 ⁻²² (?)	<1.25E3 (?)	0-1.4 (?)	0-10 (?)	?

NS = neutron star

MBH = massive black hole

Table adapted from Table 1 of J. B. Camp and N. J. Cornish, Annu. Rev. Nucl. Part. Sci. **54**, 525 (2004). Equations from K. Thorne, Rev. Mod. Phys. **52**, 299 (1980).

Oscillation modes

¹M. G. Orsaria

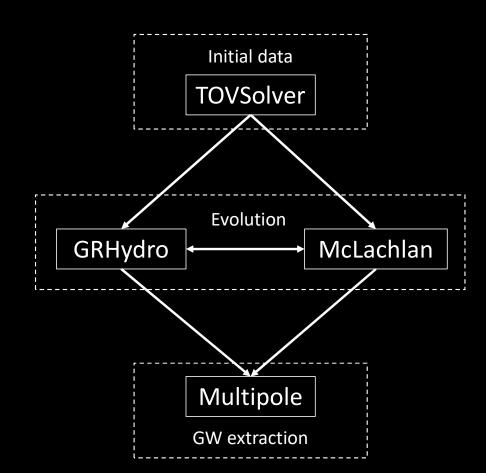
- Oscillations in a perturbed star can generate quadrupole moments -> GW emission
- Relativistic star oscillation modes are characterized by their restoring force (e.g., Fundamental (f), gravity (g), pressure (p))¹
 - The g-mode is excited by oscillations in a stratified fluid (e.g., the HQMI)²

• How do these modes couple to spacetime?

	Frequency	GW damping timescale		
F-mode	1.5-2.5 kHz	Fraction of a second		
G-mode	$< v_{fmode}$	> Seconds?		
et al., J. Phys. G: Nucl. Part. Phys. 46 , 073002 (2019).				

²C. J. Kreuger and K. D. Kokkotas, Phys. Rev. Lett. **125**, 111106 (2020).

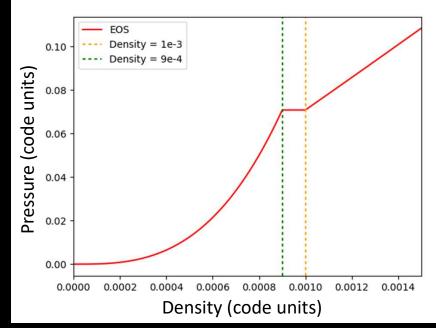
Cowling approximation


- Most studies of stellar oscillations use the Cowling approximation
 - Fluid oscillations are de-coupled from metric perturbations^{3, 4}

- I intend to study HQMI oscillations in full GR⁵
 - To explore spacetime-matter coupling and how it affects hybrid star oscillation modes

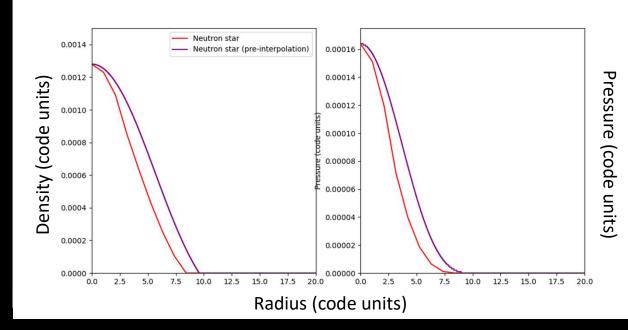
³P. Jaikumar, A. Semposki, M. Prakash, and C. Constantinou, Phys. Rev. D. **103**, 123009 (2021).
⁴H. Sotani and T. Takiwaki, Phys. Rev. D. **102**, 063025 (2020).
⁵T. Zhao and J. M. Lattimer, Phys. Rev. D. **106**, 123002 (2022).

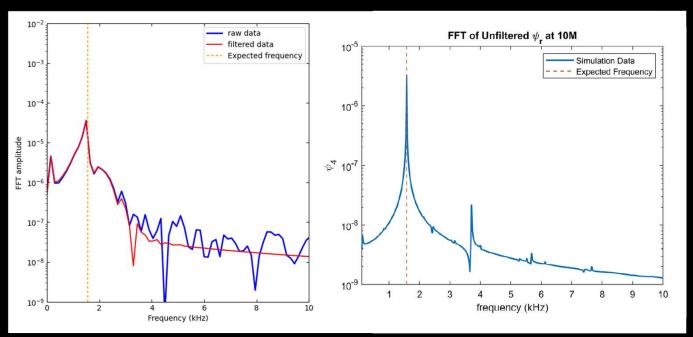
The Einstein Toolkit


- The Einstein Toolkit (ET) is a suite of numerical relativity codes⁶
 - This code lets me simulate astrophysical systems in 3D and full GR
- The ET is made up of code modules that talk to each other
 - TOVSolver sets up a stable NS
 - GRHydro matter evolution
 - McLachlan spacetime evolution
 - Multipole wave extraction

⁶The Einstein Toolkit, <u>doi:10.5281/zenodo.12588764</u> (key: EinsteinToolkit:2024_05) (2024).

Stable hybrid star using the ET

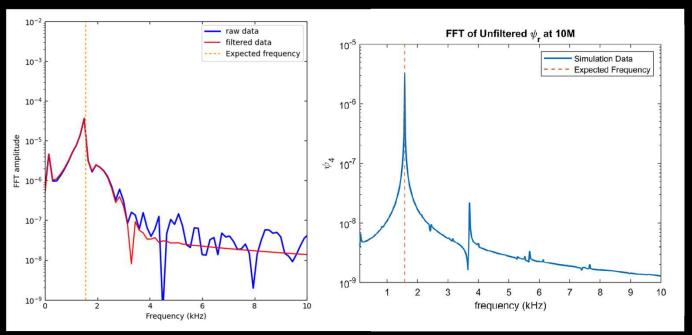

- I am creating a stable hybrid star in the ET
 - This involves adding a custom equation of state (EOS) to the code
 - I am currently using two polytropic EOS for the hadronic and quark matter
- I am currently following the prescription of Pereira et al. (2018)⁷
 - Pressure balance across the HQMI


⁷J. P. Pereira, C. V. Flores, and G. Lugones, Astrophys. J. 860, 12(2018).

1D – 3D interpolation

- To set up an initial NS, the ET solves the Tolman-Oppenheimer-Volkoff (TOV) equations in 1D
 - Interpolates to 3D afterward
 - Changes from Schwarzschild to isotropic coordinates
- This process changes the density/radius and pressure/radius curves
 - This might wash out the HQMI

f-modes from the ET



- Rosofsky *et al.* (2019)⁸ showed that you could extract NS f-mode frequencies using the ET
- Also found the GW signal and damping times

FFT of the Ψ_4 signal. Left panel is my reproduction, right panel is the original data from Rosofsky et al. (2019)

⁸S. G. Rosofsky *et al.*, Phys. Rev. D. **99**, 084024 (2019).

g-modes from the ET

FFT of the Ψ_4 signal. Left panel is my reproduction, right panel is the original data from Rosofsky et al. (2019)

- I am looking for GWs from g-mode oscillations at the HQMI³
 - Perturbed HQMI
 - Perturbed + moving HQMI
- The speed of the HQMI depends on the rate of burning
 - Slow burning = slow HQMI and vice versa

Summary

- I want to find potential GWs from the HQMI
 - I will do so in full GR
- The plan is to adapt the ET to the HQMI system
 - The ET can evolve systems with matter coupled to spacetime
 - I am currently setting up a stable hybrid star in the ET as an initial state
- The aim is to simulate g-mode oscillations at the HQMI with the ET and look for GWs
 - Perturbed HQMI -> moving + perturbed HQMI

Gravitational waves: radiation field

- In globally vacuum spacetime we can choose a gauge where $h_{\alpha\beta}$ is purely spatial ($h_{tt} = h_{ti} = 0$) and traceless ($h = h_i^i = 0$)
 - This implies the metric perturbation is transverse ($\partial_i h_{ij} = 0$)
- This is known as transverse traceless (TT) gauge
 - The TT part of the perturbation completely describes GW radiation, even when a source is present⁷

⁷K. Thorne, Rev. Mod. Phys. **52**, 299 (1980).

Gravitational waves: multipole expansion

 The GW radiation field can be expanded in terms of tensor spherical harmonics⁷

$$h_{ij}^{TT} = \frac{1}{r} \sum_{l=2}^{\infty} \sum_{m} \vec{I}_{lm} T_{ij}^{E2,2m}$$

⁷K. Thorne, Rev. Mod. Phys. **52**, 299 (1980).

Gravitational waves: oscillation modes

 The density of the system can be decomposed into an unperturbed part + a perturbation

$$\rho(\vec{r},t) = \rho_s(r,t) + \Re \sum_{lm} \rho_{lm}(r) e^{i(\omega_{lm}t + \Phi_{lm})} Y_{lm}(\theta,\phi)$$

The TOV equation

• The Tolman-Oppenheimer-Volkoff (TOV) equation relates the total mass m, density ρ , and pressure P as functions of distance from the stellar core r

$$\frac{dP}{dr} = -\frac{1}{r^2}(\rho + P)(m + 4\pi r^3 P)\left(1 - \frac{2m}{r}\right)^{-1}$$

 It is derived from the Einstein equations and is necessary to construct a relativistic stellar model⁸

⁸K. S. Thorne and A. Campollataro, Astrophys. J. **149**, 591 (1967).