On the ejecta properties of BQS or QS-BH merger

Zhiqiang Miao (TDLI) zq_miao@sjtu.edu.cn

"Compact Stars in the QCD phase diagram" 09/10/2024 @YITP

Introduction Quark nugget evaporation & ejecta evolution ➡Results Discussion & Conclusion

Quark star and quark nugget

Bodmer–Witten hypothesis: strange quark matter is the true ground state of strong interaction matter. (Bodmer 1971, Witten 1984)

Then there should be stable quark nuggets and stable quark stars.

$$\Delta E > m_n - m(^{56}Fe)/56 \approx 8.8 \,\mathrm{MeV}$$

Baryon density

Quark chemical potential

 $n_b = n_q/3 \simeq 0.3 \, {\rm fm}^{-3}$

 $\mu \sim (\pi^2 n_q)^{1/3} \simeq 300 \,\mathrm{MeV}$

Electron chemical potential

Electron fraction

$$u_e \sim \frac{3}{4\mu} \simeq 10 \,\mathrm{MeV}$$

 $Y_e \sim \frac{m_s^6}{192 \mu^6} \simeq 10^{-5} (-$

Confirm or exclude them observationally ?

- Stellar properties: mass-radius relation, moment of inertia, tidal deformability, Kepler limit... (More measurements are needed, as well as more precise measurements.)
- In this talk, I focus on the ejecta from BQS or QS-BH mergers
 - $T \gtrsim 1$ MeV: nugget evaporation
 - $T \leq 1$ MeV: Nucleosynthesis -- next talk by Yudong Luo

Basic scenarios in post-merger stage

Initial A should be sufficiently large ($\gtrsim 10^{26}$), limited by surface tension (Bucciantini+2022)

Gas (like BNS)

If all evaporate to nucleons

Evaporation can be effectively suppressed in a dense environment

• Previous studies on nugget evaporation suggest that the process could be sufficiently efficient.

Alcock+1985, for early universe Bucciantini+2022, for BQS merger

• The evaporated nucleons will reach saturation, thereby suppressing further evaporation and allowing more quark nuggets to survive, the timescale of saturation is estimated as

$$\tau \sim 1.7 \times 10^{-13} \,\mathrm{s} \left(\frac{0.1 \,\mathrm{fm}^{-3}}{n_B} \right) \left(\frac{10 \,\mathrm{MeV}}{T} \right)^{1/2} \left(\frac{A}{10^{30}} \right)^{1/3}$$

In the early universe $(n_B \sim 10^{-11} \,\mathrm{fm}^{-3}, T \sim 100 \,\mathrm{MeV}, A \sim 10^{36} - 10^{45})$, $\tau \sim 0.1 - 100$ s is much longer than the cosmic expansion time $1/H \sim 10^{-4}$ s,

while in BQS merger ($n_B \sim 10^{-3} \, \text{fm}^{-3}, T \sim 10 \, \text{MeV}, A \sim 10^{30}$), $\tau \sim 10^{-11}$ s is much smaller than the ejecta expansion time $\tau_{\text{expansion}} \sim 10^{-3}$ s.

• Ejecta evolution

- Ejecta expansion --> decreasing density, cooling of the gas temperature T -----
- Nugget evaporation — > cooling of the nugget $T_s \longrightarrow \tau_{\text{cooling}}, \tau_{\text{evaporation}}$

$$A \leftrightarrow (A - 1) + n$$
$$A \leftrightarrow (A - 1) + p$$

• Weak reactions

$$n + \nu_e \leftrightarrow p + e^-$$
$$n + e^+ \leftrightarrow p + \bar{\nu}_e$$
$$n \leftrightarrow p + e^- + \bar{\nu}_e$$

 $\rightarrow \tau_{\text{expansion}}$

Equilibrium: a hot and dense state

 $(\tau_{\text{cooling}} \ll \tau_{\text{expansion}}, \tau_{\text{evaporation}} \ll \tau_{\text{expansion}}))$

$$\mu_n^{(N)} = \mu_n^{(G)} \qquad \qquad \mu_{n,p}^{(G)} - m_{n,p} = T \ln \left[\left(\frac{2\pi}{m_{n,p}T} \right)^{3/2} \frac{n_{n,p}^{(G)}}{2} \right] \\ \mu_p^{(N)} + \mu_e^{(N)} = \mu_p^{(G)} + \mu_e^{(G)} \qquad \qquad \mu_n^{(N)} = \mu_u + 2\mu_d \\ \mu_p^{(N)} = 2\mu_u + \mu_d \\ \mu_p^{(N)} = 2\mu_u + \mu_d \end{cases}$$

$$\mu_n^{(G)} = \mu_p^{(G)} + \mu_e^{(G)} \qquad \qquad \mu_n^{(N)} =$$

Chemical

equilibrium

$$n_p^{(G)} = n_{e^-}^{(G)} - n_{e^+}^{(G)} = \frac{\mu_e^{(G)3}}{3\pi^2} + \frac{\mu_e^{(G)3}T^2}{3}$$

Baryon conservation

$$n_B = An_A + n_n^{(G)} + n_p^{(G)}$$

the binding energy is

 $\Delta E \equiv m_n - \mu_n^{(N)} > 8.8 \,\mathrm{MeV}$

Nuggets + Gas

Equilibrium: a hot and dense state

 $(\tau_{\text{cooling}} \ll \tau_{\text{expansion}}, \tau_{\text{evaporation}} \ll \tau_{\text{expansion}}))$

 $n_B = An_A + n_n^{(O)} + n_p^{(O)}$

conservation

the binding energy is

 $\equiv m_n - \mu_n^{(N)} > 8.8 \,\mathrm{MeV}$

Out of equilibrium: thermal and chemical evolution

(Onset when $\tau_{\text{cooling}} \gtrsim \tau_{\text{expansion}}$ or $\tau_{\text{evaporation}} \gtrsim \tau_{\text{expansion}}$)

Nugget temperature T_s

$$\frac{dU}{dt} = L_{\nu} + L_{n,p},$$
$$U \approx 3\pi^2 A T_s^2 / 2\mu_q$$

Baryon number A

$$\frac{dA}{dt} = -\frac{dN_n}{dt} - \frac{dN_p}{dt}$$

Free neutrons & protons

$$\frac{dN_{n,p}}{dt} = \left[\frac{dN_{n,p}}{dt}\right]_{A\leftrightarrow(A-1)+n} + \left[\frac{dN_{n,p}}{dt}\right]_{n\leftarrow n}$$

$$L_{\nu} = 4\pi R_s^2 \left[\frac{7\pi^2}{160} \right] \left[T^4 p(R_s, T) - T_s^4 p(R_s, T_s) \right]$$
$$L_{n,p} = -\frac{dN_{n,p}}{dt} (\Delta E + 2T),$$

Given density and gas temp. trajectories, these eqs. can be evolved to get the nugget temp. and also the fraction of gas

$$\begin{split} \left[\frac{dN_n}{dt}\right]_{A\leftrightarrow(A-1)+n} &= n_n^{\rm eq} \langle \sigma_n v_n \rangle_{T_s} - n_n \langle \sigma_n v_n \rangle_T, \\ \left[\frac{dN_p}{dt}\right]_{A\leftrightarrow(A-1)+p} &= n_p^{\rm eq} \langle \sigma_p v_p \rangle_{T_s} - n_p \langle \sigma_p v_p \rangle_T, \end{split}$$

$$\left[\frac{dN_n}{dt}\right]_{n\leftrightarrow p} = -\left[\frac{dN_p}{dt}\right]_{n\leftrightarrow p} = -N_n\lambda_{e^+n} + N_p\lambda_{e^-p},$$

 $\leftrightarrow p$

Applied to a homologous expansion model

$$\rho(t) = \frac{M_{\rm ej}}{(4\pi/3)v_{\rm ej}^3(t+t_0)^3},$$
$$T(t) = T_0 \left(1 + \frac{t}{t_0}\right)^{-3(\gamma-1)} \qquad \gamma = 4/3$$

we set ejecta mass $M_{\rm ej} = 0.01 M_{\odot}$ and velocity $v_{\rm ej} = 0.1c$. We also set the initial density $\rho_0 = \rho(0) = M_{\rm ej}/(\frac{4\pi}{3}v_{\rm ej}^3t_0^3) = 5 \times 10^{12} \,\mathrm{g/cm^3}$, which gives $t_0 = 0.33 \,\mathrm{ms}$. T_0 is left to be a free parameter in our analysis.

Applied to a homologous expansion model

Properties at T = 1 MeV when fixing $\rho_0 = 5 \times 10^{12}$ g/cm³, $v_{ei} = 0.1c$, $M_{ei} = 0.01 M_{\odot}$

Discussion & Conclusion

√We explore the properties of ejecta from BQS mergers, with a detailed focus on both equilibrium and non-equilibrium processes during the ejecta expansion, including quark nugget evaporation and cooling.

 \checkmark The ejecta properties are primarily determined by the binding energy of the quark nuggets and can differ significantly from those of a binary neutron star merger.

- Small binding energy —> a neutron-rich gas like a binary neutron star merger • Large binding energy —> a low density, proton-rich gas + nuggets

✓ Maybe no kilonova can be produced in BQS merger, but need more reliable T(t), $\rho(t)$ inputs from simulations which reflect more details like shocks, and need further nucleosynthesis calculations —> talk by Yudong

• Equation of state in equilibrium

$$\rho = Am_n n_A + m_n n_n + n_B = An_A + n_n + n_p$$
$$P = n_n T + n_p T$$

if the temperature is too high, the quark nuggets may completely evaporate into nucleons, the boundary is determined by

$$n_B < n_n + n_p$$

 $m_p n_p$

the nugget carries a net positive charge within its surface, creating a Coulomb barrier that protons must overcome to penetrate the nugget.

$$V(r) = \frac{3V_q}{\sqrt{6\alpha/\pi}V_q(r-R_s)+4}, \ r > R_s,$$

Penetration factor

$$\sigma_n = \pi R_s^2 \qquad \qquad \sigma_p = P(E)\sigma_n$$

$$\begin{split} P(E > E_c) &= (1 - \frac{E_c}{E})^{1/2}, \\ P(E < E_c) &= (\frac{E_c}{E} - 1)^{1/2} \exp\left\{-2\sqrt{2m_p} \int_{R_s}^{R_0} \left[V(r) - E\right]^{1/2} dr\right\}. \quad E_c = 3V_q/4 \end{split}$$

Applied to GRHD simulation results (Zhu & Rezzolla 2021)

- Fully general-relativistic simulations of binary quark stars, equal mass $1.35M_{\odot} - 1.35M_{\odot}$
- A total of 1030 tracers, consist the trajectories of density and thermal pressure
- The pressure can be translated to temperature as

 $T = P_{th} / (n_n + n_p)$

which should be calculated in each iteration step

Applied to GRHD simulation results (Zhu & Rezzolla 2021)

