

## **Nucleosynthesis with Quark Nugget**

LUO, Yudong Department of Astronomy Peking Univ.

CSQCD, Kyoto,9th Oct

### Motivation I

#### Confirm or exclude them observationally ?



• Stellar properties: mass-radius relation, moment of inertia, tidal deformability, Kepler limit...

(More measurements are needed, as well as more precise measurements.)

• In this talk, I focus on the ejecta from BQS or QS-BH mergers

 $T \gtrsim 1 \,\mathrm{MeV}$ : nugget evaporation

 $T \lesssim 1$  MeV: Nucleosynthesis --> next talk by Yudong Luo

5

From Zhiqiang's talk

Constrain the nuggets model

### Nucleosynthesis in Binary Quark Stars







### Initial Condition

• Fully general-relativistic simulations of binary quark stars, equal mass  $1.35M_{\odot} - 1.35M_{\odot}$  (Zhu

& Rezzolla 2021)  $10^{14}$  $10^{12}$ [g/cm<sup>3</sup>]  $10^6$ A total of 1030 tracers  $\begin{array}{c}
 10^4 \\
 10^2
 \end{array}$  $10^{0}$  $P_{
m th}/n_B\,[{
m MeV}]$  $10^{-2}$  $T = P_{th} / (n_n + n_p)$  $10^{-4}$ 350 1051530





@T =1 MeV



### Nucleosynthesis Yields (Preliminary)



# 1. Low $Y_e$ component corresponding to strong r-process (less then 10%)

2. Some p-nuclei around A~100 could be produced?

Light Curve?

3. Very High  $Y_{e}$  components could produce much more iron group nuclei

### Big Bang Nucleosynthesis with Quark Nuggets

After weak interaction decoupling

 $t \sim 0.1 \text{ sec} - 3 \text{ min}$ 

 $T\,{\sim}0.3~{\rm MeV}$  to 0.01 MeV

#### **BBN reaction network**



Main Production:  ${}^{4}\text{He} + \text{small amount of }{}^{2}\text{H},$ 

<sup>3</sup>He,<sup>3</sup> H + *tiny amount of* <sup>7</sup>Li

#### **Friedmann Equations**

#### Number density evolution

 $\partial n_i$ 

$$\left(\frac{\dot{a}}{a}\right)^2 \equiv H^2 = \frac{8\pi G}{3}\rho_{\text{tot}}$$
$$\frac{d\rho}{dt} = -3H(\rho + p)$$

Reaction rate

Network Chain

$$r_{ij} = \frac{n_i n_j}{1 + \delta_{ij}} \langle \sigma v \rangle_{ij}$$

$$\sum_{j} N_{j}^{i} r_{j} + \sum_{j,k} N_{j,k}^{i} r_{j,k} + \sum_{j,k,l} N_{j,k,l}^{i} r_{j,k,l}$$

### **BBN** recalling



### New Inhomogeneous BBN

Pages: 10



#### **Friedmann Equations**

#### Number density evolution

 $\begin{pmatrix} \frac{\dot{a}}{a} \end{pmatrix}^2 \equiv H^2 = \frac{8\pi G}{3} \rho_{\text{tot}}$  Reaction rate  $r_{ij} = \frac{n_i n_j}{1 + \delta_{ij}} \langle \sigma v \rangle_{ij}$   $\frac{d\rho}{dt} = -3H(\rho + p)$  Network Chain  $\left(\frac{\partial n_i}{\partial t}\right)_{\rho} = \sum_j N_j^i r_j + \sum_{j,k} N_{j,k}^i r_{j,k} + \sum_{j,k,l} N_{j,k,l}^i r_{j,k,l}$  $\frac{dA}{dt} = -\frac{dN_n}{dt} - \frac{dN_p}{dt}$   $\frac{dN_{n,p}}{dt} = \left[\frac{dN_{n,p}}{dt}\right]_{A \to (A-1)+n,p} + \left[\frac{dN_{n,p}}{dt}\right]_{n \to p}$ 



#### Comparison

• High-density regions are  $10^6$  than the  $\bar{\rho_b}$ , they are proton-rich

#### Three cases (depending on $\Delta E$ ) 1. All QN evaporated at T>>1 MeV, then the dense region will recover to the n-p equilibrium. Then when the temperature drops to about 1 MeV, we will have a

similar scenario as IBBN.
2.QN could survive after T<1 MeV. Then, the dense regions are pure proton gas, barely proceed any nucleosynthesis. The dilute</li>

regions are the standard BBN.

3. All QN evaporated at T~1 MeV, then the weak interaction rates are not efficient, so we will have some neutrons inside the proton-rich region.

### Conclusion

In Binary Quark Stars, our preliminary calculation shows the distinguishing results from BNSM

# Thank You !

 In Big Bang Nucleosynthesis, we hope we can constrain the nuggets model from primordial abundances



- 2.QN could survive after T<1 MeV. Then, the dense regions are pure proton gas, barely proceed any nucleosynthesis. The dilute regions are the standard BBN.
- All QN evaporated at T~1 MeV, then the weak interaction rates are not efficient, so we will have some neutrons inside the proton-rich region.