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e Numerical relativity
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Gravitational-wave interferometers
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Interest In binary neutron-star mergers

equation of
state of
ultrahigh
density matter




Dynamics of BNS

by e A
A binary (< 1kHz) black hole + torus (5 — 6kHz) black hole (6 — TkHz)

2__

g

binary (< 1kHz)  HMNS/SMNS (2 — 4kHz)  black hole + torus (5 — 6kHz) black hole(6 — 7kHz)

binary (< 1kHz) ~ SMNS (diff. rot.)(2 — 4kHz)

1105 — 107 y1]

LB and Rezzolla, Reports on Progress of Physics 80, 2017



High-density EoS and BNS observations

Gravitational-wave and electromagnetic observations of BNS mergers can set

constraints on the EoS by determining the
 Tidal deformability, from GWs from the (late) inspiral
e Maximum mass of a non-rotating compact star
 Amount of ejecta (kilonovae)

e Post-merger frequencies



Beyond equilibrium stars: BNS mergers

The post-merger phase can be used to probe higher densities and finite

temperature.
e It 1s difficult to measure the maximum mass for a (non-rotating) NS
e Stars in equilibrium are not sensitive to the connection with pQCD

e Theoretical limits on the EOS depend somewhat on the

implementation of pQCD constraints

e Studying the post-merger may be the only way to probe the
connection to pQCD.



Post-merger phase

* Observations of the post-merger phase

* Good point: Higher energy emission in GWs (in case of not prompt
collapse).

* Bad point: Emitted GW frequencies are higher, thus their signal-to-
noise ratio in current and projected detectors is smaller than in the
inspiral

* Only marginally measurable by detectors like Advanced LIGO.
Third-generation detectors are needed.

* Numerical simulations of the post-merger phase

e Very difficult, because of turbulence. magnetic-fields instabilities,
viscosity and other microphysical effects

e Currently cannot reliably determine the phase of post-merger
oscillations, but only the frequencies.



Simulations of binary neutron star mergers:
Numerical relativity




Numerical relativity

Numerical relativity 1s the science of simulating (solving) general-relativistic
dynamics on computers.

Problems with a straightforward discretization of the Einstein equations:
e formulation of the equations is not self-evident: e.g. time is not “simply”
defined

* physical singularities may be present

e gauges play an important role (e.g., to counteract grid stretching)

e numerical instabilities are present



The minimal set of equations to solve

R, — 29, R = 87T,
NG E=
V,U»(pu’u) = O )

p=p(pse,...).

(fieldegs: 6 + 6 + 1)
-1 +1

+ 3
+ 3
(cons. en./mom. : 3+ 1)

(cons. of baryon no: 1)

(EoS: 14...)



A minimal set of equations to solve

A minimal set of equations to solve

R, — 29w R=38nT,, (fieldegs: 646+ 3+ 1)
el
NEb = (cons. en./mom. : 3+ 1)
N ot =0, (cons. of baryon no: 1)
=Pl G (EoS: 1+4...)
L E=—() (Maxwell egs. : induction, zero div.)

___ mpfluid em
e g

+ viscosity, radiation transport,...

The complete set
of equations 1s
solved numerically,
with high-order
finite differencing
for the spacetime,
and finite volume
(high-resolution
shock-capturing
schemes) for
matter or more
advanced methods.



Carpet: a mesh-refinement driver

Schnetter et al. CQG 21, 1465 (2004); www.carpetcode.org

Carpet follows a (simplified) Berger-Oliger
[J. Comput. Phys. 53, 484 (1984)] approach to
mesh refinement, that 1s:

, 1 e refined subdomains consist of a set of cuboid
(= rectangular parallelepiped) grids

e refined subdomains have boundaries aligned
G:—  with the grid lines

e the refinement ratio between refinement levels
1S constant

No automatic move/creation of refined meshes, but they can be activated and
deactivated during the evolution, obtaining moving-grid mesh refinement and
progressive refinement.



Whisky THC: hydrodynamics code

Radice et al. MNRAS 437  http://personal.psu.edu/dur566/whiskythc.html

High-order flux-vector —splitting finite-differencing techniques
(Radice Rezzolla A&A 547)

MP5 scheme (Suresh Huynh, Journal of Computational Physics 136)
for reconstruction

“Templated” refers to C++ template metaprogramming, in which part of
the code 1s generated at compile time.


http://personal.psu.edu/dur566/whiskythc.html

he post-merger phase
of binary neutron star mergers




Dynamics of BNS
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Gravitational

waves from binary neutron stars

inspiral contribution from the inspiral
\ merged object (HMNS)
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Peaks In the merger and post-merger spectra

® {, 1s related to the merger

® {; 1s related to the rotation and oscillations of the merged star

® {3 has not been well interpreted yet
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Phase transitions / crossover and gravitational waves

* No phase transitions / crossovers — strong correlation between

main peak frequencies

of the post-merger

spectrum

and

properties of a zero-
temperature spherical
equilibrium neutron star

See, e.g., Bauswein Janka, PRL 108, 2012; Bauswein et al. PRD 86, 2012; Takami et al. PRL 113, 2013; Bauswein et al. PRL 11, 2013;
Bauswein et al. PRD 90, 2014; Takami et al. PRD 91, 2015; Rezzolla, K. Takami, PRD 93, 2016; Foucart et al. PRD 93, 2016; Lehner
et al. CQG 33, 2016; De Pietri et al. PRD 93, 2016; Maione et al. PRD 96, 2017; Kiuchi et al. PRD 101, 2020; our review RPP 80, 2017

o [f phase transitions affect GW emission — no correlation

See, e.g., Bauswein et al. PRL122, 2019; Most et al. PRL 122, 2019; Weih et al. PRL 124, 2020; Blacker et al. PRD102, 2020; Liebling
et al. CQG 38, 2021.

Bauswein et al. PRL 122, 2019
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Simulations of
binary neutron star mergers
with a
quark-hadron crossover
or first-order phase

transition

Bethe
equation of state

Huang et al. PRL 129, 2022; Hensh et al. arXiv:2407.09446



QHCI9

e In our previous work (Huang et al. PRL 129, 2022), we used QHC19 EoSs
(Baym et al. ApJ 885, 2019):

e at low-end densities: the nucleonic-matter Togashi EoS (Togashi et al.
Nuclear Physics A 961, 2017),

e at high-end densities: the strongly interacting quark-matter EoS of the
Nambu—Jonal.asinio model (Nambu Jona-Lasinio Phys. Rev. 122, 1961),

e and a thermodynamically consistent interpolation of pressure between the two
regimes

Baym et al. Rep. Prog. Phys., 81 (2018)
Nuclear —> Interpolated EoS <— Quark models

( non-confining ) ' (pQCD)

~ 2n, ~ (4-7)n, ~ 100 n,



Properties of
QHCI9

Peak 1n the speed of sound

Mass-radius relation
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Thermal part of the equation of state

e QHC19 1s a cold EoS (zero temperature)

 Mimic thermal effects by adding to the pressure given by the cold EoS a
component calculated by assuming an 1deal-gas behaviour with a constant
ideal-gas index I'.



Codes for nume
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e Fully general-relativistic hydrodynamics simulations (numerical relativity)

* WhiskyTHC code, Einstein Toolkit framework

e Adaptive-mesh refinement (Carpet code), with seven mesh-refinement levels

e Equal mass models

 Models with gravitational masses of each NS at infinite separation

M/Mo = 1.250, 1.300, 1.350, 1.375.

(Names of models: M1.25, M1.30, M1.35, M1.375, respectively)

e Quasiequilibrium irrotational BNSs at a separation of 45 km

e Last 5~7 orbits (depending on the model)
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* No differences before the merger

e After the merger, QHC produces notable

effects
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QHC2 |

Current observations:
e there 1s a very rapid growth of pressure with density in the range ~2—4 no

e substantial softening of matter (as per a strong first-order phase transition)
between 2-3 no and 4-5 ng 1s disfavored

1psat 2Psat S5Psat 1opsat

-1

- 10%° —— Posterior

g 1035 ————

= P

S ey F N [ —

= 0% | central

< 3 ;
Han’ Huang’ Tang : Fan’ — dens%ty of the

heaviest NS

Science Bulletin 68, 2023

The red regions with different transparencies are credible intervals of the yEFT truncation errors.



QHC2 |

A new QHC EOS: QHC21 (Kojo et al., ApJ 943, 2022)

e Lower end (below ~1.5 np): two versions, covering the uncertainty range of
microscopic nuclear calculations at lower densities.

e Version 1: Chiral effective field theory (YEFT) EOS (Lonardoni et al. PRR 2, 2020;
Drischler et al. Ann.Rev.Nucl.Part.Phys 71; PRC 103, 2021)

e Version 2: Togashi EOS (Togashi et al. Nuclear Physics A 961, 2017)

e Upper end (from 3.5 no):

e the Nambu—Jonal_asinio (NJL) model (Nambu Jona-Lasinio Phys. Rev. 122, 1961)
 Transition region in between:

e a smooth and highly constrained interpolation:

e matching with the nuclear and quark matter EOSs at the boundaries of the
crossover region (pressure and first and second derivatives of pressure with
respect to the baryon chemical potential)

e causality

e thermodynamical stability



1P0sat 2Psat 5Psat 100sat

Our EoS with a phase
transitions

—— Posterior

Phase transitions seem disfavored by

current observations, analyses, and
statistical studies (see, e.g., Han et al. Science
Bulletin 68, 2023; Brandes et al. PRD108, 2023;
Christian et al. PRD109, 2024).

Only very massive NSs

Still viable are: - would contain quark matter

* phase transitions occurring at higher (these would undergo
density prompt collapse in a binary
merger).

* phase transitions occurring at lower
densit \ : :
Y Quark matter 1s present in

most neutron stars, even
before the merger.



Our choice of EOS with first-order phase transition

 yEFT EOS up to 1.8ng

 The first-order phase transition starts at = 1.8np and ends at = 2.75ny.

* Constant-sound-speed parametrization: (cs)? = 2/3 in the quark-matter part

e Note that the NSs already contain quark matter before the merger

—-= QHC21Ch-soft —— Togashi J0437-4715
: PR - —-= QHC21Ch-stiff ~—— ChEFTex J0030+0451 (ST+PDT)
* Since 1t 18 Chaﬂenglng to QHC21T-soft --- 1PT-NQS GW170817

produce 1nitial data that contain QHC21T-stiff J0740+6620
discontinuities, we smoothed out 1.0
discontinuities 1n (Cs)?

0.8
* To avoid any thermodynamic

inconsistency, such smoothing
was done at the level of P(ug)

0.6

(Cs/C)2

0.4

e Mimic thermal effects by adding 02
an 1deal-gas component to the
pressure 0-01 2 3 4 5 6
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Mass-radius relations

—-= QHC21Ch-soft — Togashi

— = QHC21Ch-stiff ~=—— ChEFTex

— = QHC21T-soft -
QHC21T-stiff J0740+6620

J0437-4715

JO030+0451 (ST+PDT)

GW170817

Neutron-Quark Stars (NQS)

1 I

9 10 11
R (km)

12

13

14

Open circles
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theoretical NSs
whose central
density is 2ny.
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2D rest-mass density snapshots: QHC EOSs

QHC21 Ch-soft QHC21 Ch-stiff
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approximately 2.4 ms after the merger



D rest-mass density snapshots; QHC EOSs
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c 4
1.25 Mo < 0
>
15 1
s
:E; 0 1S
~— 10_ ~~
1
s
1072
€ |
X 0O
1.43 Mo <

- - -3
1 10
-15 0 15  -15 0 15
X (km) X (km)

approximately 2.4 ms after the merger

Start of crossover

End of crossover



2D rest-mass density snapshots: 1PT EOS

Start of 1PT

End of 1PT

t=0 1s the time of the merger



Gravrtational wave spectra:
Fitting of the gravitational-wave spectra
to find f

e Markov Chain Monte Carlo fitting method based on Bayesian inference
(emcee code)

* We fit the f; peak with a Gaussian model and the f; peak with a model that
considers skewness:
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Post-merger GW frequency 2 vs. binary mass:
baseline EoSs and EoSs with quarks.
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Relations between
f2, compactness, tidal deformability

. * 1PT-NQS
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A measured A that corresponds to a radius
(measured, e.g., by NICER) larger than that
expected from the A—compactness hadronic relation
would be 1n support of the 1PT-NQS scenario.



Conclusions

e Fully general-relativistic stmulations of BNS mergers with an EoS based on
quark-hadron crossover (QHC) and with quark matter in inspiralling NSs

(IPT-NQS)

e A QHC EoS, with a pronounced peak 1n sound speed, leaves a measurable
signature in the post-merger main frequency f>.

e In our 1PT-NQS simulations, we do not see a detectable signature in the A-f»
relation, because quark matter 1s already in the inspiralling stars.

e However the 1PT-NQS EoS stands out from the A - M/R relation.

 This 1s likely the only type of 1PT EoS that may produce a post-merger
signal.

e The results of this work will become relevant to observations when
gravitational waves in the kHz band are surveyed with higher sensitivity by

upgraded and third-generation observatories (Einstein Telescope, Cosmic
Explorer, NEMO)




