

The status of the Compressed Baryonic Matter experiment at FAIR

Andrej Kugler for the CBM Collaboration Nuclear Physics Institute Czech Academy of Sciences, Rez

Compact Stars in the QCD Phase Diagram, October 7-11, 2024, Kyoto

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Road map

QCD phase diagram

Low μ_B , hight T:

- Cross-over transition from hadronic to quark matter - comprehensive studies of QGP properties
- No critical point anticipated for $\mu_B/T < 3$ (LQCD)

High μ_B , low T:

- Unknown phase structure (first-order phase transition, critical point possible, mixed phases, new phases, ...)
- Properties of matter to determine
- Characteristics of hadrons
- Equation of State (EoS) to establish
- Neutron Star (NS)

Bazavovet al.[HotQCD], PLB 795 (2019) 15-21 Dinget al., [HotQCD], PRL 123 (2019) 6, 062002 Borsanyiet al., PRL125(2020)5,052001 Isserstedt et al. PRD 100 (2019) 074011 Gao, Pawlowski, PLB 820 (2021) 136584

Neutron star (NS) puzzle

H.Tamura, JPS Conf. Proc. , 011003 (2014)

"To establish the EoS applicable to the neutron star has been one of the most important subjects in nuclear physics for a long time but has not been achieved yet." T. Hamura

Neutron star (NS) puzzle

H.Tamura, JPS Conf. Proc. , 011003 (2014)

"To establish the EoS applicable to the neutron star has been one of the most important subjects in nuclear physics for a long time but has not been achieved yet." T. Hamura

Hypernuclei are pivotal for the EoS of the NS

- How do nuclei and hyper-nuclei form?
- What are their characteristics?
- How do nuclei (N) and hyperons (Y) interact?

Road map

Search for signatures of Critical End Point: Fluctuations?

A. Pandav for the STAR Collaboration at CPOD 2024

M. A. Stephanov, PRL 107 (2011) 052301

"..... Usual caveats apply: other (nontrivial) contributions to moments which do not behave singularly at the critical point can turn out to be relatively large. These include initial geometry fluctuations, jets, and other nonequilibrium effects. In addition, charge conservation effects may impose constraints on certain observables, such as total charge fluctuations. It is beyond the scope of this Letter to estimate these effects....."

 → Correction of reaction volume fluctuations using mixed events or pion multiplicites, see arXiv:2403.03598 7
R. Holzmann, A. Rustamov, V. Koch, J. Stroth

Higher-order moments requires prominent statistics Detailed systematics studies indispensable

E-M probes access the whole collision

EPJC (2009) 59 607-623 Nature Physics 15, 1040-1045 (2019) IPS Conf.Proc. 21 (2020) 010079 Inscribes matter properties enabling estimation:

- degrees of freedom of the medium
- fireball's lifetime, temperature, acceleration, polarization
- transport properties
- restoration of chiral symmetry

Thermal dileptons in LMR:

- T close to T_{ch} and T_{pc}
- dominantly emitted around phase transition

Thermal dileptons in IMR:

- T is higher than T_{pc}
- Emitted fom QGP phase

Effective size-signal: $S_{eff} \sim R \frac{S}{R}$

- R interaction rate
- S signal
- B- combinatorial background

Prominent interaction rate mandatory

Flow of strange particles

EoS investigations include vast number of measurements:

- Chemistry (strangeness, charm, hyper nuclei, ...)
- Collectivity
- Vorticity
- Fluctuations and correlations
- Interactions in the final states (NN, NY, YY, many-body, hyper-nuclei, ...)

PRL 113 (2014) 52302

Road map

High μ_B facilities

STAR@RHIC

NA61/SHINE@SPS HADES@SIS18

J-PARC-HI

T. Galatyuk, NPA 982 (2019), update 2024 <u>https://github.com/tgalatyuk/interaction_rate_faciliti</u> <u>es</u>

High μ_B facilities

NA60@SPS(>2030)

NA61/SHINE@SPS

CBM / HADES@ SIS100 (>2028)

MPD, MB@N@NICA

HADES@SIS18

J-PARC-HI

CEE@HIAF (>2027)

3 CONA EDIA ED 2 (2017) CO

Coverage of the QCD phase diagram

CBM / HADES @ SIS100 experimental exploration of the region $\mu_B \sim 520 - 830 \text{ MeV}$

Bazavovet al.[HotQCD], PLB 795 (2019) 15-21
Dinget al., [HotQCD], PRL 123 (2019) 6, 062002
Borsanyiet al., PRL125(2020)5,052001
Isserstedt et al. PRD 100 (2019) 074011
Gao, Pawlowski, PLB 820 (2021) 136584

Fu et al., PRD 101 (2020), 054032 Gunkel, Fischer, PRD 104 (2021) 5, 054022

	$\sqrt{s_{NN}}$ (GeV)	μ_B (MeV)
HADES@SIS18	2-2.5	830-760
CBM@SIS100	2.3-5.3	785-520
NA61/SHINE@SPS	5.1-17.3	530-220
STAR-COLL@RHIC	7.7-200	400-22
STAR-FXT@RHIC	3-13.7	700-265

A. Andronic, P. Braun- Munzinger, K. Redlich and

B. J. Stachel, Nature 561, no. 7723, 321 (2018)

Road map

Hanna Zbroszczyk for the CBM Collaboration, New Trends in High-Energy and Low-x Physics, September 1-5, 2024, Sfantu Gheorghe, Romania

Eacility for Antiproton and on Research

Civil Work Completed

Compressed Baryonic Matter experiment

Fixed-target experiment \rightarrow highest rates achievable Versatile subsystems \rightarrow tailored for the physics program Silicon-based tracking \rightarrow fast and precise Free-streaming front-end-electronics (FEE) \rightarrow minimal dead-time while data acquisition

Online event selection \rightarrow advanced data taking focused on customized needs First beams in 2028/2029

CBM subsystems are on the verge of series production

pre-production is ongoing in all systems

award of contract to Bilfinger Noell GmbH 20.12.2023

Beam monitoring system

Transition Radiation Detector

pre-production modules of 1D and 2D options ready

Micro Vertex Detector sensor/module integration

Time of flight detector

module pre-production concluded

MUon CHamber system

test of full-size GEM and RPC prototypes

Silicon Tracking System

Forward Spectator

ZnS scintillators and

Detector

LYSO crystals

PMT

100 modules assembled

Ring Imaging Cherenkov detector

1 of 2 photo cameras ready

50% FEE produced

Prototype of CBM online data processing tests with mCBM

1.2 1.25 m_{px} [GeV/c²]

mCBM

up

YIEID Ni+Ni 1.93 AGeV Rare signal reconstructed: $\Lambda \rightarrow p \pi^{-}$ run 2391 (May '22): 10⁹ collisions, 1:57h 40 400 kHz av. coll. rate TOF beam RICH TRD π 20 all detector systems involved 0 secondary vertex velocity windows for p and π^{-} candidate

Campaign 2024: high-rate studies online reconstruction and selection

Λ baryons in Ni+Ni at 1.0 - 1.93 AGeV

Compressed Baryonic Matter experiment

Fixed-target experiment \rightarrow highest rates achievable Versatile subsystems \rightarrow tailored for the physics program

Silicon-based tracking \rightarrow fast and precise

Free-streaming front-end-electronics (FEE) \rightarrow minimal dead-time while data acquisition

Online event selection \rightarrow advanced data taking focused on customized needs

First beams in 2028/2029

Years 1-3: first energy scan, improved statistical uncertainties of factor 10 with respect to STAR

Years 4-8: high-statistics measurements: di-lepton IMR, ultra-rare probes

315 full members from 10 countries47 full member institutions10 associated member institutions

Road map

Key observables

Systematic measurements:

- Fluctuations: System alteration through first-order phase transition, critical point
- Dileptons : Emissivity: system's lifetime, temperature, density, in-medium characteristics
- Hadrons (Strangeness, Charm, Hyper-nuclei, Bound states): EOS: vorticity, collectivity,

correlations: NN, YN, YY, multi-body interactions

A high interaction rate is desired to reduce uncertainties and enable measurements that have so far been unattainable.

Fluctuations

Corrections for volume fluctuations and conservation laws

- Event-by-event changes of efficiency
- Proper selection of $y p_T$ interval
- (Net-)baryons vs. protons, neutrons, nuclei

Expectations after ~3 years of running

- Full coverage of $\kappa_4(E)$ for protons
- First results of κ_6
- Possible addition of strangeness: $\kappa_4(\Lambda)$

Dileptons

Electron thermal radiation, corrected for acceptance and efficiency,

Dominated by ρ contribution at LMR,

Can be reconstructed with 1.5-4.5% of precision,

Gives access to to the fireball lifetime and electrical conductivity (transport properties)

$T\,{\rm vs.}$ baryon density effects from partonic to hadronic fireballs

Flow, polarization, correlations

0.05

0.15

0.25 q_inv [GeV/c] 0.05

0.15

0.25 q_inv [GeV/c]

CBM aims to answer fundamental questions about the structure of the QCD phase diagram at high μ_B

Where are we now?

What are we pursuing and why?

Annanan annana anna anna

Already operating at high μ_B experiments are complete and exploration of new physics needs higher interaction rates

Who is involved?

Many world-wide existing and planned facilities complement each other programs

How to achieve the goal?

Compressed Baryonic Matter experiment with high interaction rates will explore the region of the energies of the highest importance

What is the plan?

To start these exploration in 2028 and to answer fundamental questions in the first year of CBM running

CBM is open for new participation

Thank You for your attention