Limiting phase transition scenarios in NSs: challenges and opportunities

Sophia Han, T.D. Lee Fellow

T.D. Lee Institute / Shanghai Jiao Tong U.

Compact Stars in the QCD Phase diagram (CSQCD 2024) @YITP

Oct. 7-11, 2024

Limiting phase transition scenarios in NSs: challenges and opportunities

Sophia Han, T.D. Lee Fellow

T.D. Lee Institute / Shanghai Jiao Tong U.

In collaboration with

 Mark Alford (Wash U), Christian Drischler (Ohio U), Katerina Chatziioannou (Caltech), C. Constantinou (INFN/ECT), Reed Essick (CITA), Prashanth Jaikumar (CSU Long Beach), S. Lalit (FRIB/MSU), Philippe Landry (CITA), Jim Lattimer (Stony Brook U), Isaac Legred (Caltech), M. A. A. Mamun (Ohio U), Madappa Prakash (Ohio U), Sanjay Reddy (INT, U Washington), Kai Schwenzer (Istanbul U), Andrew Steiner (UTK/ORNL), Tianqi Zhao (N3AS, UC Berkeley/Ohio U)

Compact Stars in the QCD Phase diagram (CSQCD 2024) @YITP

Oct. 7-11, 2024

Laboratory for theoretical physics

- no terrestrial experiments can probe such high densities
- reliable first-principle calculations break down at the strongly-interacting regime
- can't calculate properties of cold dense matter; must observe!

Schematic EoSs from theory

- self-bound stars with a bare surface e.g. strange matter hypothesis
- continuous (and mostly smooth) profile for normal hadronic EoSs; *also possible with weak/mild phase transition or crossover
- substantial softening e.g. discontinuity in the energy density induced by a strong sharp phase transition

Categories of the M-R relation

SH & Prakash, arXiv:2006.02207

- self-bound stars with a bare surface e.g. strange matter hypothesis
- continuous (and mostly smooth) profile for normal hadronic EoSs; *also possible with weak/mild phase transition or crossover
- substantial softening e.g. discontinuity in the energy density induced by a strong sharp phase transition

Constraints from heavy pulsars

Alford & **SH** arXiv:1508.01261

Constraints from heavy pulsars

Alford & **SH** arXiv:1508.01261

Treating quarks within neutron stars

$\rm HM \rightarrow \rm QM$	First-order Transition (Maxwell) ^a	Crossover Transition
stiff to soft	× vMIT: cannot support $M_{\text{max}} \ge 2 \mathrm{M}_{\odot}$ × vNJL: $M_{\text{trans}} \gtrsim 1.7 \mathrm{M}_{\odot}, \tilde{\Lambda}(\mathcal{M} = 1.186 \mathrm{M}_{\odot})$	× unphysical decreasing function of $P(n_{\rm B})$ > 720
soft to stiff	\checkmark no intersection for $P(\mu)^{\rm b}$	$c_s^2 \gtrsim 0.7 rac{13 \mathrm{km}}{\mathrm{quarkyonic:}} M_{\mathrm{max}} \geq 2 \mathrm{M}_{\odot}; R_{1.4} < 13 \mathrm{km}$
soft to soft	\bigstar cannot support $M_{\rm max} \geq 2 { m M}_{\odot}$	\star cannot support $M_{\rm max} \geq 2 { m M}_{\odot}$
stiff to stiff	\checkmark vMIT: $M_{\text{max}} \ge 2 M_{\odot}$; $R_{1.4}$ and M_{trans} vNJL: onset for quarks too high; immediately of	$\operatorname{Pary} C_{S}^{2} \gtrsim 0.4 \times \tilde{\Lambda}(\mathcal{M} = 1.186 \mathrm{M_{\odot}}) > 720, R_{1.4} > 13 \mathrm{km}$ destabilize

^a See text for details if the Gibbs construction is applied. Gibbs construction satisfies many observational constraints such as $R_{1.4}$ and M_{max} due to the earlier onset of quarks. However, distinguishability from purely-hadronic stars is lost.

^b Limited by the specific quark models applied here; in a generic parametrization (e.g. CSS) the soft $HM \rightarrow stiff QM$ is possible.

TABLE VI. Summary of the minimum density and minimum neutron star mass when quarks start to appear in various treatments of phase transitions explored in our work; see also the indicated figures for detailed information.

Treatment	$n_{\rm trans}/n_0$	$M_{ m trans}$	Figure reference				
Maxwell Gibbs Interpolation Quarkyonic	$ \begin{array}{r} 1.77 \\ \lesssim 1.5 \\ 2.0, 1.5 \\ 2.31 \end{array} $	$\begin{array}{c} 0.97 \ \mathrm{M}_{\odot} \\ \lesssim 0.6 \ \mathrm{M}_{\odot} \\ 0.81, 0.48 \ \mathrm{M}_{\odot} \\ 0.97, 1.21 \ \mathrm{M}_{\odot} \end{array}$	Fig. 2(b) and 2(c) Fig. 2(e) and 2(f) Fig. 5(b) and 5(c) Fig. 6(b) and 6(c)				
SH, Al Mamun, Lalit, Constantinou & Prakash, <u>arXiv:1906.04095</u>							

Drischler, SH & Reddy arXiv:2110.14896

- pressure at low densities [outer core] controls typical NS radii: stiff or soft?
- reliably quantified uncertainties from chiEFT for betaequilibrated NSM
- less than ~5% deviation from PNM pressures
- to **extrapolate** or match at higher densities in the **inner core**

Bounds from causality

Drischler, **SH**, Lattimer, Prakash, Reddy and Zhao, <u>arXiv:2009.06441</u>

- pressure at low densities [outer core] controls typical NS radii: stiff or soft?
- reliably quantified uncertainties from chiEFT for betaequilibrated NSM
- absolute causal limits imposed at high densities
- confronted with data: interplay between M_max and NS radii

Supporting massive NSs

Drischler, **SH**, Lattimer, Prakash, Reddy and Zhao, <u>arXiv:2009.06441</u>

• sound speed in the **core** and **where** rapid stiffening in the EoS begins

A NICER VIEW OF PSR J0437-4715 (new!)

Inferring the peak sound velocity

Inferring the peak sound velocity

Sound speed in the core

$$c_s^2(r) \equiv dp(r)/d\varepsilon(r)$$

how fast pressure rises with energy density

Possible behavior in neutron star interiors

- minimal scenario of normal nuclear matter: (smoothly) continuous function of pressure
- first-order phase transition scenario: finite energy density discontinuity induces sudden softening near the phase boundary
- crossover/quarkyonic: local **peak** structure

Limits

- asymptotically high density: ~1/3
- ~4-8 times saturation: supports massive NSs
- high-T: matches lattice calc./heavy-ion data

BNS/NSBH mass distribution

GW230529 (new!)

e.g. softening effects on post-merger GWs

e.g. softening effects on post-merger GWs

Opportunities beyond the EoS

- thermal evolution neutrino emissivity, stellar superfluids [nuclear theory, transport prop.]
- merger dynamics with astro/GW signals - out-of-equilibrium (visc.) physics; composition details [simulations, nucleosynthesis]
- next Galactic supernova?
 [neutrino physics]
- spin-down, glitches, asteroseismology, [hydrodynamics, GR, nucl-th]
- ...and more add your own

Rev. Mod. Phys. 88, 021001 (2016)

Bulk viscous phase in merger

- remnant evolution: impact of weak-interaction driven out-of-equilibrium dynamics; phase shift of the gravitational-wave spectrum
- dissipation via **nucleonic** Urca processes on a millisecond timescale
- different channels of chemical equilibration for hyperons, quarks etc. -> bulk viscosities with different dependencies on temperature and density

Spin evolution

f [Hz]

• puzzles: long periods of young NSs; fastrotating NSs in r-mode **instability window** of hadronic matter; glitches..

e.g. r-modes

- transport properties of dense matter: shear & bulk viscosity
- r-modes both heat and spin down NS: standard (minimal) model inconsistent with temperature and frequency data of LMXBs
- promising saturation mechanisms: superfluid mutual friction; phaseconversion at hadron/quark interface

Alford, **SH** & Schwenzer, arXiv:1904.05471 Haskell, Degenaar & Ho, arXiv:1201.2101

Spin evolution

• puzzles: long periods of young NSs; fastrotating NSs in r-mode **instability window** of hadronic matter; glitches..

e.g. r-modes

- transport properties of dense matter: shear & bulk viscosity
- r-modes both heat and spin-down NS: standard (minimal) model inconsistent with temperature and frequency data of LMXBs
- promising saturation mechanisms: superfluid mutual friction; phaseconversion at hadron/quark interface

-steady-state transport -no acceleration/deceleration effects; no turbulence -no leptons; no superfluids

$$(udd) \leftrightarrow (uds)$$

e.g. dissipation at an interface

• Ekman layer damping from shear rubbing of a fluid core along a solid crust

Phase-conversion dissipation (PCD)

- between fluids in different phases with first-order transition separated by a sharp interface
- quark/hadron conversion
- 1) **flavor-changing** process $d \leftrightarrow s$ out of equilibrium due to global oscillations
- 2) instantaneous restoration \Leftrightarrow phase boundary moves arbitrarily fast (no diss.)
- 3) finite rate of weak interaction and flavor diffusion
 - \rightarrow a **phase lag** in system response
 - ightarrow dissipates energy

Alford, **SH** & Schwenzer arXiv:1404.5279

Stellar oscillations

©LIGO-Virgo-KAGRA

stable vibration modes ("ringing")

- *f*-mode (fundamental mode) scales with average density
- *p*-mode (pressure mode) probes the sound speed
- g-mode (gravity mode) sensitive to composition/thermal gradients
- *w*-mode, *s*-mode, *i*-mode/*r*-mode..

small amplitude oscillations ->
weak (continuous) emission of GWs

©NASA/Kepler

promising sources for XG detectors

Global *g*-mode frequency with PTs

- "masqueraded" • hybrid system under local vs. global on *M-R* relations 2.0 charge neutrality in Maxwell (M) vs. Gibbs (G) construction for a 1st-OPT M (M_o) *_ n*=0.50–1.0 (M) $\eta = 1.0$ (M), $\dot{M} = M_{max}$ - 0.30 1.0 - 0.10 0.500F 0.0 (G) 12 13 11 10 0.100 ح R (km) 0.050 detectable via 800 oscillation modes - S 0.010 е 600 0.005F (zH) ^бл 0.2 0.6 0.8 0.4 1.0 Ω r/R *n*=1.0 (M) – 0.10 $-0.0 (G)^{-1}$ - 0.90 "discontinuity" g-mode observed 200 - 0.50 -ZLAwhen there exists a sharp boundary
 - distinct signature of exotic phases: higher frequency implies larger fraction of quarks

٦ 0

Crossover vs. Gibbs

 Kapusta-Welle approach: switching function of baryon chemical potential (arXiv:2103.16633)

arXiv:2109.14091

Recap on the phase diagram

searching for QM in NSs

- has a phase transition already taken place in canonical-mass (cold) NSs before they merge in the binary system?
- are quarks only able to appear temporarily in the (warm) massive, transient remnant of mergers or supernovae?
- when and how do they emerge - the onset density, temperature, nature of PT?
- imprints in observations? possible links to e.g. HICs?

THANK YOU!

Q & A

BACKUP

SLIDES

Single branch (minimal) vs. multiple branches

- full posterior is dominated by EoSs with a single stable branch
- onset for the unstable branch i.e. extra softening pushed to two ends

Remnant dynamics

- **GW + EM** constraints from 170817 seem to favor Mmax<2.16~2.3 solar masses Ruiz et al. (2018), Rezzolla et al. (2018), Shibata et al. (2019)
- **NS radius >10.68 km** to prevent prompt collapse Bauswein et al. (2017)

NSBH mergers

LVK collaboration arXiv:2106.15163

THE ASTROPHYSICAL JOURNAL LETTERS, 915:L5 (24pp), 2021 July 1

© 2021. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences

Source Properties of GW200105 and GW200115								
	GW200105		GW200115					
	Low Spin $(\chi_2 < 0.05)$	High Spin $(\chi_2 < 0.99)$	$ Low Spin (\chi_2 < 0.05) $	High Spin $(\chi_2 < 0.99)$				
Primary mass m_1/M_{\odot}	$8.9^{+1.1}_{-1.3}$	$8.9^{+1.2}_{-1.5}$	$5.9^{+1.4}_{-2.1}$	$5.7^{+1.8}_{-2.1}$				
Secondary mass m_2/M_{\odot}	$1.9^{+0.2}_{-0.2}$	$1.9\substack{+0.3\\-0.2}$	$1.4\substack{+0.6\\-0.2}$	$1.5_{-0.3}^{+0.7}$				
Mass ratio q	$0.21\substack{+0.06\\-0.04}$	$0.22\substack{+0.08\\-0.04}$	$0.24\substack{+0.31 \\ -0.08}$	$0.26\substack{+0.35\\-0.10}$				
Total mass M/M_{\odot}	$10.8\substack{+0.9\\-1.0}$	$10.9^{+1.1}_{-1.2}$	$7.3^{+1.2}_{-1.5}$	$7.1^{+1.5}_{-1.4}$				
Chirp mass \mathcal{M}/M_{\odot}	$3.41\substack{+0.08\\-0.07}$	$3.41\substack{+0.08\\-0.07}$	$2.42\substack{+0.05\\-0.07}$	$2.42\substack{+0.05\\-0.07}$				
Detector-frame chirp mass $(1 + z)\mathcal{M}/M_{\odot}$	$3.619\substack{+0.006\\-0.006}$	$3.619\substack{+0.007\\-0.008}$	$2.580\substack{+0.006\\-0.007}$	$2.579\substack{+0.007\\-0.007}$				
Primary spin magnitude χ_1	$0.09\substack{+0.18\\-0.08}$	$0.08^{+0.22}_{-0.08}$	$0.31\substack{+0.52\\-0.29}$	$0.33\substack{+0.48\\-0.29}$				
Effective inspiral spin parameter χ_{eff}	$-0.01\substack{+0.08\\-0.12}$	$-0.01\substack{+0.11\\-0.15}$	$-0.14\substack{+0.17\\-0.34}$	$-0.19\substack{+0.23\\-0.35}$				
Effective precession spin parameter χ_p	$0.07\substack{+0.15 \\ -0.06}$	$0.09^{+0.14}_{-0.07}$	$0.19\substack{+0.28\\-0.17}$	$0.21\substack{+0.30\\-0.17}$				
Luminosity distance $D_{\rm L}/{\rm Mpc}$	280^{+110}_{-110}	280^{+110}_{-110}	310^{+150}_{-110}	300^{+150}_{-100}				
Source redshift z	$0.06\substack{+0.02\\-0.02}$	$0.06\substack{+0.02\\-0.02}$	$0.07\substack{+0.03\\-0.02}$	$0.07\substack{+0.03\\-0.02}$				

no information on matter effects no significant EM detections

- GW200105: ~1.9 + ~9 solar masses
- GW200115: ~1.5 + ~6 solar masses

see events of GWTC-3: arXiv:2111.03606

Outcome of a NSBH merger

Foucart et al. (2018)

- NS is either tidally disrupted or plunges into the BH mass ratio, spin, EoS
- radius determines if tides are **measurable** & if **EM** signals can be produced

Alternative x-ray probes of NS radii

• "A strangely light neutron star within a supernova remnant"

 relies on specific assumptions about EoS prior, atm-models, temp. distribution etc.

Impact of the J0740 radius constraint

Bayesian analyses

 hierarchical inference scheme and the nonparametric priors (not assuming a specific functional form but correlations within a function - GP processes)
 Landry et al., arXiv:2003.04880

____ .

- NICER data + XMM-Newton: Riley+Watts (Amsterdam) and Miller+ (Maryland/Illinois),
- \bullet 12.4 $^{+1.3}_{-1.0}$ km vs. 13.7 $^{+2.6}_{-1.5}$ km
- other astrophysical observations overall reduce the inferred radius of J0740+6620 from ~13.34 km to ~12.47 km at 90% credibility

- nonparametric survey conditioned on ensembles of existing model EoSs
- GW170817+190425, NICER J0030 & J0740, and massive pulsars

Crossover matter

• Kapusta-Welle approach: switching function of baryon chemical potential (arXiv:2103.16633)

$$P_B = (1 - S)P_H + SP_Q$$

$$S = \exp\left[-(\mu_0/\mu)^4
ight]$$

• analogy: lattice QCD shows a crossover at finite temperature