Emulating neutron stars with dipolar supersolids

Massimo Mannarelli **INFN-LNGS** massimo@lngs.infn.it

Phys.Rev.Lett. 131 (2023) 22, 223401 Few Body Syst. 65 (2024) 81 Sterne und Weltraum, Oktober 2024

E. Poli, T. Bland, S. J.M. White, M. Mark, F. Ferlaino, S. Trabucco, MM

Istituto Nazionale di Fisica Nucleare

CSQCD X, YITP-Kyoto 11 Oct 2024

Supersolids vs compact stars

Emulating glitches

2

- Currently realized with ultracold atoms in an optical trap
- 0

Review: M. Boninsegni and N. V. Prokof'ev, *Rev. Mod. Phys.* 84, 759 (2012)

Tool to emulate inhomogeneous hadronic matter in extreme conditions

Ultracold dipolar atoms

	1																	18
1	I.	2											13	14	15	16	17	He
2	Li	₿e											B	ĉ	Ň	*	۴	Ne
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	[™] Si	15 P	¹⁶ S	۳	År
4	۴	2º Ca	21 SC	²² Ti	23 V	24 Cr	Mn	Fe	27 Co	²⁸ Ni	°⁰ Cu	³⁰ Zn	³¹ Ga	Ge	As	³₄ Se	³⁵ Br	³⁵ Kr
5	³⁷ Rb	³ Sr	39 Y	^₄ ° Zr	, Nb	Mo	43 Tc	Ru	¶Å	₽d	Åg	Ğd	49 In	₅₀ Sn	s₁ Sb	Te	53 	Xe
6	°ss Cs	se Ba	*	⁷² Hf	та	W	Re	76 OS	" Ir	78 Pt	Au	₿ Hg	81 TI	Pb	⁸³ Bi	^{₿4} Po	as At	ĸ
7	⁸⁷ Fr	** Ra	**	™ Rf	Db	Sg	[™] Bh	¹⁰⁸ Hs	Mt	110 DS	Rg	Cn	Nh	¹¹⁴ Fl	™ Mc	116 LV	Ts	og
	Lanthanides*		La	s ^{ss} Ce	۶۹ Pr	м́d	Pm	Sm	Eu	Ğd		Ďу		Ĕr	h	Ϋ́b	Lu	
	Actin	ides**	Åc	۳ĥ	⁰¹ Pa	92 U	⁹³ Nр	⁹⁴ Pu	Åm	с _m	Bk		Ês	100	Md	102 No	103 Lr	

Long-range dipolar interaction

Short-range repulsion (Feshbach resonance)

$$U_{\rm c}(\mathbf{r}) = \frac{4\pi\hbar^2 a_s}{m} \delta(\mathbf{r})$$

 a_s tunable

Numerical simulation

Evolution of the macroscopic wavefunction

Hamiltonian

$$\mathscr{H}[\Psi; a_{s}, a_{dd}, \boldsymbol{\omega}] = -\frac{\hbar^{2} \nabla^{2}}{2m} + \frac{1}{2} m \left[\omega_{r}^{2} (x^{2} + y^{2}) + \omega_{z}^{2} z^{2} \right] + \int d^{3} \mathbf{r}' U(\mathbf{r} - \mathbf{r}') \left| \Psi(\mathbf{r}', t) \right|^{2} + \gamma_{QF} \left| \Psi(\mathbf{r}, t) \right|^{3} + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} z^{2} \right] + \int d^{3} \mathbf{r}' U(\mathbf{r} - \mathbf{r}') \left| \Psi(\mathbf{r}', t) \right|^{2} + \gamma_{QF} \left| \Psi(\mathbf{r}, t) \right|^{3} + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} z^{2} \right] + \int d^{3} \mathbf{r}' U(\mathbf{r} - \mathbf{r}') \left| \Psi(\mathbf{r}', t) \right|^{2} + \gamma_{QF} \left| \Psi(\mathbf{r}, t) \right|^{3} + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} z^{2} \right] + \int d^{3} \mathbf{r}' U(\mathbf{r} - \mathbf{r}') \left| \Psi(\mathbf{r}', t) \right|^{2} + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} z^{2} \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} z^{2} \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} z^{2} \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} z^{2} \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} z^{2} \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} z^{2} \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} z^{2} \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} z^{2} \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} z^{2} \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} z^{2} \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} (x^{2} + y^{2}) \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} (x^{2} + y^{2}) \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} (x^{2} + y^{2}) \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} (x^{2} + y^{2}) \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} (x^{2} + y^{2}) \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} (x^{2} + y^{2}) \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} (x^{2} + y^{2}) \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} (x^{2} + y^{2}) \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} (x^{2} + y^{2}) \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} (x^{2} + y^{2}) \right] + \frac{1}{2} m \left[u_{r}^{2} (x^{2} + y^{2}) + u_{z}^{2} (x^{2} + y^{2}) \right]$$

Relevant parameters

Relative interaction strength

Ultracold dipolar atoms:	Number density a
Nuclear matter:	The interaction str

and interaction strengths can be separately tuned

rengths are given functions of density

Tuning the relative interaction strength

The Fano-Feshbach resonance allows to change a_s and thus ϵ_{dd}

Supersolid Or Superglass

Competition between interactions Inhomogeneous Superfluid

Crystal or glass

Dipolar interaction dominates Solid

 $\epsilon_{dd} \gg 1$

Energy density scaling

Repulsive "channel" changes with density

Phase diagram

J. Hertkorn et al., Phys. Rev. Research 3, 033125 (2021

Supersolid droplets

Observations of supersolids@ MIT, Pisa/LENS, Stuttgart, Innsrbuck

Bland *et al PRL 128, 195302 (2022)*

Compact stars vs Supersolids

Nuclear matter

Fermions

Long range attraction Short range repulsion

Scalar, vector and tensor forces

High density $\rho \sim 10^{14} {\rm g/cm}^3$

Density and interactions given by nature

Supersolids

Bosons (fermions can in principle be used)

Long range attraction Short range repulsion

Dipole-dipole + s-wave scattering

Diluted $\rho \sim 10^{-5} {\rm g/cm}^3$

Density and interactions tunable

Neutron star vs dipolar superfluids

atmosphere

Inner crust

Particularly relevant for glitches: inner crust provides the pinning of superfluid vortices

J. W. Negele and D. Vautherin, *Nucl. Phys. A207, 298 (1973)*

Neutron Star inner crust

Dipolar Supersolid

Poli, Bland, White, Mark, Ferlaino, Trabucco, MM Phys.Rev.Lett. 131 (2023) 22, 223401

Emulating neutron star glitches

Rotating supersolids

Vortex pinning

X = stableO= metastable

 $a_s = 90a_0, \quad \boldsymbol{\omega}_{\text{trap}} = 2\pi \times (50, 130) \text{Hz}$

Inertia of supersolids

Momenta of inertia can be defined in two ways:

From the mass distribution

$$I_{mass} = \langle x^2 + y^2 \rangle_{\psi}$$

$$I_{solid} = \alpha I_{mass}$$

Legget *PRL, 25, 1543 (1970)*

Total angular momentum
$$L_{total} = <\hat{L}_z >_{\psi} \neq L_{solid}$$

From the response to rotation

$$L_{solid} = I_{solid} \,\Omega$$

Evolution

Optical trap

Dipolar atoms

To emulate the NS spin down, we put a "break" on the optical trap

$$\dot{L}_{total} = -N_{em}$$

$$\mathbf{\hat{P}} = -N_{em} - \dot{L}_{vortices} - \dot{I}_{solid} \mathbf{\hat{\Omega}}$$
$$= (1 - i\gamma) \Big[\mathscr{H}[\Psi; a_s, a_{dd}, \omega] - \mathbf{\Omega}(t) \hat{L}_z \Big] \Psi$$

Supersolid glitches

More quark matter phases

Supersolids are versatile. Possible applications

Crystalline color superconductors

Zoey Dong talk, MM et al. *Rev.Mod.Phys.* 86 (2014) 509-561

Pion crystals

Geraint Evans talk, MM et al. *Phys.Rev.D* 103 (2021) 7, 076003

More inhomogeneous superfluid phases

Vivian Incera and Will Gyory talks

Conclusion

- Dipolar atoms offer the opportunity to study inhomogeneous superfluids
- They mimic some aspects of nuclear matter
- Toy model for the interior of neutron stars
- Emulation of the glitch mechanism

Outlook

- Layered superfluids to have layered structure
- Vortices in glasses
- Scaling

$$\alpha = 1 - f_{\rm NCRI}$$

$$\Omega^{-35}$$
kg m²/s², $\gamma = 0.05$, $\Omega_{\text{init}} = 0.5\omega_r$.

γ Different values of mimic different coupling with the outer crust

 $N_{\rm em} = 4.3 \times 10^{-35} \text{kg m}^2/\text{s}^2, \ a_s = 91a_0, \quad \Omega_{\rm init} = 0.5\omega_r.$

ullet

