陽子崩壊行列要素の格子QCD計算

青木保道

理化学研究所 計算科学研究センター

2024.8.20 @PPP2024

new physics through QCD

new physics through QCD

陽子崩壊 - 新実験計画

- Smoking Gun of New Physics
 - expected from GUTs
 - info contained in

 $1/\tau_p \propto$ [QCD param.] * [NewPhys. param]

- New experiments are under preparation
 - HyperKamiokande in Japan
 - ~ x5 V of SuperKamiokande

- DUNE (Deep Underground Neutrino Experiment) in USA
 - Liquid Argon
 - sensitivity to Kaon

relevant form factors

QCD Standard Model New Physics

Relevant form factors

yields a decay: baryon → meson + anti-lepton

$$\langle \pi^0, e^+ | p \rangle_{GUT} = \sum_{i} C^i(\mu) \cdot \langle \pi^0, e^+ | O^i(\mu) | p \rangle_{SM}$$
$$\langle \pi^0, e^+ | (ud)(eu) | p \rangle^i = \overline{v_e^c} \cdot \langle \pi^0 | (ud)u | p \rangle$$

• a convenient parametrization using 2 form factors [JLQCD 2000]

$$\langle \pi^0 | (ud)_\Gamma u_L | p \rangle = P_L[\underline{W_0} - \frac{iq}{m_p} W_1] u_p$$

$$\langle \pi^0, e^+ | (ud)_\Gamma (eu)_L | p \rangle = \underline{W_0} \cdot (v_e, u_p)_L + \frac{m_e}{m_p} W_1 \cdot (v_e, u_p)_R$$
The width relevant irrelevant

partial width

$$\Gamma(p \to \pi^0 + e^+) = \frac{m_p}{32\pi} \left[1 - \left(\frac{m_\pi}{m_p} \right)^2 \right]^2 \left| \sum_i C^i W_0^i(p \to \pi^0) \right|^2$$

QCD matrix element of nucleon decay

*
$$\langle \pi^0 | (ud)_{\Gamma} u_L | p \rangle = P_L [W_0 - \frac{iq}{m_p} W_1] u_p$$
 $\Gamma = R, L$

indirect method: LO approximation of Wo in ChPT: Claudson, Wise, Hall, 1982

$$W_0[\langle \pi^0 | (ud)_{\mathbf{R}} u_{\mathbf{L}} | p \rangle] \simeq \frac{\alpha}{\sqrt{2}f} (1 + D + F)$$

$$W_0[\langle \pi^0 | (ud)_{\mathbf{R}} u_{\mathbf{L}} | p \rangle] \simeq \frac{\alpha}{\sqrt{2}f} (1 + D + F)$$

$$W_0[\langle \pi^0 | (ud)_{\mathbf{L}} u_{\mathbf{L}} | p \rangle] \simeq \frac{\beta}{\sqrt{2}f} (1 + D + F)$$

f: pion decay constant

$$D + F = g_A$$
: nucleon axial charge

$$\langle 0|(ud)_{\mathbf{R}}u_{\mathbf{L}}|p\rangle = \alpha P_{\mathbf{L}}u_{p}$$
$$\langle 0|(ud)_{\mathbf{L}}u_{\mathbf{L}}|p\rangle = \beta P_{\mathbf{L}}u_{p}$$

direct method: calculates the form factor W_0 of $p \rightarrow PS$ matrix elements directly

comparison given later...

constraining GUT

- given GUT and W₀i(μ) from lattice, Ci(μ) is constrained using experimental lower bound of proton lifetime
- $C^{i}(\mu)$ cancels μ dependence of $W_{0}^{i}(\mu)$, function GUT parameters:
 - m_X,... for heavy boson mediated dim 6 nucleon decay
 - m_c and spectrum of sparticles for colored higgs mediated dim 5 nucleon decay
 - →complement to LHC
- constraints on Cⁱ(μ) may be transcribed into constraints of GUT parameters

DWF calculation of proton decay matrix elements after JLQCD 2000

- quench direct & N_f=2 LEC (2006)
 - NPR scheme constructed
 - YA, C. Dawson, J. Noaki, A. Soni
- $N_f=2+1$ LEC (2008)
 - YA, P. Boyle, P. Cooney,
 L. Del Debbio, R. Kenway,
 C. Maynard, A. Soni, R. Tweedie
- $N_{f}=2+1$ direct (2014)
 - YA, T. Izubuchi, E. Shintani, A. Soni

- $N_{f}=2+1$ direct with AMA (2017)
 - YA, T. Izubuchi, **E. Shintani**, A. Soni

DWF calculation of proton decay matrix elements

- RBC & RBC/UKQCD collaborations
 - $N_{f}=2+1$ direct with AMA (2017)
 - YA, T. Izubuchi, **E. Shintani**, A. Soni
- pros
 - DWF: renormalization is simple
 - AMA: statistically improved a lot
- cons
 - lightest pion ~ 330 MeV
 - linear extrapolation may eventually fail

Skirm chiral bag model (Martin-Stavenga 2016)

 drastic decrease towards chiral limit due to topological stabilization of proton

Skirm chiral bag model (Martin-Stavenga 2016)

 drastic decrease towards chiral limit due to topological stabilization of proton

カイラル外挿の系統誤差:

- 高次多項式との比較
- ・線形性が良いので小さい
- ・強い非線形性があると危険

物理点アンサンブルを使えば外挿不要 使わない手は無い!

Skirm chiral bag model (Martin-Stavenga 2016)

 drastic decrease towards chiral limit due to topological stabilization of proton

カイラル外挿の系統誤差:

- 高次多項式との比較
- ・線形性が良いので小さい
- ・強い非線形性があると危険

物理点アンサンブルを使えば外挿不要 使わない手は無い!

Skirm chiral bag model (Martin-Stavenga 2016)

drastic decrease towards chiral limit due to topological stabilization of proton

カイラル外挿の系統誤差:

物理点アンサンブルを使えば外挿不要 使わない手は無い!

π^0 p k p

Error budget of RBC/UKQCD 2017

IMPROVED LATTICE COMPUTATION OF PROTON DECAY ...

PHYSICAL REVIEW D **96,** 014506 (2017)

TABLE IV. Table of the renormalized W_0 in the physical kinematics at 2 GeV in the MS NDR scheme. The fourth column contains the relative error of the systematic uncertainties. " χ " comes from the chiral extrapolation given from three different fitting ranges as explained in the text. The " q^4 " and " a^2 " columns are the uncertainties of the higher-order correction than $\mathcal{O}(q^2)$ and the lattice artifact at $\mathcal{O}(a^2)$, respectively. The " m_s " column is the uncertainty coming from using the unphysical strange quark mass. Δ_Z and Δ_a are the errors of the renormalization factor and lattice scale estimate, respectively.

Matrix element	W_0 GeV ²	Statistical[%]	Total	χ	Systema q^4	atic error mq^2	$ \begin{array}{c} [\%] \\ a^2 \end{array} $	m_s	Δ_a	Δ_Z
$ \langle \pi^0 (ud)_R u_L p \rangle $ $ \langle \pi^0 (ud)_L u_L p \rangle $	-0.131(4)(13) 0.134(5)(16)	3.0 3.4	9.7 11.6	1.8 5.7	0.7 2.3	0.3 2.6	5.0		0.6	8.1
		カ	イラノ	レ外		0.25	. 1	$<\pi^0$ (ud		
ز	この可能性	は取り入	れて	ない	\rightarrow	$\begin{pmatrix} 0.2 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.1 \\$	**************************************	2		-
						0.05	0	0.01	0.02 0.	03 0.04

Lattice computation

- * Lattice gauge theory: gauge theory on discrete Euclidian space-time (lattice spacing a)
- * a regularization of gauge theory with manifest gauge invariance
- * with finite volume and "a", path integral can be performed using (super) computer
- * continuum limit a→o has to be performed, or discretization error must be estimated
- * $\mathcal{L}(a) = \mathcal{L}_{QCD} + a \sum_{i} c_{i}^{(5)} \mathcal{O}_{i}^{(5)} + a^{2} \sum_{j} c_{j}^{(6)} \mathcal{O}_{j}^{(6)} + \cdots$
- * all O(5) break chiral symmetry
 - * If the lattice action has chiral symmetry, no O(a) error! → more continuum like
- * Lattice action with chiral symmetry available
 - * Domain wall fermions (DWF) (Kaplan, Furman-Shamin, overlap fermions (Neuberger)
 - * helps preserve continuum like structure of operator mixing
- * Wilson fermion breaks chiral symmetry, but, improvement make O(a) small

lattice matrix element: direct⇔indirect

- * direct method: Wo
 - * expensive on lattice
 - * exact
 - * milder non-linearity expected if any

- * indirect method: $a \& \beta \rightarrow W_o$
 - * cheap on lattice (meas. cost ~1/10)
 - * approximation
 - * chiral non-linearity could be an issue

lattice matrix element: direct indirect

- * direct method: Wo
 - * expensive on lattice
 - * exact
 - *

- indirect method: $a \& \beta \rightarrow W_o$
 - * cheap on lattice (meas. cost ~1/10)
 - * approximation
- milder non-linearity expected if any * chiral non-linearity could be an issue

how to calculate LEC's: α and β

$$* \quad \langle 0|O_{RL}|p\rangle = \alpha u_p$$

$$O_{RL} = (\overline{u^c}P_Rd) \cdot P_Lu$$
 (color indices contracted with ε^{ijk} to make singlet) $J_p = (\overline{u^c}\gamma_5d) \cdot u$:proton interpolation operator

$$\begin{array}{lcl}
* & \sum_{\vec{x}} \langle 0|O_{RL}(\vec{x},t) \cdot \overline{J}_p(0)|0\rangle & = & \sum_{\vec{x}} \langle 0|O_{RL}(\vec{x},t) \cdot \sum_{i} |i\rangle \frac{1}{2E_i} \langle i| \cdot \overline{J}_p(0)|0\rangle \\
& = & \sum_{i} e^{-E_i t} \frac{1}{2E_i} \langle 0|O_{RL}(0)|i\rangle \langle i|\overline{J}_p(0)|0\rangle \\
& & (\text{large } t) \quad \to \quad e^{-m_p t} \frac{1}{2m_p} \langle 0|O_{RL}(0)|p\rangle \langle p|\overline{J}_p(0)|0\rangle
\end{array}$$

$$* \sum_{\vec{x}} \langle 0|J_p(\vec{x},t) \cdot \overline{J}_p(0)|0\rangle \rightarrow e^{-m_p t} \frac{1}{2m_p} \langle 0|J_p(0)|p\rangle \langle p|\overline{J}_p(0)|0\rangle$$

- * linear combination of products of 3 quark propagators
- * quark propagators: inverse of domain-wall fermion Dirac operator
- * engineering the interpolation operator necessary to have good S/N

Direct method to calculate Wo

* three point function with momentum injection to pion in proton's rest frame

$$\sum_{\vec{y}} \sum_{\vec{x}} e^{i\vec{p}\cdot(\vec{y}-\vec{x})} \langle 0|J_{\pi^0}(\vec{y},t') \cdot O_{RL}(\vec{x},t) \cdot \overline{J}_p(0)|0\rangle$$

$$(t' \gg t \gg 0) \rightarrow e^{-E_{\pi}(t'-t)} e^{-m_p t} \frac{1}{2E_{\pi}} \frac{1}{2m_p} \langle 0|J_{\pi^0}|\pi^0(\vec{p})\rangle \langle \pi^0(\vec{p})|O_{RL}(0)|p\rangle \langle p|\overline{J}_p(0)|0\rangle$$

$$* \sum_{\vec{x}} \langle 0|J_p(\vec{x},t) \cdot \overline{J}_p(0)|0\rangle \rightarrow e^{-m_p t} \frac{1}{2m_p} \langle 0|J_p(0)|p\rangle \langle p|\overline{J}_p(0)|0\rangle$$

$$* \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \langle 0|J_{\pi^0}(\vec{x},t)\cdot J_{\pi^0}(0)|0\rangle \rightarrow e^{-E_{\pi}t} \frac{1}{2E_{\pi}} \langle 0|J_{\pi^0}(0)|\pi^0(\vec{p})\rangle \langle \pi^0(\vec{p})|J_{\pi^0}(0)|0\rangle$$

* through some projection/subtraction, Wo is obtained.

Operator Property

- lacktriangle Operator qqql:
 - Lorentz symmetry: $(\overline{q^c}\Gamma q)(\overline{l^c}\Gamma' q)$
 - \subseteq $SU(3)_c$ singlet: $\epsilon_{ijk}q^iq^jq^kl$
 - extstyle extstyle extstyle extstyle <math>SU(2) imes U(1) symmetry determines the relative coefficients of the operators in low energy Lagrangian.
 - ullet relevant for nucleon decay: q=u,d,s ($m_c>m_N$).
 - at QCD scale, lepton is treated trivially, so we are left with

$$\mathcal{O} = \epsilon_{ijk} (u^{iT} C \Gamma d^j) \Gamma' s^k$$

Lorentz spinor

(u,d,s) simply labeling different flavors, not necessarily mean real flavors

- \bigcirc $\Gamma\Gamma'$ Lorentz structure variation with fixed flavor ordering:
 - notation: $S=1, P=\gamma_5, V=\gamma_\mu, A=\gamma_\mu\gamma_5, T=\sigma_{\mu\nu}$:
 - \mathcal{P}^- : SS, PP, AA, VV, TT.
 - \mathcal{P}^+ : SP, PS, AV, VA, $T\tilde{T}$.

Operator

$$(\Gamma\Gamma')_{uds} = \epsilon_{ijk} (u^{iT} C \Gamma d^j) \Gamma' s^k$$

- \mathcal{P}^- operators
 - $(SS)_{uds}, (SS)_{dsu}, (SS)_{sud}$
 - $\bigcirc (PP)_{uds}, (PP)_{dsu}, (PP)_{sud}$
 - \bigcirc $(AA)_{uds}$
 - \bigcirc $(VV)_{uds}$
 - \bigcirc $(TT)_{uds}$
- \mathcal{S} : switching $(u \leftrightarrow d)$: $(\Gamma \Gamma')_{dus} = \pm (\Gamma \Gamma')_{uds}$
- Any vector, tensor indices can be eliminated.
 - $\Gamma(\Gamma') = S, P \text{ or } L, R \text{ do everything:}$ common form in the low energy effective Lagrangian \rightarrow Weinberg PRL 43 (1979) 1566.
- $(SS)_{uds} + (SS)_{dsu} + (SS)_{sud} + (PP)_{uds} + (PP)_{dsu} + (PP)_{sud} = 0$
- \P $(\Gamma\Gamma)_{uds}$ with (SS, PP, AA, VV, TT) can be used as a complete set: We use them for the operator renormalization.
- lacksquare Similar property for \mathcal{P}^- .

Renormalization: mixing

$\Gamma \Gamma'$

	\mathcal{S}^-	\mathcal{S}^+
\mathcal{P}^-	SS, PP , AA	VV, TT
\mathcal{P}^+	SP, PS , AV	VA , $T ilde{T}$

$$\begin{pmatrix} SS \\ PP \\ AA \end{pmatrix}_{ren} = \begin{pmatrix} \mathbf{Z}'_{ND}{}^{ij} \end{pmatrix} \begin{pmatrix} SS \\ PP \\ AA \end{pmatrix}_{latt}, \begin{pmatrix} SP \\ PS \\ -AV \end{pmatrix}_{ren} = \begin{pmatrix} \mathbf{Z}'_{ND}{}^{ij} \end{pmatrix} \begin{pmatrix} SP \\ PS \\ -AV \end{pmatrix}_{l}$$

$$\begin{pmatrix} R \cdot L \\ L \cdot L \\ A \cdot LV \end{pmatrix}_{ren} = \begin{pmatrix} Z_{ND}^{ij} \\ \end{pmatrix} \begin{pmatrix} R \cdot L \\ L \cdot L \\ A \cdot LV \end{pmatrix}_{latt}, \begin{pmatrix} R \cdot R \\ L \cdot R \\ A \cdot RV \end{pmatrix} : \text{similar}.$$

- $(\Gamma\Gamma')_{udu} \equiv \epsilon_{ijk}(\bar{u}^{ci}\Gamma d^j)\Gamma' u^k$ is renormalized in the same way.
- Wilson fermion (Richards, Sachrajda, Scott): $(RL)_{ren} = Z(RL)_{latt} + \frac{\alpha_s}{4\pi} Z_{mix} (LL)_{latt} + \frac{\alpha_s}{4\pi} Z'_{mix} (A \cdot LV)_{latt}$ no other terms appear at any order.

RI/MOM scheme renormalization

$$G^{a}(x_0, x_1, x_2, x_3) = \langle \mathcal{O}^{a}_{uds}(x_0)\bar{u}(x_1)\bar{d}(x_2)\bar{s}(x_3)\rangle.$$

• a labels chiral structure type $\Gamma\Gamma'$.

$$\mathcal{O}_{uds\ ren}^{a} = Z_{ND}^{ab} O_{uds\ latt}^{b}$$

ullet Momentum p for all three external quarks, amputate it with three quark propagators:

$$\Lambda^a(p^2) = \text{F.T. } G^a(0, x_1, x_2, x_3)|_{Amp}.$$

 \bigcirc Renormalization condition reads at scale p,

$$P_{ijk \beta\alpha \delta\gamma}^{a} \cdot Z_{q}^{-3/2} Z_{ND}^{bc} \Lambda_{ijk \alpha\beta \gamma\delta}^{c} = \delta^{ab},$$

$$M^{ab} = P^a_{ijk \beta\alpha \delta\gamma} \cdot \Lambda^b_{ijk \alpha\beta \gamma\delta} \to Z^{3/2}_q(Z^{-1}_{ND})^{ab}.$$

Operator Mixing?

 β = 0.87 DBW2 glue (a^{-1} = 1.3 GeV), and DWF with L_s = 12 and M_5 = 1.8: $m_{\rm res} \simeq 1.6 MeV$.

Small mass dependence.

- Off-diagonal elements negligible.
 - → No mixing.

Treatment of Z_q

$$M^{LL,LL}$$
 \rightarrow $Z_q^{3/2}/Z_{ND}^{LL,LL}$. $P_A\Lambda_A$ \rightarrow $Z_qZ_A^{-1}$. $(P_A\Lambda_A)^{3/2}/M^{LL,LL}$ \rightarrow $Z_{ND}^{LL,LL}/Z_A^{3/2}$.

$$Z_A = 0.7798(5) \leftarrow \frac{\langle \mathcal{A}_{\mu} P \rangle}{\langle A_{\mu} P \rangle}$$

- $(P_A\Lambda_A)^{3/2}/M^{LL,LL}$ has same scale dependence as Z_{ND} and possible $O(a^2)$ discretization error.

Matching to \overline{MS} (NLO)

$$\mathcal{O}^{\overline{MS}}(\mu) = \underbrace{U^{\overline{MS}}(\mu; p) \frac{Z^{\overline{MS}}(p)}{Z^{RI}(p)}}_{position} Z^{RI}(p) \mathcal{O}^{latt}$$

$$Z_{total}(\mu)$$

- 2-loop anomalous dimension: Nihei, Arafune (94)
- 1-loop matching (finite part): This work
- NPR: This work
- The product is independent of p. Let's set $\mu = 1/a$.

$$Z_A = 0.7798(5)$$
 \rightarrow $Z_{total}^{LL,LL}(\mu = 1/a) = 0.73(1).$

 $\beta=0.87$ DBW2 glue ($a^{-1}=1.3$ GeV), and DWF with $L_s=12$ and $M_5=1.8$:

 $\mathsf{m_f} \!\! o \!\! 0$

Recent improvement in RI/MOM renormalization

issues

- p must be large enough, to control perturbation theory
- p must be small enough, to control lattice artifact (pa)^n
- $\Lambda_{QCD} \ll p \ll 1/a$ Window problem
- solution
 - super fine lattice
 - perturbation theory: higher order
 - scheme: less contamination of low energy physics

NLO→**NNLO**

RI/SMOM

Proton Decay Matrix Elements projects

Collaboration in Japan

- Eigo Shintani (Tsukuba)
- Ryutaro Tsuji (KEK)
- Yoshinobu Kuramashi (Tsukuba)
- YA

using PACS Wilson configurations

 $V=64^4$ L=5.5 fm

1/a = 2.3 GeV

a = 0.08 fm

Program for Promoting Researches on the Supercomputer Fugaku Large-scale lattice QCD simulation

and development of Al technology

Collaboration in USA

- Jun-Sik Yoo (KEK/Stony Brook)
- Taku Izubuchi (BNL/RBRC)
- Amarjit Soni (BNL)
- Sergey Syritsyn (Stony Brook/RBRC)
- YA

using RBC/UKQCD DWF configurations

 $V=24^3x64$, 32^3x64 L=4.7 fm

1/a = 1 and 1.4 GeV

 $a = 0.2, 0.14 \text{ fm} \rightarrow 0$

[PRD 105, 0074501 (2022)]

use of **PACS** ensemble

N_f=2+1 PACS ensemble

- Iwasaki gauge β=1.82
- stout smeared Wilson fermion: $\rho=0.1$, N=6
- · ud and s quarks are on physical point
- 1/a = 2.333(18) GeV
- 644 is mostly used in this study: $m_{\pi}L=3.8$

statistical note

- ~100 configurations
- for each config
 - matrix elements: AMA
 - one exact and
 - 256 sloppy solves
 - NPR:
 - single point source

use of **PACS** ensemble

N_f=2+1 PACS ensemble

- Iwasaki gauge β=1.82
- stout smeared Wilson fermion: $\rho=0.1$, N=6
- · ud and s quarks are on physical point
- 1/a = 2.333(18) GeV
- 644 is mostly used in this study: $m_{\pi}L=3.8$

$$O_{RL} = (\overline{u^c} P_R d) \cdot P_L s$$

$$O_{LL} = (\overline{u^c} P_L d) \cdot P_L s$$

$$O_{A(LV)} = (\overline{u^c} \gamma_\mu \gamma_5 d) \cdot P_L \gamma_\mu s$$

statistical note

- ~100 configurations
- for each config
 - matrix elements: AMA
 - one exact and
 - 256 sloppy solves
 - NPR:
 - single point source

まずくりこみから見ていきます

Richards et al 1987 格子摂動論では

(Notation JLQCD2000)

$$\mathcal{O}_{RL}^{\text{cont}}(\mu) = Z(\alpha_s, \mu a) \mathcal{O}_{RL}^{\text{latt}}(a) + \frac{\alpha_s}{4\pi} Z_{mix} \mathcal{O}_{LL}^{\text{latt}}(a)$$

$$-\frac{\alpha_s}{4\pi} Z'_{mix} \mathcal{O}_{\gamma_\mu L}^{\text{latt}}(a), \qquad (47)$$

$$\mathcal{O}_{LL}^{\text{cont}}(\mu) = Z(\alpha_s, \mu a) \mathcal{O}_{LL}^{\text{latt}}(a) + \frac{\alpha_s}{4\pi} Z_{mix} \mathcal{O}_{RL}^{\text{latt}}(a)$$

$$+\frac{\alpha_s}{4\pi}Z'_{mix}\mathcal{O}^{\text{latt}}_{\gamma_{\mu}L}(a), \qquad (48)$$

RI/MOM 3q vertex matrix: comparison with DWF

off-diagonal larger than DWF, but, ≤ 1% → treated as negligible below

 $(\overline{u^c}\gamma_\mu\gamma_5 d) \cdot P_L\gamma_\mu s$

• Wilson:

くりこみ

- ・3q, 2q 頂点関数の比から: $Z_{PD}/Z_A^{3/2}, Z_{PD}/Z_V^{3/2}$ を求める
 - SF scheme の Z_V または Z_A をインプットして $\to Z_{PD}$ を求める

- ・3q, 2q 頂点関数の比から: $Z_{PD}/Z_A^{3/2}, Z_{PD}/Z_V^{3/2}$ を求める
 - SF scheme の Z_V または Z_A をインプットして $\to Z_{PD}$ を求める
- DWF (RBC/UKQCD) [2006~2017]
 - 波動関数くりこみ(bilinear) で exceptional momentum (q_µ=0) 使う
 - ・ m_f, SSB に過敏 ←→ m_f

- ・3q, 2q 頂点関数の比から: $Z_{PD}/Z_A^{3/2}, Z_{PD}/Z_V^{3/2}$ を求める
 - SF scheme の Z_V または Z_A をインプットして $\to Z_{PD}$ を求める
- DWF (RBC/UKQCD) [2006~2017]
 - 波動関数くりこみ(bilinear) で exceptional momentum (q_µ=0) 使う
 - ・ m_f, SSB に過敏 ←→ m_f
 - 3 quark 頂点関数は non-exceptional momentum

$q = p_1 - p_2$ $p = p_1 - p_2$

- ・3q, 2q 頂点関数の比から: $Z_{PD}/Z_A^{3/2}, Z_{PD}/Z_V^{3/2}$ を求める
 - SF scheme の Z_V または Z_A をインプットして $\to Z_{PD}$ を求める
- DWF (RBC/UKQCD) [2006~2017]
 - 波動関数くりこみ(bilinear) で exceptional momentum (q_µ=0) 使う
 - ・ m_f, SSB に過敏 ←→ m_f
 - 3 quark 頂点関数は non-exceptional momentum
- ・RI/SMOM wave function renormalization: $A_{\mu}, V_{\mu} \leftarrow$ これを有効利用
 - ightharpoonup proton decay SMOM schemes: SMOM, SMOM $_{\gamma_{\mu}}$
 - ・ 上の問題が解決することは DWF では確認されている
 - MS matching w/ NLO perturbation theory
 - 都合: 2x2 = 4 schemes

くりこみ

- ・3q, 2q 頂点関数の比から: $Z_{PD}/Z_A^{3/2}, Z_{PD}/Z_V^{3/2}$ を求める
 - SF scheme の Z_V または Z_A をインプットして $\to Z_{PD}$ を求める
- DWF (RBC/UKQCD) [2006~2017]
 - 波動関数くりこみ(bilinear) で exceptional momentum (q_µ=0) 使う
 - ・ m_f, SSB に過敏 ←→ m_f
 - 3 quark 頂点関数は non-exceptional momentum

SMOM schemes: fully utilize **non-exceptional** momenta

- ・RI/SMOM wave function renormalization: $A_{\mu}, V_{\mu} \leftarrow$ これを有効利用
 - ightharpoonup proton decay SMOM schemes: SMOM, SMOM $_{\gamma_{\mu}}$
 - ・ 上の問題が解決することは DWF では確認されている
 - MS matching w/ NLO perturbation theory
 - 都合: 2x2 = 4 schemes

A test of non-exceptional mom

 Λ_{A} - Λ_{V} : RBC/UKQCD [PRD 2008]

exceptional

non-exceptional

* The success created a very good motivation to invest in non-exceptional momenta

MS Z(2GeV) from RI/SMOM schemes ver.1

- $Z_{LL}(MSb, 2GeV) = 0.98 (6)$
- $Z_{RL}(MSb, 2GeV) = 0.98 (7)$

くりこみ由来の誤差は6-7%

MS Z(2GeV) from RI/SMOM schemes improved

- $Z_{LL}(MSb, 2GeV) = 0.98 (6)$
- $Z_{RL}(MSb, 2GeV) = 0.98 (7)$

Improvement:

[Tsuji et al Lattice 2024]

- (improved stat.)
- use of SYM3q scheme
 - → NNLO available
- remove (pa)² and higher
- remove non-pert. eff.
 - **→** fit variation
- estimate PT truncation
 - → several interm. scheme

•
$$Z_{\overline{\text{MS}}}^{LL} = 1.018(6)_{\text{stat}}(37)_{\text{sys}}$$

•
$$Z_{\overline{\text{MS}}}^{RL} = 1.016(5)_{\text{stat}}(41)_{\text{sys}}$$

• note: Z_{LL}(MSb, 2GeV) = Z_{RL}(MSb, 2GeV) ≈ 1 → bare ME ≈ ren. ME

MS Z(2GeV) from RI/SMOM schemes improved

- $Z_{LL}(MSb, 2GeV) = 0.98 (6)$
- $Z_{RL}(MSb, 2GeV) = 0.98 (7)$

Improvement:

[Tsuji et al Lattice 2024]

- (improved stat.)
- use of SYM? me
 - preliminary and higher
- nove non-pert. eff.
 - ➡ fit variation
- estimate PT truncation
 - → several interm. scheme

•
$$Z_{\overline{\text{MS}}}^{LL} = 1.018(6)_{\text{stat}}(37)_{\text{sys}}$$

•
$$Z_{\overline{\text{MS}}}^{RL} = 1.016(5)_{\text{stat}}(41)_{\text{sys}}$$

note: Z_{LL}(MSb, 2GeV) = Z_{RL}(MSb, 2GeV) ≈ 1 → bare ME ≈ ren. ME

proton decay LEC: α, β

Low energy constants of proton decay

• LO ChPT $W_0[\langle \pi^0 | (ud)_{\mathbb{R}} u_{\mathbb{L}} | p \rangle] \simeq \frac{\alpha}{\sqrt{2}f} (1 + D + F)$

ratio of 2pt fuctions

comparing this work and

- α consistent with earlier DWF computation w/ long chiral extrapol.
- β as well
- no big surprise happening when going down to physical ud mass

proton decay form factor Wo for pion final state

Relevant form factor $W_0 < \pi^0 | (ud)_R u_L | p > as an example$

from ratio of 3 and 2 point functions

· meson momentum

$$\vec{p} = \frac{2\pi}{L} \vec{n}_p$$

- |W₀| ~20% smaller than DWF (with a long chiral extrapolation) at q²=0
- consistent with sys. error! no big surprise found for m_f→m_{ud}
- 10% total error is not a dream...

Advantage

- New renormalization scheme (subtraction point)
 - Matching available one order higher (NNLO): Gracey (2012)
 - → reduced systematic error ~1%
- Two lattice spacings → continuum limit
- Chiral symmetry

Disadvantage

Coarse lattice a=0.2,0.14fm → large error after continuum extrapolation ~20%

JUN-SIK YOO et al.

PHYS. REV. D **105**, 074501 (2022)

TABLE VIII. Results for the form factors $W_{0,1}$ on the two ensembles and in the continuum limit at the two kinematic points $Q^2 = 0$ (first line) and $Q = -m_\mu^2$ (second line) renormalized to $\overline{\rm MS}(2~{\rm GeV})$. The first uncertainty is statistical, the second is systematic due to excited states, and the third is the uncertainty of the continuum extrapolation.

		$W_0[{ m GeV^2}]$					
	24ID	32ID	Cont.				
$\overline{\langle \pi^+ (ud)_L d_L p \rangle}$	0.1032(86)(26)	0.1252(48)(50)	0.151(14)(8)(26)				
	0.1050(87)(36)	0.1271(49)(50)	0.153(14)(7)(26)				
$\langle \pi^+ (ud)_L d_R p \rangle$	-0.1125(78)(41)	-0.134(5)(11)	-0.159(15)(20)(25)				
, , , , , , , , , , , , , , , , , , , ,	-0.1139(78)(45)	-0.136(5)(12)	-0.161(15)(20)(26)				

FIG. 14. Comparison of our results ("NEW") for the proton decay amplitudes $W_0(0)$ computed directly (filled symbols) and indirectly (open symbols) to previous determinations [38,40,42]. All results are renormalized to the $\overline{\rm MS}(2~{\rm GeV})$ scheme.

Blue solid symbols are the current best estimate

No surprise happened at physical point!

Preliminary PACS results of proton decay FF W_0 (\overline{MS} ,2GeV)

- First Wilson fermion physical point (preliminary) results
- compared with DWF (RBC 2017, RBC 2022(physical point, continuum))

• (L)QCD parity invariance:

•
$$W_0^{LR} = W_0^{RL}$$

•
$$W_0^{RR} = W_0^{LL}$$

- PACS yet to do:
 - · discretization error est.
 - no large error expected
- Consistent with DWF

Summary and outlook

- · proton decay FFs till 2017 may suffer from chiral extrapolation error
- · Now we can do computations on physical mass (no extrapolation)
 - · aiming to remove final loose end
- Using PACS Wilson ensemble
 - RI/SMOM non-perturbative renormalization schemes applied
 robust against SSB and mass effect
 - · W₀ (p \rightarrow π ⁰), LEC α and β consistent with DWF(2017) [preliminary]
- · RBC/UKQCD with domain wall fermion
 - · New renormalization scheme help reduce the systematic error
 - · W₀ (p \rightarrow π ⁰), LEC α and β consistent with DWF(2017)
- → No chiral limit surprise! ← → Martin & Stavenga (skirm chiral bag)
 PACS analysis to be finalized, envisioning comparable /better accuracy
 plan to use PACS10 configurations w/ continuum scaling study

ご静聴ありがとうございました