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Two pillars of modern physics

Quantum mechanics General relativity 

𝑖ℏ
𝜕

𝜕𝑡
 |> = H  |> 𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 =

8𝜋𝐺𝑁

𝑐4
𝑇𝜇𝜈

No problem in “usual” circumstances

…

→  A “patchwork” is enough.

(below, 𝑐 = ℏ = 1) 

not get along well

macroscopic body

(N ⪢ 1 particles)

quantum interference ~ 𝜖𝑁 ≪ 1𝐺𝑁
𝑚𝑝𝑚𝑒

𝑟2  ~ 10−39 𝑒2

4𝜋𝜀0𝑟2

• •
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Interesting things occur in “unusual” situations 

At ~ ℓP, theoretical control of quantum field theory 

              (point particles in continuous spacetime) is lost.

There is a problem that the current formulation 

                       of string theory cannot (directly) address. (today’s theme)

strength

current LHC energy

~ 10 TeV    ~ 10–18 cm

cf. v ⪢ vusual in Newtonian mechanics

energy ⋍ mass

ℓ ~ 
ℏ

𝑝
 ~ 

ℏ

𝐸/𝑐

Planck energy

~ 1016 TeV    ~ 10–33 cm

ℓP ~ 10−33cm
… Planck length

→   string theory

EM, weak, and strong forces

Gravity



Unusual situations can occur at long distances:

Black Holes

The interior cannot be seen from the outside. 

— “No hair” theorem

A star

horizon

run out of

nuclear energy

only M  (and J, Q) 

horizon

huge density

→  escape velocity > c

pressure from

nuclear burning

gravity

What are the quantum properties?



Black Hole Thermodynamics



Another pillar of modern physics

A puzzle

Statistical mechanics

𝑆 = 𝑘B ln 𝑊

photo: Univ. Frankfurt

for any system

for all practical purposes

What happens if matter falls into a black hole?

Δ𝑆 ≥ 0

Srad > 0
S = 0

…  Δ𝑆 < 0 !?

(below, 𝑘B = 1) 



A peculiar property of BHs in general relativity 

A3 ≥ A1 + A2

A3

A2

A1

A proposal  [Bekenstein, 1973]

The entropy of a BH is proportional to its horizon area.

Indeed, Δ
𝐴

4𝐺N
+ 𝑆matter ≥ 0

Does this make sense?

𝑆BH =
𝐴

4𝐺N

Note: GN = ℓP
2 ~ (10–33 cm)2  →  huge entropy

  e.g. A solar mass BH has S ~ 1078 while the sun has ~ 1060.

𝜕𝑆

𝜕𝐸
=

1

𝑇

photo: APS

𝐴

4𝐺N
= 4𝜋𝐺N𝑀2

M
→  finite temperature

Doesn’t a BH only absorb stuff?



Black holes radiate  [Hawking, 1974]

photo: NASA

The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
. 

Quantum mechanical effect Hawking temperature



Black holes radiate  [Hawking, 1974]

photo: NASA

The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
. 

Quantum mechanical effect Hawking temperature

horizon

•

0 sec



Black holes radiate  [Hawking, 1974]

photo: NASA

The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
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Quantum mechanical effect Hawking temperature

horizon
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Black holes radiate  [Hawking, 1974]
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The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
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Quantum mechanical effect Hawking temperature
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Black holes radiate  [Hawking, 1974]
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The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
. 

Quantum mechanical effect Hawking temperature

horizon

3 sec

•



Black holes radiate  [Hawking, 1974]

photo: NASA

The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
. 

Quantum mechanical effect Hawking temperature

horizon
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•



Black holes radiate  [Hawking, 1974]

photo: NASA

The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
. 

Quantum mechanical effect Hawking temperature

horizon
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•



Black holes radiate  [Hawking, 1974]
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The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
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Quantum mechanical effect Hawking temperature
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•

0 sec
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Black holes radiate  [Hawking, 1974]

photo: NASA

The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
. 

Quantum mechanical effect Hawking temperature

horizon

1 sec

1 sec

•



Black holes radiate  [Hawking, 1974]

photo: NASA

The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
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Quantum mechanical effect Hawking temperature

horizon
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•
1.9 sec



Black holes radiate  [Hawking, 1974]

photo: NASA

The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
. 

Quantum mechanical effect Hawking temperature

horizon

3 sec

•
1.99 sec



Black holes radiate  [Hawking, 1974]

photo: NASA

The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
. 

Quantum mechanical effect Hawking temperature

horizon

4 sec

•
1.999 sec



Black holes radiate  [Hawking, 1974]

photo: NASA

The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
. 

Quantum mechanical effect Hawking temperature

horizon

5 sec

•
1.9999 sec



Black holes radiate  [Hawking, 1974]

photo: NASA

The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
. 

Quantum mechanical effect Hawking temperature

horizon

•
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Black holes radiate  [Hawking, 1974]
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The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
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Quantum mechanical effect Hawking temperature
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•



Black holes radiate  [Hawking, 1974]
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There must be radiation corresponding to 𝑇H~
1
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Black holes radiate  [Hawking, 1974]
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There must be radiation corresponding to 𝑇H~
1
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Black holes radiate  [Hawking, 1974]
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The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1
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Quantum mechanical effect Hawking temperature
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Black holes radiate  [Hawking, 1974]
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1
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. 

Quantum mechanical effect Hawking temperature
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•

BHs are thermodynamic objects. 

→ Spacetime is composed of microscopic d.o.f.s! 



Black holes radiate  [Hawking, 1974]

photo: NASA

The horizon is “smooth.”

There must be radiation corresponding to 𝑇H~
1

8𝜋𝑀𝐺N
. 

Quantum mechanical effect Hawking temperature

BHs are thermodynamic objects. 

→ Spacetime is composed of microscopic d.o.f.s! 

A problem
horizon

the same !

Hawking 

radiation

Hawking 

radiation

The time evolution

   is not one-to-one !
               (not unitary)

… (the original form of)

      BH information problem



Holography



A clue comes from the BH physics itself

A BH is the highest entropy state of the region,

and still 𝑆 ∝
𝐴

ℓP
2

Sounds crazy?

(ℓP ~ 10−33cm)

The concept that spacetime exits down to ~ ℓP is an illusion ! 

→ suggests that there is a formulation of quantum gravity 

                    in spacetime one less dimension than the naïve one.

Strange !

𝑆 ~ ln 2𝑉/ℓP
3

∝
𝑉

ℓP
3  ⋙

𝐴

ℓP
2

•
•

•
•

•

•
••

•

•

•

•
•

•

•

•
• •

• ∼ ℓP



AdS/CFT correspondence  [Maldacena, 1997]

BH evolution must be unitary.

photo: IAS

A process in non-gravitational

          (unitary) theory =

D-dimensional theory

without gravity (CFT)
(D+1)-dimensional theory

       with gravity (AdS)

ǁ𝑡

෤𝑥 𝑡

𝑥

𝑦

geometry
quantum

information

𝑟 = ∞



BH at the quantum level

Hawking radiation

ℓs

The horizon behaves 

  as the surface of regular material.

              … no issue with unitarity

𝑇local ∼ 𝑀string
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BH at the quantum level

Hawking radiation

ℓs

The horizon behaves 

  as the surface of regular material.

              … no issue with unitarity

→  What about the interior?

𝑇local ∼ 𝑀string



BH at the quantum level

Hawking radiation

ℓs

The horizon behaves 

  as the surface of regular material.

              … no issue with unitarity

→  What about the interior?

Alternatively

Hawking’s analysis 
information loss

→  What was wrong with Hawking’s analysis?

𝑇local ∼ 𝑀string



Recent Progress I
— replica wormholes —



Start with “global spacetime”
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Start with “global spacetime”

𝑡1

𝑡2

time (t)

space (r)

• ۧ|Ψ

Hugely redundant !

area

ۧ|Ψ

𝑉 → ∞

𝐴:  finite

… at odds with 𝑆 =
𝐴

4ℓP
2

Ψ1 Ψ2 = 0 Ψ1 Ψ2 ∼ 𝑒−
𝑆
2

semiclassical

(QFT in curved spacetime)
quantum gravity

… only 𝑒𝑆 independent states

ۧ|Ψ = ෍

𝑖=1

𝑒𝑆

𝑐𝑖| ۧ𝜓𝑖  𝑐𝑖 ∼ 𝑒−
𝑆
2

Ψ1 Ψ2 = ෍

𝑖=1

𝑒𝑆

𝑐1,𝑖
∗ 𝑐2,𝑖 ∼ 𝑒

𝑆
2𝑒−𝑆 ∼ 𝑒−

𝑆
2

→ 𝑒𝑒𝑆
 approximately orthogonal states

BH
light ray



Unitarity of Hawking evaporation

Hawking’s result

𝑆𝑅 = −Tr 𝜌𝑅 ln 𝜌𝑅  (𝜌𝑅 = Tr ത𝑅| ۧΨ (|Ψۦ

~ the # of EPR particles in 𝑅 whose partners are in ത𝑅



Unitarity of Hawking evaporation

Hawking’s result

unitary evolution

Page curve   Page (’93)

𝑆𝑅 = −Tr 𝜌𝑅 ln 𝜌𝑅  (𝜌𝑅 = Tr ത𝑅| ۧΨ (|Ψۦ

~ the # of EPR particles in 𝑅 whose partners are in ത𝑅

→  How to get this curve?



Page curve from replica wormholes Penington (’19); Almheiri, Engelhardt, Marolf, Maxfield (’19); …

Penington, Shenker, Stanford, Yang (’19);

Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini (’19)

→ 𝜌𝑅 = 𝜌𝑅 𝑓𝑖 𝐱 , 𝑔𝑖 𝐱    (∼ coefficient of | ۧ𝑔𝑖 𝐱 (|𝑓𝑖(𝐱)ۦ

path integral

𝑆𝑅 ≡ −Tr 𝜌𝑅 ln 𝜌𝑅  =  lim
𝑛→

 
1

1

1 − 𝑛
ln Tr[𝜌𝑅

𝑛]



Page curve from replica wormholes

𝑛 = 2:

Penington (’19); Almheiri, Engelhardt, Marolf, Maxfield (’19); …

Penington, Shenker, Stanford, Yang (’19);

Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini (’19)
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1

1

1 − 𝑛
ln Tr[𝜌𝑅

𝑛]

time

Hawking’s result



Page curve from replica wormholes

𝑛 = 2:

Penington (’19); Almheiri, Engelhardt, Marolf, Maxfield (’19); …

Penington, Shenker, Stanford, Yang (’19);

Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini (’19)

𝑆𝑅

→ 𝜌𝑅 = 𝜌𝑅 𝑓𝑖 𝐱 , 𝑔𝑖 𝐱    (∼ coefficient of | ۧ𝑔𝑖 𝐱 (|𝑓𝑖(𝐱)ۦ

path integral

𝑆𝑅 ≡ −Tr 𝜌𝑅 ln 𝜌𝑅  =  lim
𝑛→

 
1

1

1 − 𝑛
ln Tr[𝜌𝑅

𝑛]

+

time

replica wormhole  (nonperturbative effect)

Page curve
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Redundancy in the Hawking process

→ Hawking radiation emitted earlier is 

       not independent of the interior d.o.f.s !
…; Maldacena, Susskind (’13); …

Global spacetime

(embracing the interior)

Page curve

(signifying unitarity)Replica wormholes

(nonperturbative effects of gravity)

•  needed to avoid

information cloning

•  consistent because of causality



Recent Progress II
— unitary gauge construction —



Start with a “distant” (holographic) description

ℓs

The d.o.f.s outside the horizon 

         comprise the entire system. 

      →  The evolution is unitary.

→  How does the “interior” emerge?

••
•

•
Papadodimas, Raju (’12–’15); Verlinde, Verlinde (’12–’13); 

Y.N., Sanches, Varela, Weinberg (’12–’15); …

Y.N. (’19, 20)

stretched 

horizon Hawking radiation



Start with a “distant” (holographic) description

ℓs

The d.o.f.s outside the horizon 

         comprise the entire system. 

      →  The evolution is unitary.

→  How does the “interior” emerge?

••
•

•
Papadodimas, Raju (’12–’15); Verlinde, Verlinde (’12–’13); 

Y.N., Sanches, Varela, Weinberg (’12–’15); …

Y.N. (’19, 20)

Key features
— defining characteristics of BHs

(I) Exponentially dense spectrum

Y.N. (’19, 20)

stretched 

horizon Hawking radiation

E

⁞

⁞

𝑒𝑆BH  →
 

Δ𝐸 ∼ 𝑒−𝑆BH

… requires Δ𝑡 ∼ 𝑒𝑆BH to discriminate them,

   but by then the BH is already evaporated.

Relevant modes:

൞
BH ቊ

horizon
zone

far  
(objects)

(cloud)ቋ

 

⊃ hard

soft



(II) Dynamics at the stretched horizon

𝑇local ∼ 𝑀string

… string dynamics

• quantum chaos     Maldacena, Shenker, Stanford (’15)

• fast scrambling    Hayden, Preskil (’07); Sekino, Susskind (’08)

• universal     Banks, Seiberg (’10); …; Harlow, Ooguri (’18)

→ “ultimate” thermalization

… universal across all low energy species

(e.g. no global symmetry)



Emergence of the interior

| ۧ0

t t

x x

Minkowski Rindler

… thermal state
Fulling (’73); Davies (’75); Unruh (’76)

horizon

| ۧ𝑅𝑖| ۧ𝐿𝑖
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Emergence of the interior

| ۧ0

t t

x x

Minkowski Rindler

… thermal state
Fulling (’73); Davies (’75); Unruh (’76)

horizon

Hard mode

    states

Soft mode states

  (representing their collective excitations)

… universally thermal

Near empty 

  Interior spacetime

frame change … play the role of the mirror partners

(An object thrown “sees” interior spacetime)

| ۧ𝑍𝑖| ۧ𝐻𝑖

| ۧΨBH ∝ ෍

𝑖

𝑒
−

𝐸𝑖
2𝑇H | ۧ𝐻𝑖  | ۧ𝑆𝑖

∝ ෍

𝑖

𝑒−
𝐸𝑖
2𝑇  | ۧ𝑅𝑖 | ۧ𝐿𝑖



Emergence of the interior

| ۧ0

t t

x x

Minkowski Rindler

∝ ෍

𝑖

𝑒−
𝐸𝑖
2𝑇  | ۧ𝑅𝑖 | ۧ𝐿𝑖 … thermal state

Fulling (’73); Davies (’75); Unruh (’76)

horizon

… universally thermal

Near empty 

  Interior spacetime

frame change

string dynamics

   (not the case for the surface of regular material)

… play the role of the mirror partners

(An object thrown “sees” interior spacetime)

| ۧ𝑍𝑖| ۧ𝐻𝑖

| ۧΨBH ∝ ෍

𝑖

𝑒
−

𝐸𝑖
2𝑇H | ۧ𝐻𝑖  | ۧ𝑆𝑖

Hard mode

    states

Soft mode states

  (representing their collective excitations)



At late times, the BH is entangled with radiation

| ۧΨBH ∝ ෍

𝑖

𝑒
−

𝐸𝑖
2𝑇H | ۧ𝐻𝑖  | ۧ(𝑆 + 𝑅)𝑖

Hard mode

    states

Soft and far (radiation) mode states

    (representing collective excitations of these modes)

… play the role of the mirror partners

… Interior d.o.f.s involve early Hawking radiation !

Effective theory of the interior

Distant description

    (manifestly unitary)

Interior spacetime

(effective emergence)Collective phenomena

… describe only a limited spacetime region

multiple effective theories

    erected at different times 



Structure of Quantum Gravity



Global spacetime

  — General relativity —

Unitary / holographic

— Quantum mechanics —

• Interior

Evident

collective phenomenon

• Unitarity

• Apparent violation 

         of BH entropy

• Ensemble nature

By construction

c.f. AdS/CFT

huge interior spatial

          volume at late times

semiclassically orthogonal states

          in fact have Ψ1 Ψ2 ∼ 𝑒− ൗ𝑆BH
2

   →  𝑒𝑆BH states (+ null states)

Effective theory of the interior

     has a finite maximal volume.

Hilbert space of dimension 𝑒𝑆BH  can host

       𝑒𝑒𝑆BH  approximately orthogonal states. 

Langhoff, Y.N. (’20); Chakravarty (’20)

replica wormholes



Redundancies of the description

… allows for making (only) one of the two pillars manifest,

            but the theory still accommodates both of them (QM + GR).

• General covariance (perturbative)

• Nonperturbative redundancies

𝑥
𝑦 =

1
1

  
𝑟
𝜃

=
2

ൗ𝜋
4

  …

• space

time

…; Jafferis (’17); Marolf, Maxfield (’20); …



Summary

Black hole conundrum

Structure of quantum gravity

⊃  Quantm mechanics & General relativity, but in a subtle manner !

High energy / Astro physics

     (Black holes, gravity, …) 

Quantum information science

     (Holography, …) 

Many-body physics (cond. matter & AMO)

    (Chaos, fast scrambling, …) 

Quantum gravity

… 

“Geoflow” collaboration

   Berkeley / Stanford / Duke / Brandies / Bookhaven

   funded by DOE

    Altman, Bousso, Y.N., Penington, Siddiqi, Zaletel

• Activities at Berkeley

“From the Black Hole Conundrum to the Structure of Quantum Gravity”

 Y.N., Mod. Phys. Lett. A36 (2021) 2130007 [arXiv:2011.08707 [hep-th]]

“Complementarity for a Dynamical Black Hole”

 B. Concepcion, Y.N., K. Ritchie, S. Weiss, arXiv:2405.15849 [hep-th]
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