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Motivation in the phenomenology

Introduction (1/8)

What is an axion potential?

𝑉 𝜙 = cos(𝑁𝜙)

Murai-san’s talk (yesterday morning)
Narita-san’s poster (8/20)

etc...
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Motivation in the phenomenology

Introduction (2/8)

What is a QCD axion potential?

e.g.) 𝑉 𝜙 = min
𝑘

cos
𝜙+2𝜋𝑘

𝑁𝑓

Only valid for small quark mass 𝑚 ≪ Λ𝑄𝐶𝐷

(𝑁𝑓: # of flavor)
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Motivation in the phenomenology
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What is a QCD axion potential?
Small mass
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Motivation in the phenomenology

Introduction (3/8)

How can we derive it (from QCD)?

↓
For finite quark mass,

Numerical calculation 
by TRG (or other tensor network methods) 

is important!
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Short summary

Introduction (4/8)

We numerically calculate
the axion potential

of 𝑁𝑓 = 2 Schwinger 

model
by TRG.
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What is a 𝜽 term?
What is a 𝜃 term?
• A topological term in 4d QCD or Yang-Mills theory.

• Related to the instanton number.

Strong CP problem
• QCD in our world, 𝜃 < 10−10. (from neutron EDM 

experiments)

• Why is it too small? (Strong CP problem)

Axion [Peccei, Quinn 1977]

• Axion ≃ scalar field which couples to the QCD like 𝜃.

• Candidate for a dark matter

• Axion potential = 𝜽 dependence of the free energy
(𝜃 = 0 (mod 2𝜋) is the stable point)

Introduction (5/8)

Axion potential?
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Axion potential

Natural inflation
• Axion = inflaton? (Natural inflation) 

• Can this model be favored? [Nomura et al. 1706.08522]

• Depending on the potential shape.

• Axion potential = 𝜽 dependence of the free energy
• Axion = field version of the 𝜃 parameter

• Free energy = axion vacuum potential

Holography

Introduction (6/8)
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Axion potential

Natural inflation
• Axion = inflaton? (Natural inflation) 

• Can this model be favored? [Nomura et al. 1706.08522]

• Depending on the potential shape.

• Axion potential = 𝜽 dependence of the free energy
• Axion = field version of the 𝜃 parameter

• Free energy = axion vacuum potential

→ This is a problem in QCD!

• Free energy of QCD in finite 𝜃 region is unknown.

• How can we derive it?
• (i)  By hands (with some approximations)

• (ii) By numerical calculations

Holography

Introduction (6/8)
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Known facts for the free energy
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quark mass 𝑚

0

∞ ①

②

③

④

𝑆𝑈(𝑁𝑐) QCD with 𝑁𝑓 ≥ 2 flavors

(i) By hands
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Known facts for the free energy

Introduction (7/8)

quark mass 𝑚

0

𝑆𝑈(𝑁𝑐) Yang-Mills theory
𝜃 dependence: known for large 𝑁𝑐
Free energy ∝ 𝜃2∞ ①

②

③

④

𝑆𝑈(𝑁𝑐) QCD with 𝑁𝑓 ≥ 2 flavors

①

Intermediate mass
𝜃 dependence: unknown
Numerical calculation is needed

③

QCD with mass perturbation
𝜃 dependence: known for small 𝑚
Free energy ∝ cos(𝜃/𝑁𝑓)

②

Massless QCD, chiral symmetry
No 𝜃 dependence (𝑈 1 𝐴 anomaly)

④

(i) By hands

Small mass

Large mass
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How to calculate QCD with the 𝜽 term

Monte Carlo method: the sign problem
• With finite 𝜃, the partition function includes imaginary part.

→ The Monte Carlo simulation does not work well.

• There are some studies by the Monte Carlo. 
e.g.) 4d 𝑆𝑈(2) YM theory [Kitano et al. 2102.08784]

• But, 𝜃 = 𝜋 point is tough...

Tensor network methods do not have the sign problem!
• It is hard to use tensor network methods for 4d QCD.

• However, tensor networks work well for 2d theories.

→ We calculate the Schwinger model (2d toy model of the QCD) by tensor 
renormalization group (TRG). [Levin, Nave 2007]

Introduction (8/8)

(ii) By numerical 
calculations
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Plan

1. Introduction (8)
• Motivation in the phenomenology

• Short summary

• What is the 𝜃 term?

• Axion potential

• How to calculate QCD with 𝜃

2. Schwinger model (2)
• What is the Schwinger model?

• What we want to calculate

3. TRG (2)
• TRG

• Lattice action

4. Results (6)
• 2𝜋 periodicity

• Large mass limit

• Small mass limit

• Intermediate mass

5. Conclusion (1)
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What is the Schwinger model?

Schwinger model = 2d QED

• 𝑈(1) gauge theory + (fundamental) fermions (2dim 𝑈(1) gauge theory has a strong coupling.)

For 𝑁𝑓 ≥ 2 case,

• Bosonization → pion theory

• In the massless point, 𝑆𝑈 𝑁𝑓 1
WZW model in the IR limit

• First order phase transition @𝜃 = 𝜋

→ How much does the vacuum structure similar?

[Schwinger 1962, Coleman 1976, …]

Schwinger (1/2)
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What is the Schwinger model?

Schwinger model = 2d QED

• 𝑈(1) gauge theory + (fundamental) fermions (2dim 𝑈(1) gauge theory has a strong coupling.)

For 𝑁𝑓 ≥ 2 case,

• Bosonization → pion theory

• In the massless point, 𝑆𝑈 𝑁𝑓 1
WZW model in the IR limit

• First order phase transition @𝜃 = 𝜋

→ How much does the vacuum structure similar?

[Schwinger 1962, Coleman 1976, …]

Schwinger (1/2)

This 𝜃 = 𝜋 line 
can be the axion 

domain wall!

cf.) Lee-san’s talk 
(yesterday morning)
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What we want to calculate

𝑁𝑓 = 2 Schwinger model

Schwinger (2/2)

fermion mass 𝑚

0

∞ ①

②

③

④
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What we want to calculate

𝑁𝑓 = 2 Schwinger model
Large mass

Schwinger (2/2)

fermion mass 𝑚

0

𝑈(1) Maxwell theory

∞ ①

①

𝑉 = ∫ 𝑑2𝑥 (volume)
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What we want to calculate

𝑁𝑓 = 2 Schwinger model
Large mass

Schwinger (2/2)

Small mass

fermion mass 𝑚

0

𝑈(1) Maxwell theory

∞ ①

②

①

Mass perturbation [Coleman 1976]

②

𝑉 = ∫ 𝑑2𝑥 (volume), 𝛾 = 0.577… (Euler constant)
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Small mass

fermion mass 𝑚
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𝑈(1) Maxwell theory
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②

③

①

Intermediate mass
𝜃 dependence: unknown
Numerical calculation is needed

③
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What we want to calculate

𝑁𝑓 = 2 Schwinger model
Large mass

Schwinger (2/2)

Small mass

fermion mass 𝑚

0

𝑈(1) Maxwell theory

∞ ①

②

③

④

①

Intermediate mass
𝜃 dependence: unknown
Numerical calculation is needed

③

Mass perturbation [Coleman 1976]

②

Massless, chiral symmetry (𝑆𝑈 2 1 WZW model)

No 𝜃 dependence (𝑈 1 𝐴 anomaly)
④

𝑉 = ∫ 𝑑2𝑥 (volume), 𝛾 = 0.577… (Euler constant)
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TRG
Tensor Renormalization Group

TRG (2)
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TRG

Real space renormalization for one initial tensor
• From the translation invariance, we just focus on single tensor.

• Singular value decomposition (SVD)
• Finite cut off for singular values : bond dimension

• Approximation for TRG.

• Grassmann-TRG [Gu, Verstraete, Wen 1004.2563]

• Fermion has less d.o.f. by Grassmann path integral.

[Levin, Nave 2007]

TRG (1/2)



Introduction (8) Schwinger (2) TRG (2) Results (6) Conclusion (1)

TRG

Real space renormalization for one initial tensor
• From the translation invariance, we just focus on single tensor.

• Singular value decomposition (SVD)
• Finite cut off for singular values : bond dimension (𝑫)

• Approximation for TRG.

• Grassmann-TRG [Gu, Verstraete, Wen 1004.2563]

• Fermion has less d.o.f. by Grassmann path integral.

[Levin, Nave 2007]

TRG (1/2)
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Lattice action for Schwinger model

Staggered fermion (𝜒)
• 2d one staggered fermion 2-flavor Dirac fermion

Gauge field (𝐴𝜇)

• log 𝑈𝑝 type 𝜃 term (2𝜋 periodicity of 𝜃 is realized.)

TRG (2/2)

𝑈𝜇 = e𝑖𝐴𝜇: link variable

𝜂1 = 1, 𝜂2 = −1 𝑛1: staggered phase
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• 𝛽 = 4 (𝛽 = 1/𝑎2𝑔2),  (𝜃,𝑚0)(𝑚0 = 𝑚𝑎, we search for these parameters.)
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𝑈𝜇 = e𝑖𝐴𝜇: link variable
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Results

Results (6)
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𝟐𝝅 periodicity

What we calculate

→ free energy

𝑓 = −
log 𝑍 𝜃

𝑔2𝑉
−
log 𝑍 𝜃 = 0

𝑔2𝑉

= − 𝛽
log 𝑍 𝜃

𝐿2
− 𝛽

log 𝑍 𝜃 = 0

𝐿2

(Dimension-less free energy 
density normalized at 𝜃 = 0)

• We also check 𝜕𝑓/𝜕𝜃

Results (1/6)
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𝟐𝝅 periodicity

What we calculate

→ free energy

𝑓 = −
log 𝑍 𝜃

𝑔2𝑉
−
log 𝑍 𝜃 = 0

𝑔2𝑉

= − 𝛽
log 𝑍 𝜃

𝐿2
− 𝛽

log 𝑍 𝜃 = 0

𝐿2

(Dimension-less free energy 
density normalized at 𝜃 = 0)

• We also check 𝜕𝑓/𝜕𝜃

• Plot for free energy density 
vs 𝜃

Results (1/6)
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Degeneracy

Ground state degeneracy in TRG
• We can calculate ground state (or vacuum) 

degeneracy in TRG.     [Gu, Wen 0903.1069]

• We checked 2-vacua degeneracy at 𝜃 = 𝜋 for 
large mass parameters.

• 𝜃 = 𝜋 ± 0.0001𝜋 shows a single vacuum!

→ 𝟐𝝅 periodicity is obvious!

• In the following parts, we just focus on 𝜃 ∈ [0, 𝜋]

Results (2/6)

=
𝑎 2

(𝑏)
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Large mass limit

Results (3/6)

fermion mass 𝑚

0

∞ ①
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Small mass limit (1)

④: massless point

• There is a lattice artifact @ 
𝛽𝑚0

2 = 0. (Gold plots)

• It disappears in 𝛽 → ∞ limit.

Results (4/6)

fermion mass 𝑚

0

∞

④
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Small mass limit (1)

④: massless point

• There is a lattice artifact @ 
𝛽𝑚0

2 = 0. (Gold plots)

• It disappears in 𝛽 → ∞ limit.

②: small mass

• We calculate 𝛽𝑚0
2 = 10−4. 

(Brown plots)

• We subtract the lattice artifact 
from small mass results.

𝑓 𝑚0 − 𝑓(𝑚0 = 0)

(Black plots)

Results (4/6)

fermion mass 𝑚

0

∞

②

④
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Small mass limit (2)

Check of the finite 𝛽 effect

Results (5/6)

• In 𝛽 = 4, we found discrepancy from the mass 
perturbation.

• Larger 𝛽 calculations are required.
fermion mass 𝑚

0

∞

②

We analyze the 
subtracted plots  →
𝑓 𝑚0 − 𝑓(𝑚0 = 0)
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Intermediate mass

Results (6/6)

fermion mass 𝑚

0

∞

③
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Intermediate mass

Results (6/6)

fermion mass 𝑚

0

∞

③

smoothly changed!
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Conclusion

𝑁𝑓 = 2 Schwinger model in TRG

• Schwinger model : 2dim QED
• 4dim QCD-like theory (chiral sym, vacuum structure, ...)

• 𝜽 dependence of free energy is also similar.

• Good to calculate by TRG (Smaller d.o.f. than 4dim theory)

• We calculated 𝜃 dependence of the free energy by Grassmann-TRG.
• 𝟐𝝅 periodicity of 𝜃 is obvious.

• Large mass region is consistent.

• Small mass region is not consistent enough. (finite 𝛽 effect)

• Finite mass effects for the intermediate mass regime. (smoothly changed)

• Future directions
• Larger 𝛽 calculations for small mass parameters (To check the consistency 

with the mass perturbation.) → Larger 𝐷 calculation is required!

Conclusion
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Back up
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𝑫, 𝑲 dependence
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