Induced Domain Walls of QCD Axion, and Gravitational Waves

Kai Murai / 村井開 Tohoku University

in collaboration with Junseok Lee, Fuminobu Takahashi, and Wen Yin arXiv: 2407.09478

基研研究会素粒子物理学の進展 2024 8/19-23

QCD axion Peccei & Quinn (1977), Weinberg (1978), Wilczek (1978)

- a solution to the strong CP problem
- a (pseudo-)NG boson arising at SSB of the Peccei-Quinn symmetry

The QCD axion acquires a potential from non-perturbative effects of QCD:

$$V_{\rm QCD} = \chi(T) \left[1 - \cos\left(\frac{a}{f_a}\right) \right]$$

$$\chi(T) = m_a^2(T) f_a^2 = \begin{cases} \chi_0 & (T < T_{\text{QCD}}) \\ \chi_0 \left(\frac{T}{T_{\text{QCD}}}\right)^{-n} & (T \ge T_{\text{QCD}}) \end{cases} \begin{pmatrix} \chi_0 \simeq (75.6 \,\text{MeV})^4 \\ n \simeq 8.16 \\ T_{\text{QCD}} \simeq 153 \,\text{MeV} \\ \text{Borsanyi et. al. (2016)} \end{cases}$$

The QCD axion is a candidate of dark matter.

Two scenarios of QCD Axion

Pre-inflationary PQ breaking

The axion field becomes (nearly) uniform. Its coherent oscillation can explain dark matter via the misalignment mechanism. Preskill, Wise, Wilczek (1983), Abbott & Sikivie (1983), Dine & Fischler (1983) If a = f(f) = f(f), f = f(f) = f(f)

If $a_{\text{ini}}/f_a = \mathcal{O}(1)$, $f_a = \mathcal{O}(10^{12}) \text{ GeV}$ for all DM.

- Post-inflationary PQ breaking
- The axion field value is randomly determined at the SSB. Topological defects are formed.

"Domain wall problem" or DM from collapse of defects

Davis (1986)

Cosmic string

A complex scalar Φ with a wine-bottle $V(\Phi)$

At high temperatures, Φ is stabilized at the origin.

At low temperatures, the VEV, $\langle \Phi \rangle$, becomes nonzero. An axion arises as a NG boson.

Domain wall

Explicit breaking of U(1) symmetry $U(1) \rightarrow \mathbb{Z}_{N_{\text{DW}}}$ \rightarrow Potential for the axion, $m_a \neq 0$ $V_{\text{QCD}} = \chi \left[1 - \cos \left(N_{\text{DW}} \frac{a}{f_a} \right) \right]$

When $m_a > H$, the axion rolls down the potential.

Domain wall number

• $N_{\rm DW} = 1$

The network rapidly decay due to the DW tension. The emitted axions can account for DM.

• N_{DW} > 1

The DW tension balance with each other. The network becomes long-lived.

DWs follow the scaling solution: $\mathcal{O}(1)$ DWs in each Hubble volume.

Overclosure of the universe.
"Domain wall problem"

To avoid the overclosure, we can introduce a bias term:

$$V(a) = \chi \left[1 - \cos \left(N_{\rm DW} \frac{a}{f_a} \right) \right] + \epsilon \chi \left[1 - \cos \left(N_{\rm b} \frac{a}{f_a} + \theta \right) \right]$$

->> DWs collapse when the bias overcomes the DW tension.

When the DWs disappear, axions and gravitational waves are emitted.

Axion-like particles

- There can also be many axion-like particles (e.g., the axiverse).
- Similar couplings and periodicity to the QCD axion
- Their scales of fields and potentials are free in general.

QCD axion: Potential of $\mathcal{O}(100)$ MeV scale with temperature dependence

In general, two or more axions can mix in the potential. One combination of them work as the QCD axion.

In this talk, I discuss the domain walls of mixed axions.

Model

Potential

We consider two axions (a, ϕ) with the potential of

$$V(a,\phi) = \chi(T) \left[1 - \cos\left(N_a \frac{a}{f_a} + N_\phi \frac{\phi}{f_\phi}\right) \right] + \Lambda^4 \left[1 - \cos\left(N_{\rm DW} \frac{\phi}{f_\phi}\right) \right]$$
$$\chi(T) \equiv \frac{m_a^2(T) f_a^2}{N_a^2}, \quad \Lambda^4 \equiv \frac{m_\phi^2 f_\phi^2}{N_{\rm DW}^2}$$

We assume

$$m_{\phi} \gg m_{a0} \equiv m_a (T=0)$$
 \longrightarrow Order of DW formation
 $\frac{m_{\phi} f_{\phi}^2}{N_{\rm DW}^2} \gg \frac{m_{a0} f_a^2}{N_a^2}$ \longrightarrow Hierarchy of DW tension

Initial condition

As the initial condition, we consider

The pre-inflationary for $a \longrightarrow$ Initially homogeneous, no winding of a , the post-inflationary for $\phi \longrightarrow$ Cosmic strings of ϕ

Induced domain walls

Domain walls of ϕ

$$\chi(T) \left[1 - \cos\left(N_a \frac{a}{f_a} + N_{\phi} \frac{\phi}{f_{\phi}} \right) \right] + \Lambda^4 \left[1 - \cos\left(N_{\rm DW} \frac{\phi}{f_{\phi}} \right) \right]$$
$$V_{\rm DW}(\phi)$$

When $m_{\phi} \gtrsim 3H$, DWs of ϕ are formed.

In each domain,
$$\phi_k = 2\pi k \frac{f_{\phi}}{N_{DW}}$$

Potential height: $\Lambda^4 = \frac{m_{\phi}^2 f_{\phi}^2}{N_{DW}^2}$
DW width: $\sim m_{\phi}^{-1}$
Tension: $\sigma_{\phi} = \frac{8m_{\phi} f_{\phi}^2}{N_{DW}^2}$
 0
 $domain wall domain wall $domain wall domain wall domain wall $domain wall domain wall domain wall domain wall $domain wall domain wall$$$$

 ϕ/f_{ϕ}

Induced domain walls

Domain walls of ϕ

$\chi(T) \left[1 - \cos\left(N_a \frac{a}{f_a} + N_{\phi} \frac{\phi}{f_{\phi}} \right) \right], \quad \phi_k = 2\pi k \frac{f_{\phi}}{N_{\rm DW}}$

When $m_a \gtrsim 3H$, a starts to oscillate in the potential.

Due to the difference in ϕ , a has different potential minima.

The DW of a is induced around that of ϕ .

The width is much larger for the indued DW.

The energy is localized around the induced DW.

 $m_a z$

Induced domain walls

Induced domain walls

Difference in *a* between domains:

$$a_{\min} = 2\pi f_a \left(-\frac{N_{\phi}}{N_a N_{\rm DW}} + \frac{l}{N_a} \right)^{\text{integ}}$$

The DW tension is approximately $\sigma_a \propto m_a a_{\rm min}^2 \simeq 2.34 \, m_a f_a^2$ $(N_{\rm DW}=2, \, N_a=N_\phi=1)$

Smaller than in the conventional case:

$$\sigma_{a,\max} = \frac{8m_a f_a^2}{N_a^2}$$

Induced domain walls

Scaling solution

For $N_{\rm DW} > 1$, string-wall network is long-lived.

Scaling solution:

 $\mathcal{O}(1)$ strings/walls in each Hubble patch

$$\rho_{\rm str} \sim \mu H^2 \propto \rho_{\rm tot}$$
$$\rho_{\rm wall} \sim \sigma H$$

$$\chi(T) \left[1 - \cos\left(N_a \frac{a}{f_a} + N_\phi \frac{\phi}{f_\phi} \right) \right] + \Lambda^4 \left[1 - \cos\left(N_{\rm DW} \frac{\phi}{f_\phi} \right) \right]$$

Bias term

We introduce a bias potential:

$$V_{\rm bias}(\phi) \equiv \epsilon \Lambda^4 \left[1 - \cos\left(N_{\rm b} \frac{\phi}{f_{\phi}} + \theta \right) \right]$$

We assume $\epsilon \ll 1$. \rightarrow DW formation is not affected.

The potential difference:

$$\Delta V_k = |V_{\text{bias}}(\phi_{k-1}) - V_{\text{bias}}(\phi_k)|$$

= $2\epsilon \Lambda^4 |\cos \theta| \equiv c_b \epsilon \Lambda^4 \quad (N_{\text{DW}} = 2, N_a = N_\phi = N_b = 1)$

Note: This bias potential does not spoil the PQ solution.

DW collapse

When the bias overcomes the tension, the network collapses:

$$\rho_{\phi,\mathrm{DW}}(t_{\mathrm{dec}}) = \frac{\mathscr{A}\sigma_{\phi}}{t_{\mathrm{dec}}} \simeq \langle \Delta V \rangle \quad (\mathscr{A}: \text{ area parameter})$$

From this condition, the decay temperature becomes

$$H_{\rm dec} = \frac{c_{\rm b} \epsilon m_{\phi}}{16}, \quad T_{\rm dec} = \left(\frac{90}{\pi^2 g_*(T_{\rm dec})}\right)^{1/4} \sqrt{\frac{c_{\rm b} \epsilon M_{\rm Pl} m_{\phi}}{16}}$$

We require that the network collapse before BBN:

$$T_{\rm dec} \gtrsim 10 \,{
m MeV}$$

Production of QCD axions Kawasaki, Saikawa, Sekiguchi (2014)

In the scaling regime, DWs decrease their energy emitting axions:

$$\frac{\mathrm{d}\rho_{a,\text{wall}}}{\mathrm{d}t}\bigg|_{\text{emit}} = -\frac{\sigma_a}{2t^2}$$

The number density of the emitted axion:

$$n_a(t) = \frac{\sigma_a}{\tilde{\epsilon}_a m_a t}$$
 (averaged axion energy: $\bar{\omega}_a = \tilde{\epsilon}_a m_a$)

$$\frac{\rho_{a,\text{dec}}}{s} \simeq \frac{0.43 \,\text{eV}}{\tilde{\epsilon}_a} \times \left(\frac{g_{*,\text{dec}}}{10.75}\right)^{1/2} \left(\frac{g_{*s,\text{dec}}}{10.75}\right)^{-1} \left(\frac{f_a}{4 \times 10^9 \,\text{GeV}}\right) \left(\frac{T_{\text{dec}}}{12 \,\text{MeV}}\right)^{-1}$$

Note: We assume ϕ decays to the Standard Model particles.

Coherent contribution

Coherent oscillations of a also contribute to DM.

The evaluation is the same as the misalignment mechanism except for the initial field value:

$$\frac{\rho_a(T)}{s(T)} \simeq \frac{m_{a0}m_{a,\text{osc}}}{s(T_{\text{osc}})} \frac{\sum (a_{\text{ini}} - a_{\min,k})^2}{N_{\text{DW}}} \text{, Average over domains}$$
For $N_{\text{DW}} = 2, N_a = N_\phi = 1$,
$$\frac{\rho_a(T)}{s(T)} \simeq \frac{m_{a0}m_{a,\text{osc}}}{s(T_{\text{osc}})} \frac{a_{\text{ini}}^2 + (\pi f_a - |a_{\text{ini}}|)^2}{2}$$

$$\frac{\pi^2 f_a^2}{4} \leq \mathcal{F}(a_{\text{ini}}) \leq \frac{\pi^2 f_a^2}{2}$$

Gravitational wave production Hiramatsu, Kawasaki, Saikawa (2013)

DWs also emit gravitational waves.

The main contribution is produced at the DW collapse:

$$\begin{split} f_{\rm peak,dec} \sim H_{\rm dec} \\ \Omega_{\rm GW,dec}^{\rm peak} &= \frac{\epsilon_{\rm GW} \sigma_{\phi}^2}{24\pi M_{\rm Pl}^4 H_{\rm dec}^2} \quad (\epsilon_{\rm GW}: {\rm GW\ emission\ efficiency}) \end{split}$$

The current peak of the GW spectrum is given by

$$f_{\text{peak},0} \sim 11 \text{ nHz} \times \left(\frac{g_{*s,\text{dec}}}{10.75}\right)^{-1/3} \left(\frac{g_{*,\text{dec}}}{10.75}\right)^{1/2} \left(\frac{T_{\text{dec}}}{100 \text{ MeV}}\right)$$
$$\Omega_{\text{GW},0}^{\text{peak}} h^2 \sim 2.6 \times 10^{-9} \times \epsilon_{\text{GW}} \left(\frac{g_{*s,\text{dec}}}{10.75}\right)^{-4/3} \left(\frac{T_{\text{dec}}}{100 \text{ MeV}}\right)^{-4} \left(\frac{\sigma_{\phi}}{2 \times 10^{15} \text{ GeV}^3}\right)^{-2}$$

Summary

- Heavy axion DWs can induce QCD axion DWs via the mixing even with a pre-inflationary initial condition for the QCD axion.
- By introducing a bias potential to ϕ , the network collapses while solving the strong CP problem.
- QCD axions from induced DWs can account for all dark matter with f_a as small as $\mathcal{O}(10^9)$ GeV.
- GWs from induced DWs can account for the NANOGrav result.

