Small Instanton Effects on Composite Axion Mass

Takafumi Aoki

ICRR, the University of Tokyo

arXiv:2404.19342 [hep-ph], JHEP 07 (2024) 269 with M. Ibe, S. Shirai and K. Watanabe.

- Introduction
 - Strong CP Problem and Axion
 - Two Topics from Energy Scale Above PQ breaking
- Model
- Axion Mass Enhancement?

Strong CP Problem and Axion

 $\theta F \tilde{F} = \theta \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}$ in QCD:

- θ violates CP symmetry.
- Too tiny neutron electric dipole moment $ightarrow | heta| \lesssim 10^{-10}$

Unnaturally tiny $|\theta|$ might be a hint for physics beyond the standard model: Strong CP Problem Peccei-Quinn (PQ) Mechanism & Axion [Peccei & Quinn (1977), Weinberg (1978), Wilczek (1978)]

- 1. Anomalous global U(1) symmetry in QCD, U(1)_{PQ} \leftarrow "PQ symmetry,"
- 2. Unbroken (except for anomaly) $U(1)_{PQ}$ nullifies heta .
- 3. However, unbroken (except for anomaly) $U(1)_{PQ} \rightarrow$ massless colored fermion.
- 4. Thus, $U(1)_{PQ}$: spontaneously broken \rightarrow axion as a Nambu-Goldstone boson
- 5. Axion potential from QCD anomaly $\rightarrow \theta = 0$, dynamically.

Introduction

Axion Mass

From chiral perturbation theory, $m_a f_a$ seems almost model-independent:

$$(m_a f_a)^2 \sim \frac{m_u m_d}{(m_u + m_d)^2} (m_\pi f_\pi)^2 \,.$$

 m_a : axion mass, f_a : axion decay constant.

Constraint on f_a

- $f_a \gtrsim 10^9 \text{GeV}$: astrophysics
- $f_a \leq 10^{12} \text{GeV}$: preferred, not to exceed dark matter abundance.
- \rightarrow Far above electroweak scale,

far below Planck scale (and grand-unification scale).

Introduction

An Example: The Simplest Composite Axion Model [Choi & Kim (1985)] :

New fermions

Maximal flavor symmetry for (3+1)-pairs of (N, \overline{N}) :

(in vanishing coupling limit of $SU(3)_{QCD}$)

$$\mathbf{U(4)}_{N} \times \mathbf{U(4)}_{\bar{N}} = \underset{\bigcup}{\overset{\cup}{\mathrm{SU(4)}_{V} \times \mathrm{U(1)}_{V} \times \mathrm{SU(4)}_{A} \times \mathrm{U(1)}_{A}}} \underset{\bigcup}{\overset{\cup}{\mathrm{SU(3)}_{QCD}}} \underset{U(1)_{PQ}}{\overset{\cup}{\mathrm{U(1)}_{PQ}}}$$

No need for **fine-tuning of scalar potential**, in composite axion models.

Two Topics from Energy Scale above PQ breaking

1. "Axion Quality Problem"

2. Possibility of Axion Mass Enhancement?

"Axion Quality Problem"

Suppose that the global symmetry, $U(1)_{PQ}$, is slightly broken by some UV effects.

Axion potential from anomaly.

Additional PQ-breaking $\rightarrow \theta \neq 0$.

• It is belived that the quantum gravity yields such breaking.

With dimension-*d*, U(1)_{PQ}-breaking operator ($\propto [dim-d \text{ operator}]/\Lambda_{UV}^{d-4}$),

$$\delta\theta \sim \frac{f_a^d / \Lambda_{\rm UV}^{d-4}}{\Lambda_{\rm QCD}^4} \sim \frac{(10^9 {\rm GeV})^d / (10^{19} {\rm GeV})^{d-4}}{(10^{-1} {\rm GeV})^4} \sim 10^{80-10d} \,. \quad (f_a \sim 10^9 {\rm GeV})$$

 \rightarrow **Roughly** d > 9 for $|\delta \theta| \leq 10^{-10}$, assuming O(1) for dimensionless parameters.

Accidental Global Symmetry

An Example: "Baryon number" for N_f (vector-like) quarks.

1. Write all the Lorentz- and gauge-invariant terms with mass dimension ≤ 4 .

$$\mathcal{L}_{\text{fermion}} = \sum_{f=1}^{N_f} \overline{\psi}_f i D \psi_f + \sum_{f,f'=1}^{N_f} \overline{\psi}_{f'} M_{f',f} \psi_f$$

2. This model has U(1) symmetry: $\psi \to e^{i\alpha}\psi \quad (\overline{\psi} \to e^{-i\alpha}\overline{\psi})$, not imposed by hand.

Not imposed by hand (realized by Lorentz- and gauge symmetry) = "Accidental"

One Way to Avoid Quality Problem

Forbid breaking of accidental $U(1)_{PQ}$ until sufficiently high mass dimension, by (Lorentz and) gauge symmetries.

Instanton

• Local minima of the action with $\int dx^4 F \tilde{F} \neq 0$.

• Suppression factor:
$$\exp(-S) = \exp\left(-\frac{8\pi^2}{g^2}\right)$$
.

Instanton of Broken Gauge Symmetry [Affleck(1980)]

$$S = \frac{8\pi^2}{g^2} + O\left(\left[\rho v\right]^2\right)$$

(ρ : instanton size & v: symmetry-breaking scale.)

 \rightarrow "Small" instantons with $\rho \leq v^{-1}$ can be relevant.

Introduction: Axion Mass Enhancement?

<u>Product group model</u>: Gauge $[SU(3)]^{n_s}$ symmetry with n_s axions (by hand).

$$\mathcal{L} = \sum_{i=1}^{n_s} \left[-\frac{1}{4} F_i F_i + \left(\theta_i + \frac{a_i}{f_i} \right) \frac{g_i^2}{32\pi^2} F_i \tilde{F}_i \right] + (\text{scalars for symmetry breaking})$$

Bi-fundamental scalars break gauge symmetry: $[SU(3)]^{n_s} \rightarrow SU(3)_{QCD}$

Matching of Couplings: When
$$[SU(3)]^{n_s}$$
 is broken to its diagonal $SU(3)_{QCD}$ subgroup,
$$\frac{1}{g_{QCD}^2(v)} = \frac{1}{g_1^2(v)} + \ldots + \frac{1}{g_{n_s}^2(v)}$$

v: symmetry breaking scale, g_{QCD} : QCD coupling, g_i : coupling of each SU(3)_i.

Axion mass enhancement by large couplings of $SU(3)_i$. [Agrawal & Howe (2017), Csáki et al (2019)]

1. We focus on axion models avoiding axion quality problem.

2. Our target is a model in which axion mass enhancement seems possible.

3. Question: "axion mass enhancement" in the model?

Model Addressing the **Quality Problem**, in Which **Axion Mass Enhancement** "Seems" Possible Model

A Model Addressing the Quality Problem

The Simple Model

[M. Redi & R. Sato (2016)]

New fermions

	SU(N)	SU(3) _{QCD}
ψ_1	Ν	3
ψ_1'	Ν	1
ψ_2	N	3
ψ_2'	N	1

New fermions

	$SU(N)_{ST_2}$	SU(3) _W	$SU(N)_{ST1}$	$SU(4)_W$
ψ_1	N	3		
ψ'_1	N	1		
ψ_2		3	N	
ψ_2'		1	N	
ψ_3			Ν	4
ψ_4	N			4

Accidental $[U(1)]^4$ Global Symmetry

 $\begin{array}{c} \mathrm{U}(4)_{\textit{N},1}\times\mathrm{U}(4)_{\textit{\bar{N}},1}\times\mathrm{U}(4)_{\textit{N},2}\times\mathrm{U}(4)_{\textit{\bar{N}},2}\supset\mathrm{SU}(3)_{\mathsf{W}}\times\mathrm{SU}(4)_{\mathsf{W}}\times\begin{array}{c} \mathrm{U}(1)_{\mathsf{PQ}}\times\mathrm{U}(1)_{1}\\ \text{(anomalous)} \end{array} \times \mathrm{U}(1)_{2}\times\mathrm{U}(1)_{3} \end{array}$

	$SU(N)_{ST_2}$	SU(3) _W	$SU(N)_{ST1}$	SU(4) _W	$U(1)_{PQ}^{(SSB)}$	U(1) ₁	U(1) ₂	U(1) ₃
ψ_1	Ν	3			1	1	1	1
ψ_1'	Ν	1			-3	1	-3	1
ψ_2		3	N		1	1	-1	-1
ψ_2'		1	N		-3	1	3	-1
ψ_3			Ν	4	0	-1	0	1
ψ_4	N			4	0	-1	0	-1

Two θ -angles of SU(3)_W and SU(4)_W \leftarrow "nullified" by $U(1)_{PQ}$ and $U(1)_1$.

<u>Small instantons</u>: Axion mass enhancement as in $[SU(3)]^{n_s}$ product group model?

Axion potential from $SU(3)_W$ and $SU(4)_W$ small instantons are

$$\propto \Lambda^4 \exp\left(-\frac{8\pi^2}{g_{\mathrm{SU}(3)_{\mathbf{W}}}^2(\Lambda)}\right) \text{ and } \propto \Lambda^4 \exp\left(-\frac{8\pi^2}{g_{\mathrm{SU}(4)_{\mathbf{W}}}^2(\Lambda)}\right).$$

 $SU(3)_{\mathbf{W}}$, $SU(4)_{\mathbf{W}}$ small instantons: **coupling much stronger than QCD** is possible. (Note that $\frac{1}{g_{QCD}^2(\Lambda)} = \frac{1}{g_{SU(3)_{\mathbf{W}}}^2(\Lambda)} + \frac{1}{g_{SU(4)_{\mathbf{W}}}^2(\Lambda)}$ permits $g_{SU(3)_{\mathbf{W}}}(\Lambda) \gg g_{QCD}(\Lambda)$)

However...

We will see that indivisual $SU(3)_W$ or $SU(4)_W$ small instantons do not contribute to the axion potential! \rightarrow No axion mass enhancement

Fermion zero modes around instantons nullify instanton effects.

Vanishing physical quantity

 $\mathcal{L} = \xi^+ i \sigma^\mu D_\mu \xi + \eta^\dagger i \sigma^\mu D_\mu \eta$

Situation: $\sigma^{\mu}D_{\mu}$ has normalizable zero mode wavefunction $\psi^{(0)}$.

Decomposing ξ and η as

$$\xi = \xi_0 \psi^{(0)}$$
 + (non-zero modes), $\eta = \eta_0 \psi^{(0)}$ + (non-zero modes),

Path integral is

$$\int d\xi^{\dagger} d\xi d\eta^{\dagger} d\eta \, \exp[-S]O \, \propto \, \int d\xi_0 d\eta_0 \, \exp[-0]O$$
$$= \int d\xi_0 d\eta_0 \, O.$$

This is vanishing, if O does not include ξ and η .

Interactions between fermion zero modes yield non-zero instanton effects.

An example of non-vanishing physical quantity

 $L = \xi^{\dagger} i \sigma^{\mu} D_{\mu} \xi + \eta^{\dagger} i \sigma^{\mu} D_{\mu} \eta - m(\eta \xi + \xi^{\dagger} \eta^{\dagger})$

<u>Situation</u>: $\sigma^{\mu}D_{\mu}$ has normalizable zero mode wavefunction $\psi^{(0)}$.

Decomposing ξ and η as

$$\xi = \xi_0 \psi^{(0)}$$
 + (non-zero modes), $\eta = \eta_0 \psi^{(0)}$ + (non-zero modes),

Path integral is

$$\int \mathrm{d}\xi^{\dagger} \mathrm{d}\xi \mathrm{d}\eta^{\dagger} \mathrm{d}\eta \, \exp[-S] \mathcal{O} \, \propto \, \int d\xi_0 d\eta_0 \, \exp\left[\int \mathrm{d}^4 x \, m\left(\xi_0 \psi^{(0)}\right) \left(\eta_0 \psi^{(0)}\right)\right] \mathcal{O} \neq \, 0.$$

This is non-vanishing, due to the interactions of Weyl fermions.

't Hooft Vertex: Effective vertex corresponding to fermion zero mode integration.

An example

$$\mathcal{L} = \xi^{\dagger} i \sigma^{\mu} D_{\mu} \xi + \eta^{\dagger} i \sigma^{\mu} D_{\mu} \eta - m(\eta \xi + \xi^{\dagger} \eta^{\dagger})$$

<u>Situation</u>: $\sigma^{\mu}D_{\mu}$ has normalizable zero mode wavefunction $\psi^{(0)}$.

Zero mode path integration \simeq massless fermion lines in 't Hooft vertex.

[See e.g. 't Hooft (1976), Csaki et al (2023)]

't Hooft vertex for $SU(3)_W$ and $SU(4)_W$ small instantons:

Effect of fermion zero modes around instantons are captured by 't Hooft vertex

We will find that a single $SU(3)_W$ or $SU(4)_W$ instanton does not contribute.

Reason for no contribution from $SU(3)_W$ or $SU(4)_W$ Instantons:

- Every fermion leg from $SU(3)_W$ instantons: $U(1)_1$ charge is +1
- Every fermion leg from $SU(4)_W$ instantons: $U(1)_1$ charge is -1
- Every interaction (except for 't Hooft verteces): $U(1)_1$ charge is 0

	$SU(N)_{ST_2}$	SU(3) <mark>₩</mark>	$SU(N)_{ST1}$	SU(4) _W	$\mathrm{U}(1)^{\mathrm{(SSB)}}_{\mathrm{PQ}}$	U(1) ₁	U(1) ₂	U(1) ₃
ψ_1	N	3			1	+1	1	1
ψ'_1	Ν	1			-3	+1	-3	1
ψ_2		3	N		1	+1	-1	-1
ψ'_2		1	N		-3	+1	3	-1
ψ_3			Ν	4	0	-1	0	1
ψ_4	N			4	0	-1	0	-1

→ It is impossible to **close all fermion legs** from a single $SU(3)_W$ or $SU(4)_W$ instanton. (On the other hand, a pair of $SU(3)_W$ and $SU(4)_W$ does contribute.)

Fermion legs cannot be closed around a single $SU(3)_W$ or $SU(4)_W$ instanton,

while a pair of $SU(3)_W$ and $SU(4)_W$ instantons can contribute.

No Axion Mass Enhancement!

Small instanton effects are always from "pairs"

A pair of $SU(3)_W$ and $SU(4)_W$ instanton:

$$\exp\left(-\frac{8\pi^2}{g_{SU(3)\mathbf{w}}^2(\Lambda)}\right) \times \exp\left(-\frac{8\pi^2}{g_{SU(4)\mathbf{w}}^2(\Lambda)}\right) = \exp\left(-8\pi^2\left[\frac{1}{g_{SU(3)\mathbf{w}}^2(\Lambda)} + \frac{1}{g_{SU(4)\mathbf{w}}^2(\Lambda)}\right]\right)$$
$$= \exp\left(-\frac{8\pi^2}{g_{QCD}^2(\Lambda)}\right)$$

• The last "=" is from the matching of couplings: $\frac{1}{g_{QCD}^2(\Lambda)} = \frac{1}{g_{SU(3)_{\mathbf{W}}}^2(\Lambda)} + \frac{1}{g_{SU(4)_{\mathbf{W}}}^2(\Lambda)}$

\rightarrow No axion mass enhancement by large coupling of $SU(3)_{\ensuremath{W}}.$

(Even when $g_{SU(3)W} \gg g_{QCD}$, effects are accompanied by $g_{SU(4)W} \sim g_{QCD}$ suppression.)

Summary

- PQ mechanism and the axion solve the strong CP problem.
- Axion quality problem is a severe restriction for axion models.
- Possibility of axion mass enhancement is argued.

 ★ We discussed the axion mass in an axion model addressing the quality problem with an accidental PQ symmetry [Redi & Sato (2016)].
This model possesses product gauge group broken into QCD.
→ axion mass enhancement?

***** No enhancement, due to U(1) symmetry not spontaneously broken and nullify θ parameter in hidden sector.

BACKUP

Model – Symmetries

	SU(N) _{ST2}	SU(3) _W	$SU(N)_{ST1}$	SU(4) _W
ψ_1	Ν	3		
ψ'_1	Ν	1		
ψ_2		3	N	
ψ_2'		1	N	
ψ_3			Ν	4
ψ_4	N			4

Maximal Flavor Symmetry (in vanishing coupling limit of $SU(3)_W$ and $SU(4)_W$)

 $\mathrm{U}(4)_{N,1} \times \mathrm{U}(4)_{\bar{N},1} \times \mathrm{U}(4)_{N,2} \times \mathrm{U}(4)_{\bar{N},2} \supset \mathrm{SU}(3)_{\mathrm{W}} \times \mathrm{SU}(4)_{\mathrm{W}}$

Model – Symmetries

	$SU(N)_{ST_2}$	SU(3) _W	$SU(N)_{ST1}$	SU(4)₩
ψ_1	N	3		
ψ'_1	Ν	1		
ψ_2		3	N	
ψ_2'		1	N	
ψ_3			Ν	4
ψ_4	N			4

Symmetries remaining with non-vanishing $SU(3)_W$ and $SU(4)_W$ couplings:

 $\mathrm{U}(4)_{N,1} \times \mathrm{U}(4)_{\bar{N},1} \times \mathrm{U}(4)_{N,2} \times \mathrm{U}(4)_{\bar{N},2} \supset \mathrm{SU}(3)_{\mathbf{W}} \times \mathrm{SU}(4)_{\mathbf{W}} \times [\mathbf{U}(\mathbf{1})]^{\mathbf{6}}$

- 1. Two U(1)'s are anomalous w.r.t. $SU(N)_{ST1} \times SU(N)_{ST2}$, aligning their θ angles.
- 2. The other $[U(1)]^4$ will be discussed next.

Model – Spontaneous Symmetry Breaking

Fermion Condensations

 $SU(3)_W$, $SU(4)_W$ couplings $\rightarrow 0$. Then, $[SU(N)_{ST}]^2$: independent vector-like theories.

$$\langle \psi_1^{(\prime)} \psi_4 \rangle \sim \Lambda^3 \begin{pmatrix} 1 & 1 & \\ & 1 & \\ & & 1 \end{pmatrix}$$
$$\langle \psi_2^{(\prime)} \psi_3 \rangle \sim \Lambda^3 \begin{pmatrix} 1 & 1 & \\ & & 1 \end{pmatrix}$$

	$SU(N)_{ST_2}$	SU(3) _W	$SU(N)_{ST1}$	SU(4) _W
ψ_1	Ν	3		
ψ_1'	Ν	1		
ψ_2		3	N	
ψ_2'		1	N	
ψ_3			Ν	4
ψ_4	N			4

Gauge symmetries: $SU(3)_{W} \times SU(4)_{W} \rightarrow SU(3)_{QCD}$: vector-part

Global symmetries: Axial $[U(4)]^2 = [U(1)^2] \times [SU(4)]^2 \supset U(1)_{PQ}$

 $[SU(N)_{ST}]^2$ -anomalous $[U(1)]^2$, 15 massive gauge bosons, other $15 = 8 \oplus 3 \oplus \overline{3} \oplus 1$

Quality Problem and Larger Model

Lowest-Dimensional PQ-Breaking Operator

PQ-breaking, dimension-6 operator:

 $\psi_1\psi_2\psi_3\psi_4$

Not enough to avoid quality problem.

In larger model with $[SU(N)_{ST}]^{n_s} \times SU(3)_W \times [SU(4)_W]^{n_s-1}$ symmetry, dimension- $3n_s$ is the lowest-dimension PQ breaking.

$$(n_s = 3 \rightarrow)$$

	$SU(N)_{ST_2}$	SU(3) _W	$SU(N)_{ST1}$	SU(4)₩
ψ_1	N	3		
ψ'_1	Ν	1		
ψ_2		3	N	
ψ'_2		1	N	
ψ_3			Ν	4
ψ_4	N			4

We find no enhancement similarly in larger models with $n_s \geq 3$

Larger Model ($n_s = 3$)

	SU(N) _{ST3}	SU(3) _W	$SU(N)_{ST1}$	$SU(4)_{W1}$	$SU(N)_{ST_2}$	$SU(4)_{W2}$
ψ_1	N	3				
ψ'_1	Ν	1				
ψ_2		3	N			
ψ'_2		1	N			
ψ_3			Ν	4		
ψ_4				4	N	
ψ_5					Ν	4
ψ_6	N					4

	Π	$U(1)_{PQ}^{(SSB)}$	U(1) ₁	U(1) ₂	U(1) ₃	U(1) ₄
ψ_1	Π	1	1	1	1	0
ψ'_1		-3	1	-3	1	0
ψ_2	Ϊ	1	1	-1	-1	0
ψ'_2		-3	1	3	-1	0
ψ_3		0	-1	0	1	0
ψ_4	Π	0	0	0	-1	-1
ψ_5		0	0	0	1	1
ψ_6		0	-1	0	-1	0

- Only U(1)_{PQ} is spontaneously broken, also for larger *n*.
- Additional n 2 <u>anomalous</u> (and unbroken) U(1)s, cancelling the additional θ angles.

Another Explanation: Directly from symmetry, without relying on 't Hooft vertex.

Vacuum amplitude with fixed axion field value a and background SU(3)_W and SU(4)_W gauge field:

$$W(a)|_{m,n} = \int \prod \mathcal{D}A_{\rm ST} \mathcal{D}\psi^{\dagger} \mathcal{D}\psi \ e^{-S[\psi, A_{\rm ST}, a]}$$

- *m*, *n* are winding number for each sectors.
- The amplitude = contribution to the axion potential.

We can redefine (rename) the fermions in path integral by $U(1)_1$ rotation $e^{i\alpha}$.

→ $W(a)|_{m,n}$ changes its phase by anomaly, without shifting the axion *a*. $W(a)|_{m,n} = \exp [2i\alpha(m-n)] W(a)|_{m,n}.$

The amplitude (effects on the axion potential) vanishes, unless m = n

Other Composite Axion Models

In enlarged model $(n_s > 2)$: Discussion is similar. No axion mass enhancement.

Randall (1992): Gauge symmetry of the model is $SU(N)_{ST} \times SU(m)_{w} \times SU(3)_{w}$.

In many models including Randall (1992),

 $SU(3)_{QCD} \times [broken part] = SU(3)_{QCD} \times [hidden gauge group]$

i.e. QCD is just the spectator of the PQ breaking.

 \rightarrow No hidden small instanton effects on axion mass.