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1Today’s Talk

In gauge theories with 𝑆1/𝑍2 and 𝑇2/𝑍𝑚 orbifolded extra-spaces,

the classification of boundary conditions have been completed by TCLs.

What?

Why?

01.   What: Background & Set-Up

02.  Why: The Arbitrariness Problem & Our Work

03.  How: New Classification Method & Results

04.  Summary & Future Work

How?
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01.   What: Background & Set-Up
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3Background: Higher-dim gauge theory

Higher-dimensional gauge theory is a framework beyond the Standard Model (BSM)

SM

BSM

etc.

ex.) Gauge-Higgs Unification (GHU) scenario is working well.

𝐴𝑀 = ( 𝐴𝜇  ,  𝐴5 )5D gauge field:

Higgs neutrino mass

dark matter

hierarchy problem

# No Higgs potential (No quadratic divergence)

# Gauge SSB (Hosotani Mechanism)

# Dark Matter, Strong CP, Baryon Asymmetry, Neutrino Mass etc.

Hosotani (1983)

Hosotani (1989)
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4Various Models

(4 + 𝑑)-dimensional gauge theory:

𝑆𝑈 3  on 𝑆1/𝑍2

𝑈 1  on 𝑆1

𝑆𝑈(6) on 𝑆1/𝑍2

Hatanaka et al. (1998)

Kubo et al. (2002)

Maru et al. (2022)

𝑈(3) × 𝑈(3) on 𝑇2/𝑍2Hosotani et al. (2005)

𝑈(3) on 𝑇2/𝑍3 Matsumoto et al. (2016)

etc.

4. Gauge Group 𝐺 

2. Compactification 

3. Boundary Conditions (BCs)

1. Dimension 𝑑 
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5𝑆1/𝑍2 Orbifold

0𝜋𝑅

+𝑦

𝑅

𝑆1 sphere 𝑆1/𝑍2 orbifold

0𝜋𝑅

+𝑦

−𝑦

# cannot achieve chiral 4D theory

# translation symmetry

# can achieve chiral 4D theory

# parity around the fixed points
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6𝑇2/𝑍𝑚Orbifold (𝑚 = 2,3,4,6)

0

# rotation around the fixed points

𝑇2/𝑍3 orbifold𝑇2 torus

1

𝜏

1

𝜔 = 𝑒2𝜋𝑖/3

0

# translation symmetry



25
7Boundary Conditions (BCs)

The BCs are characterized by representation matrices. 

Geometric Symmetry Boundary conditions (BCs)

𝑆1/𝑍2:
# 𝑃0

2 = 𝑃1
2 = 1

(𝑃0, 𝑃1)
# 𝑈(𝑁) matrices
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8Our Set-up

(4 + 𝑑)-dimensional gauge theory:

Classification of BCs
4. Gauge Group 𝐺 → 𝑆𝑈 𝑁 , 𝑈(𝑁)

2. Compactification → orbifold

3. Boundary Conditions (BCs)

1. Dimension 𝑑 → 1,2

𝑇2/𝑍𝑚  𝑆1/𝑍2

𝑑 = 1: 𝑑 = 2:

(𝑚 = 2,3,4,6)

(𝑃0, 𝑃1) (𝑅0, 𝑅1) (𝑅2 for 𝑚 = 2)

(𝑧 = 𝑦1 + 𝜏𝑦2)
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02.  Why: The Arbitrariness Problem & Our Work
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10Arbitrariness problem of BCs

model 𝒜

ℊ𝐵𝐶
(4𝐷)

= 𝑆𝑈(3)

ℊ𝐵𝐶
(4𝐷)

= 𝑈(1) × 𝑈(1)

ℊ𝐵𝐶
(4𝐷)

= 𝑈(1)

𝑚𝜙
(𝑛)

= (
𝑛

𝑅
,

𝑛

𝑅
,

𝑛

𝑅
)

𝑚𝜙
(𝑛)

= (
𝑛

𝑅
,

𝑛+1/2

𝑅
,

𝑛+1/2

𝑅
)

𝑚𝜙
(𝑛)

= (
𝑛+1/2

2𝑅
,

𝑛+1/2

2𝑅
,

𝑛

𝑅
)

𝑃0 𝑃1

choices for BCsex.) 𝐺 = 𝑆𝑈(3) on 𝑆1/𝑍2 Kubo et al. (2002)

the Arbitrariness Problem of BCs

Setting them by hand is not ideal.

Which BCs should be imposed?

𝒜

ℬ 𝒞

𝑃0 𝑃1

𝑃0 𝑃1

model ℬ

model 𝒞
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11Gauge Transformations

Gauge Transformations for BCs:

# 𝑃′0
2 = 𝑃′1

2 = 1

# 𝑈(𝑁) constant

# 𝑃0
2 = 𝑃1

2 = 1

# 𝑈(𝑁) constant

The connected BCs construct Equivalence Classes (ECs):

(𝑃0
′ , 𝑃1

′) (𝑃0, 𝑃1)

physical equivalent

Haba et al.(2003)

Haba et al.(2004)

EC

choices for BCs
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12History of ECs research

#  Which BCs are connected?

#  How is each class characterized?

#  How many ECs are there?

1.  Progress in resolving the arbitrariness of BCs

2.  Systematic understanding of models

Haba, Harada, Hosotani, Kawamura (2003)

Haba, Hosotani, Kawamura (2004)

Hosotani, Noda, Takenaga (2004)

Kawamura, Kinami, Miura (2008)

Kawamura, Miura (2009)

Kawamura, Nishikawa (2020)

Kawamura, Kodaira, Kojima, Yamashita (2023)

Hosotani (1989)

Motivation for classifying ECs:
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13Our Work

Previous Method Our New Method

Classified without specifying Ω(𝑦)

By Trace Conservation Laws (TCLs)

Takeuchi, Inagaki, PTEP2024,

033B03 (arXiv:2401.09809)

Takeuchi, Inagaki, PTEP2024,

063B04 (arXiv:2404.19411)

𝑆1/𝑍2, 𝑇2/𝑍3

𝑇2/𝑍𝑚

Classified by Finding Ω(𝑦) 

(𝑚 = 2,3,4,6)

Other transformations?
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03.  How: New Classification Method & Results
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15Diagonal set of BCs

# 𝑅0
3 = 𝑅1

3 = 𝑅1𝑅0
3 = 1

# 𝑈(𝑁) matrices

(𝑅0, 𝑅1) 

We classify the BCs on 𝑇2/𝑍3.

: diagonal (𝑅0, 𝑅1)
# simultaneously diagonalizable.

just examine  diagonal (𝑅0, 𝑅1)

# eigenvalues 𝜔, 𝜔2, 1  (𝜔 = 𝑒2𝜋𝑖/3)

𝑇2/𝑍3

diagonal (𝑅0
′ , 𝑅1

′ )

etc.

Kawamura et al.(2023)
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16Candidates for connection

𝑅0 = 𝜔, 1  

𝑅1 = 𝜔, 1  

𝑅0 = 𝜔, 𝜔2  

𝑅1 =  1, 𝜔2  

𝑅0 = 𝜔, 1  

𝑅1 = 𝜔, 1  

𝑅0 = 𝜔 , 1  
𝑅1 = 1 , 𝜔  

𝑅0 = 𝜔, 𝜔2, 1

𝑅1 = 𝜔, 𝜔2, 1

4 × 4,  5 × 5, ……

2 × 2

3 × 3

etc.

etc.

𝑅0 =  𝜔, 𝜔2, 1

𝑅1 =  𝜔, 𝜔2, 1

𝑅0 =  𝜔, 𝜔2, 1

𝑅1 = 𝜔2, 1 , 𝜔

𝑅0 = 𝜔, 𝜔2, 1

𝑅1 = 𝜔2, 𝜔, 1

A lot of candidates are considered…
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17Trace Conservation laws (TCLs)

general gauge transf.

BCs-connecting gauge transformation is the identity of 𝑧 !

# 𝑈(𝑁) constant

arXiv:2404.19411

# 𝑅′0
3 = 1

# 𝑈(𝑁) constant

# 𝑅0
3 = 1
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18TCLs for Orbifolds

1

𝜔 = 𝑒2𝜋𝑖/3

The number of fixed points

for  𝑧 = 0

for  𝑧 =
2+𝜔

3

for  𝑧 =
1+2𝜔

3

𝜔𝑧 = 𝑧

𝜔𝑧 + 1 = 𝑧

𝜔𝑧 + 1 + 𝜔 = 𝑧

~

arXiv:2404.19411

The number of TCLs

final point = initial point
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19Constraints from TCLs 

𝑅0 = 𝜔, 1  

𝑅1 = 𝜔, 1  

𝑅01 = (1, 𝜔2)

𝑅0 = 𝜔, 𝜔2  

𝑅1 =  1, 𝜔2  
𝑅01 =  𝜔, 𝜔 

Most patterns are prohibited by the TCLs!

𝑅0 = 𝜔, 1  

𝑅1 = 𝜔, 1  

𝑅01 = (𝜔2, 1)

𝑅0 = 𝜔 , 1  

𝑅1 = 1 , 𝜔  

𝑅01 = 𝜔, 𝜔  

𝑅0 = 𝜔, 𝜔2, 1

𝑅1 = 𝜔, 𝜔2, 1

𝑅01 = (𝜔2, 𝜔, 1)

3 × 3
etc.

etc.

𝑅0 =  𝜔, 𝜔2, 1

𝑅1 =  𝜔, 𝜔2, 1

𝑅01 = (𝜔2, 𝜔 , 1)

𝑅0 =  𝜔, 𝜔2, 1

𝑅1 = 𝜔2, 1 , 𝜔

𝑅01 = ( 1, 𝜔2, 𝜔)

𝑅0 = 𝜔, 𝜔2, 1

𝑅1 = 𝜔2, 𝜔, 1

𝑅01 = ( 1 , 1 , 1)

𝑁 × 𝑁 cases have been sufficiently classified by the TCLs!

arXiv:2404.19411

2 × 2
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20Results: 𝑇2/𝑍3 Equiv Relations

(𝜔, 𝜔2, 1)

(𝜔, 𝜔2, 1)

(𝜔, 𝜔2, 1)

(𝜔2, 1, 𝜔)

(𝜔, 𝜔2, 1)

(1, 𝜔, 𝜔2)

N × 𝑁:Only allowed the repetitions of the permutation of 3 eigenvalues!

arXiv:2404.19411

𝑅0:

𝑅1:
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21Results: Equivalent Relations

𝑆1/𝑍2:

𝑇2/𝑍2:

𝑇2/𝑍3:

𝑇2/𝑍4:

𝑇2/𝑍6: No existence.

arXiv:2404.19411

N × 𝑁: Only allowed the repetitions of the permutation of,
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22Results: The number of ECs

: diagonal 

: off-diagonal

ex.) 𝑇2/𝑍4:

diagonal ECs:

off-diagonal ECs:

The total numbers of the diagonal and off-diagonal ECs with 𝐺 = 𝑆𝑈(𝑁) and 𝑈(𝑁)

arXiv:2404.19411
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04.  Summary & Future Work
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In 𝑆1/𝑍2 and 𝑇2/𝑍𝑚  (𝑚 = 2,3,4,6) orbifolded 𝑆𝑈(𝑁) and 𝑈(𝑁) gauge theories,

Trace Conservation Laws have completed the classification of boundary conditions.

Previous work Our work

arXiv:2404.19411
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25Future Work

#  TCLs have a wide range of applications:

- Other higher-dim orbifolds:

- Other gauge groups:

- Warped space-time:

𝑇𝑛/𝑍𝑚 etc.

𝑆𝑂(𝑁) etc.

Randall-Sundrum

# The arbitrariness problems of BCs is still under exploration…

arXiv:2404.19411
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26Summary

In 𝑆1/𝑍2 and 𝑇2/𝑍𝑚  (𝑚 = 2,3,4,6) orbifolded 𝑆𝑈(𝑁) and 𝑈(𝑁) gauge theories,

Trace Conservation Laws have completed the classification of boundary conditions.

arXiv:2404.19411
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27Follow-Up
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28SU(N) ECs = U(N) ECs
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29𝑇2/𝑍𝑚 Orbifold (𝑚 = 2,3,4,6)

𝑇2/𝑍2: 𝑇2/𝑍3:

𝑇2/𝑍4: 𝑇2/𝑍6:
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30Diagonal ECs on 𝑇2/𝑍6

: diagonal (𝑅0, 𝑅1)

Consistent Conditions:

For diagonal matrices,

(𝜂 = 𝑒2𝜋𝑖/6)

There is no non-trivial connection.
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32Gauge Transformations

unitary parity 𝑁 × 𝑁 matrices
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33Simultaneous diagonalizability

𝑆1/𝑍2,  𝑇2/𝑍2,  𝑇2/𝑍3

𝑇2/𝑍4,  𝑇2/𝑍6

Any BCs can be simultaneously diagonalized

One cannot be simultaneously diagonalized

diagonal ECs

: diagonal BCs

: off-diagonal BCs

off diagonal ECs

(𝑇2/𝑍4,  𝑇2/𝑍6 have)
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34TCLs for diagonal matrices

𝑇2/𝑍2:

𝑆2/𝑍2:

𝑇2/𝑍3:

𝑇2/𝑍4:

𝑇2/𝑍6:

The number of TCLs is infinite, corresponding to the infinite number of fixed points. 

For diagonal matrices, there are only a few independent TCLs.
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35Results: off-diagonal ECs

The TCLs show the existence of off-diagonal ECs, which consist only of off-diagonal matrices.

The TCLs also indicate whether the off-diagonal ECs are independent of each other.
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36Results: The number of ECs

𝑇2/𝑍2:

𝑆2/𝑍2:

𝑇2/𝑍3:

𝑇2/𝑍4:

𝑇2/𝑍6:

The exact numbers of ECs in 𝑆𝑈(𝑁) and 𝑈(𝑁) gauge theories:

# of diag BCs

# of equivalence relations

# of off-diag ECs

# of Total ECs

(solved but too detailed)
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37The number of ECs (𝑇2/𝑍6)
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38The consistency conditions



25
39The basic consistency conditions
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40Compactification

𝑆1 compactification

∼ Planck scale∼measurable

Higher-dim theory 

4-dim theory

Compactification

Boundary Conditions
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