ヒッグス爆発終状態を含めた 暗黒物質残存量計算

山中 真人 (法政大学)

共同研究者 榎本 成志, 広島 渚, 村瀬 孔大

概要

- ・高エネルギーヒッグスは多体ヒッグスへ崩壊(0(100)体終状態)
- ・ヒッグスポータル暗黒物質の対消滅過程は多体ヒッグス終状態が優勢 ・ヒッグス共鳴を拾わずにO(TeV)ヒッグスポータル暗黒物質が残存量OK

Higgs discovery complete the particle physics?

J. Ellis, M. Gaillard, D. Nanopoulos, arXiv:1504.07217

What is the origin of symmetry breaking? How many Higgs fields?

Find the fundamental model describing the Higgs and DM in a unified picture!

What is dark matter (DM)? How was it generated?

So many literatures suggest that the Higgs is a bridge between the DM and our world

Important and necessary to carefully investigate the connection between the Higgs and DM

Higgs portal dark matter (literatures)

G. Arcadi, A. Djouadi, M. Raidal, Phys. Rept. (2020)

Previous works

 $DM + DM \leftrightarrow H + H$ (in general, two SM particles) only for the calculation of relic density

 $\langle \sigma v(\text{DMDM} \rightarrow HH) \rangle$ (early universe) (almost) one-to

(almost) one-to-one correspondence $\sigma v(\text{DMDM} \rightarrow HH)$

(current universe)

Indirect detection (current universe)

High-multiplicity scalar production

J. M. Cornwall, PLB243 (1990), H. Goldberg, PLB 246 (1990)

Exponential growth of the "decay rate" of energetic scalar with final state multiplicity

$$\Gamma_{\rm n} \sim \lambda^n n! \times f_n(E)$$

TA.

1/

1×

5 Higgs production

R - K

*A

A-De-

Æ

X

12

the the

K-

-Ste

Aim and Talk plan

Indirect detection (current universe)

Revisit the Higgs portal DM with taking into account high-multiplicity final state

-- precisely calculate the relic density to make use of a probe for DM-Higgs interaction

-- analyze the indirect signals of DM annihilation to reconstruct the nature of DM from cosmic rays

- 1. Introduction
- 2. Setup and formulation
- 3. Numerical result
- 4. Summary

<u>Talk plan</u>

 ϕ : Higgs (φ after symmetry) Note: Applicable to other models of a general scalar

Standard Model + dark matter χ

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 - \frac{1}{4} \lambda (\phi^2 - v^2)^2 + \bar{\chi} (i\partial - m_\chi) \chi - (y_\chi \phi \overline{\chi_R} \chi_L + \text{h.c.})$$

$$\xrightarrow{\text{Symmetry}} \mathcal{L}_{\text{int}} = -\lambda v \varphi^3 - \frac{1}{4} \lambda \varphi^4 - \varphi \bar{\chi} (\tilde{y}_\chi P_L + \tilde{y}_\chi^* P_R) \chi \qquad \left(\begin{array}{c} \tilde{y}_\chi = y_\chi e^{-i \arg M_\chi} \\ M_\chi = m_\chi + y_\chi v \end{array} \right)$$

breaking

Transition amplitude

$$\sum_{\text{spins}} |\mathcal{M}(\chi\bar{\chi} \to n\varphi)|^2 = \sum_{\text{spins}} \left| \mathcal{M}(\chi\bar{\chi} \to \varphi^*) \underbrace{\frac{1}{s - m_{\varphi}(s)^2 - im_{\varphi}(s)\Gamma_{\varphi}(s)}}_{\text{S} - m_{\varphi}(s)\Gamma_{\varphi}(s)} \mathcal{M}(\varphi^* \to n\varphi) \right|^2$$
DM annihilation to intermediate Higgs (straightforwardly calculated) \supset Higgspersion effect \supset Higgsprosion effect $\mathcal{M}(\chi\bar{\chi} \to \varphi^*)$ $\stackrel{\mathcal{M}(\varphi^* \to n\varphi)}{\longrightarrow} Higgsprosion effect } \mathcal{M}(\varphi^* \to n\varphi) = 0$

Formulation

Boltzmann equation (evolution equation of DM density)

Dimensionless reaction rate

M. V. Libanov, V. A. Rubakov, D. T. Son, S. V. Troitsky, PRD50 (1994) V. Khoze, M. Spannowski, NPB 926 (2018)

DM annihilation with Higgsplosion

Boltzmann equation

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\int \frac{d^3k_{\chi}}{(2\pi)^3 2E_{\chi}} \frac{d^3k_{\bar{\chi}}}{(2\pi)^3 2E_{\bar{\chi}}} \Big[f_{\chi}f_{\bar{\chi}} - f_{\varphi_1} \cdots f_{\varphi_n} \Big] \\ \times \Big| \tilde{y}_{\chi} \Big|^2 \Big(s - 4|M_{\chi}|^2 \cos\theta_{\tilde{y}_{\chi}} \Big) \frac{1}{s^2 + m_{\varphi}^4 \mathcal{R}(s)^2} m_{\varphi}^2 \mathcal{R}_n(s)$$

With Maxwell-Boltzmann distribution and energy conservation

$$f_{\chi}f_{\bar{\chi}} - f_{\varphi_1} \cdots f_{\varphi_n} = \frac{1}{\left(n_{\chi}^{eq}\right)^2} \left[\left(n_{\chi}\right)^2 - \left(n_{\chi}^{eq}\right)^2 \right]$$

- $\square Final state multiplicity depends only on the self-coupling <math>\lambda$
- □ If $2M_{\chi} > \sqrt{s_{peak}}$, the final state does not explode (averaging integral covers the region outside W(s) only)

• For the case of SM (
$$\lambda \simeq 0.13$$
):

$$\sqrt{s_{peak}} \simeq 195 m_{\varphi}$$
 with $\Delta \sqrt{s} \simeq \pm 1 m_{\varphi}$

 \sqrt{s}/m_{φ}

Interaction rate/Hubble rate vs M_{χ}/T

$\square \text{ Maximized by } 2|M_{\chi}| \simeq 194m_{\varphi}$

smaller compared with the expectation from window function, $2|M_{\chi}| \simeq 195 m_{\varphi}$, due to thermal kinetics of DM

D Small interaction rate for $2|M_{\chi}| < 190m_{\varphi}$

mismatch between the window function and other part in thermal averaging due to $K_1(\sqrt{s}/T) \ll 1$ wherein the window opens

Freeze-out of $\chi \bar{\chi} \leftrightarrow n \varphi$ (rough criterion)

Relic density

Planck collaboration

□ Parameter set ($M_{\chi} = 4.9$ TeV, $\tilde{y}_{\chi} = 1.3i$) successfully accounts for relic abundance

Much heavier than the Higgs portal DM in previous works, $m_{\rm DM} \simeq 62$ GeV, where relic density is achieved by the Higgs pole

 Quantum statistics for the highmultiplicity state could change the results

Bose-Einstein distribution should be applied for the thermal averaging, which may be enhanced by stimulated emission

Summary and discussion

□ Revisit Higgs portal DM with taking into account Higgsplosion

- -- energetic Higgs boson decays into *n*-Higgs boson
- -- long-stay in equilibrium through strong interaction with Higgsplosion
- -- a favored parameter: $M_{\chi} = 4.9$ TeV and $|\tilde{y}_{\chi}| = 1.3$

(much heavy compared with Higgs portal DM in previous works)

-- simple and applicable to various models

-- quantum statistics effects for high-multiplicity

Bose-Einstein distribution and stimulated emission could change the shape of window function W(s)

-- test in indirect search of DM

important and necessary to reanalyze the signal with high-multiplicity state to reconstruct the nature of DM

Recurrence equation of dimensionless amp.

Ref: e.g., M. V. Libanov, V. A. Rubakov, D. T. Son, S. V. Troitsky, PRD50 (1994)

Finite momentum amplitude

Zero-momentum limit

$$c_{n} = \frac{m_{\varphi}^{2}}{s_{n} - m_{\varphi}^{2}} \left(3\sum_{n_{1}}^{n-1} c_{n_{1}} c_{n-n_{1}} + 2\sum_{n_{1}}^{n-2} \sum_{n_{2}}^{n-n_{1}-1} c_{n_{1}} c_{n_{2}} c_{n-n_{1}-n_{2}} \right)$$

$$\left(s_{n} - m_{\varphi}^{2} = (n^{2} - 1)m_{\varphi}^{2} \qquad \widetilde{c}_{n} \equiv c_{n} \left(\boldsymbol{p}_{n} = \boldsymbol{0} \right) \right)$$

$$\widetilde{c}_{n} = \frac{1}{n^{2} - 1} \left(3\sum_{n_{1}}^{n-1} \widetilde{c}_{n_{1}} \widetilde{c}_{n-n_{1}} + 2\sum_{n_{1}}^{n-2} \sum_{n_{2}}^{n-n_{1}-1} \widetilde{c}_{n_{1}} \widetilde{c}_{n_{2}} \widetilde{c}_{n-n_{1}-n_{2}} \right)$$

 $\therefore \quad \widetilde{c}_1 = 1, \quad \widetilde{c}_2 = 1, \quad \widetilde{c}_3 = 1, \quad \dots, \quad \widetilde{c}_n = 1 \quad (\forall n \ge 1) \qquad \text{Backup slides } 2$

Finite momentum amplitude

With finite momentum

$$c_{n} = \frac{m_{\varphi}^{2}}{s_{n} - m_{\varphi}^{2}} \left(3\sum_{n_{1}}^{n-1} c_{n_{1}} c_{n-n_{1}} + 2\sum_{n_{1}}^{n-2} \sum_{n_{2}}^{n-n_{1}-1} c_{n_{1}} c_{n_{2}} c_{n-n_{1}-n_{2}} \right)$$

$$s_{n} - m_{\varphi}^{2} = (E_{1} + ... + E_{n})^{2} - (\mathbf{p}_{1} + ... + \mathbf{p}_{n})^{2} - m_{\varphi}^{2}$$

$$\simeq \left(nm_{\varphi} + \frac{1}{2m_{\varphi}} \sum_{i} \mathbf{p}_{i} \right)^{2} - \sum_{i,j} \mathbf{p}_{i} \cdot \mathbf{p}_{j} - m_{\varphi}^{2}$$

$$\simeq \left(n^{2} - 1 \right) m_{\varphi}^{2} \left(1 + \frac{1}{n+1} K_{n} \right) - K_{n} \equiv \sum_{i}^{n} \frac{\mathbf{p}_{i}^{2}}{m_{\varphi}^{2}} \right|$$
Amplitude in terms of expansion parameter δ_{n}

$$c_{n} \simeq \tilde{c}_{n} \left(1 + \delta_{n} K_{n} \right)$$

$$= 1 + \delta_{n} K_{n}$$

$$(n^{2} - 1)\left(\frac{n}{n+1} + n\delta_{n}\right) = 6\sum_{n_{1}=1}^{n-1} (n - n_{1})n_{1}\delta_{n_{1}}$$

$$\delta_n \simeq -\frac{7}{12} + \frac{0.858}{n} + \mathcal{O}\left(n^{-2}\right) \quad \text{(in large n limit)}$$

$$c_n = \frac{(-1)^{1-n}}{n!} \left(\frac{\lambda}{2m_{\varphi}^2}\right)^{\frac{1-n}{2}} \left(1 - \frac{7}{12}\sum_{i=1}^n \frac{p_i^2}{m_{\varphi}^2} + \mathcal{O}\left(n^{-2}\right)\right) \simeq c \frac{(-1)^{1-n}}{n!} \left(\frac{\lambda}{2m_{\varphi}^2}\right)^{\frac{1-n}{2}} \exp\left[-\frac{7}{12}\sum_{i=1}^n \frac{p_i^2}{m_{\varphi}^2}\right]$$

Backup slides 3