

Manipulating entanglement at exceptional points In dissipative quantum systems

Géraldine Haack University of Geneva, Switzerland

Khandelwal, Brunner, Haack, PRX Quantum 2 (2021) Khandelwal, Chen, Murch, Haack, arXiv:2310.11381 (2023), PRL

@ Weijian Chen, Kater Murch

Frontiers in Non-equilibrium Physics 2024

Yukawa Institute for Theoretical Physics, Kyoto University, 11.07.2024

Non-Hermitian physics in classical physics

• Damped harmonic oscillator

Non-Hermitian physics in classical physics

• Damped harmonic oscillator

Evolution equations

$$
\begin{pmatrix}\n\dot{x} \\
\dot{p}\n\end{pmatrix} = \begin{pmatrix}\n0 & 1/m \\
-k & -2\gamma\n\end{pmatrix} \begin{pmatrix}\nx \\
p\n\end{pmatrix}
$$

$$
\lambda_{\pm} = -\gamma \pm \sqrt{\gamma^2 - k/m}
$$

 $\lambda_+ = \lambda_ |v_+\rangle = |v_-\rangle$

degenerescence of two eigenvalues AND coalescence of their respective eigenvectors.

-> Exceptional point

Critical damping happens at the exceptional point of the evolution matrix of the damped h.o.

General solution: $\rho_S(t) = e^{\mathcal{L}t} \rho_S(0)$

The spectrum of the Liouvillian sets the decay modes of the quantum system towards its steady state.

$$
\mu, T
$$
\n
$$
\mu, T
$$

• Lindblad master equation:
$$
\dot{\rho}_S = -\frac{i}{\hbar}[H_S, \rho_S] + \sum_i \left(\gamma_+^{(i)} \mathcal{D}[\sigma_+^{(i)}] \rho_S + \gamma_-^{(i)} \mathcal{D}[\sigma_-^{(i)}] \rho_S\right)
$$

• Lindblad master equation:
$$
\dot{\rho}_S = -\frac{i}{\hbar} [H_S, \rho_S] + \sum_i \left(\gamma_+^{(i)} \mathcal{D}[\sigma_+^{(i)}] \rho_S + \gamma_-^{(i)} \mathcal{D}[\sigma_-^{(i)}] \rho_S \right)
$$

Heat current [a.u.]

• Lindblad master equation:
$$
\dot{\rho}_S = -\frac{i}{\hbar}[H_S, \rho_S] + \sum_i \left(\gamma_+^{(i)} \mathcal{D}[\sigma_+^{(i)}] \rho_S + \gamma_-^{(i)} \mathcal{D}[\sigma_-^{(i)}] \rho_S\right)
$$

Heat current [a.u.] Concurrence [a.u.]

Khandelwal, Brunner, Haack, PRX Quantum 2 (2021)

$$
\dot{\rho} = -i[H_S, \rho_S] + \sum_{j=1,2} \gamma_j^+ \Big(\sigma_+^{(j)} \rho_S \sigma_-^{(j)} - \frac{1}{2} (\sigma_-^{(j)} \sigma_+^{(j)} \rho_S + \rho_S \sigma_-^{(j)} \sigma_+^{(j)}) \Big)
$$

$$
\dot{\rho} = -i[H_S, \rho_S] + \sum_{j=1,2} \gamma_j^+ \left(\sigma_+^{(j)} \rho_S \sigma_-^{(j)} - \frac{1}{2} (\sigma_-^{(j)} \sigma_+^{(j)} \rho_S + \rho_S \sigma_-^{(j)} \sigma_+^{(j)}) \right)
$$

$$
\dot{\rho} = -i[H_S, \rho_S] + \sum_{j=1,2} \gamma_j^+ \Big(\sigma_+^{(j)} \rho_S \sigma_-^{(j)} - \frac{1}{2} (\sigma_-^{(j)} \sigma_+^{(j)} \rho_S + \rho_S \sigma_-^{(j)} \sigma_+^{(j)}) \Big)
$$

@ Weijian Chen, Kater Murch

Dynamics along this contour: $\rho(t) = \mathcal{T}e^{\int_0^t \mathcal{L}_{[q]}(t')dt'} \rho(0)$

At each time, we compute the fidelity with the singlet Bell state (maximally entangled state):

$$
\mathcal{F}_{|\Psi^-\rangle}(t) = \text{Tr}\{|\Psi^-\rangle\langle\Psi^-|\rho(t)\}
$$

First, we start with the qubits in an orthogonal Bell state with respect to the singlet (overlap 0).

$$
\rho(t=0) = |\Psi^+\rangle\langle\Psi^+|
$$

Khandelwal et al., arXiv:2310.11381 (2023), accepted in PRL

Khandelwal et al., arXiv:2310.11381 (2023), accepted in PRL

Summary & Perspectives

 T_1,μ_1

Uncontrolled dissipation as a resource to generate and manipulate entanglement

Bohr Brask, Haack, Brunner, Huber, NJP 17 (2015) Khandelwal, Brunner, Haack, PRX Quantum 2 (2021) Khandelwal, Chen, Murch, Haack, arXiv:2310.11381 (2023), PRL

> Connections between theoretical frameworks for assessing the dynamics of open quantum systems

Non-Hermitian and topological properties of Lindbladians towards quantum sensing

Blasi, Khandelwal, Haack, arXiv:2312.15065 (2023) Bourgeois, Blasi, Khandelwal, Haack, Entropy 26 (2024)

 $\hat{H}_{R\alpha}$

 Γ_{α} Γ_2 Γ_1 \hat{H}_{R1} \hat{H}_{R2} HE $\Gamma \to 0$, $\Gamma t \sim$ const. ME LB $\frac{1}{t\rightarrow\infty}$ T_{α}, μ_{α} T_{α}, μ_c \mathcal{L}_{α}^{-} $\left(\begin{array}{c} \end{array}\right) \mathcal{L}_{\alpha}^{+}$ \hat{a}_{α} \mathcal{S}_{0} T_2,μ_2 T_2,μ_2