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Quantum time-keeping device
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Continuous measurement

B Chime quantum clock inevitably interacts with environment
B Such dynamics can be described by the Gorini—Kossakowski—
Sudarshan—Lindblad (GKSL) equation
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Continuous measurement and matrix product state

dp 1
_ — Tyt T
— = Lp=—ilH,p]+ Emj [meLm S AL Lmp + L L }

B Continuous measurement Is represented by the Kraus operator
B For [t t + dt]

T N¢ T Nc ; Mo =1g —wdtHeg  Nojump
p(t 4+ dt) = MopM, + Z My, pM,,, = Z My, p My, M. = \/dtL Jump




Continuous measurement and matrix product state

B Applying the Kraus operators repeatedly within [0, 7]
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B Continuous measurement can be represented 0y a matrix product state

(MPS)

(7)) = Z MmNE—l oo M, [95(0)) @ |my,—1,. .. mo)
Trgewa [[O(7))(¥(7)] = p(7)




Continuous measurement and matrix product state
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B All the jJump Information Is
encoded in MPS

B Measurement of jJump
Information can be
performed by Hermitian
operator at the final time

o —1 oo Mo, |¢5(0)> & |mNe—1u . 'm0>




Continuous matrix product state (cMPS)
[Verstraete et al., Phys. Rev. Lett. 2010, Osborne et al., Phys. Rev. Lett., 2010]

M |n the continuous limit, MPS becomes continuous MPS (cMPS)

B cMPS encodes classical/quantum stochastic processes into quantum
field

Markov process
, State

c/b;?r1 (s): field operator satisfying the commutation Jump

Y:
Bhay (52) 01, (53) B, (52) 0}, (51) [vac) 4 ™ -
Y]

W(t)) =U(t)|vs(0)) @ |vac) 1 $2.53 S4 TS

System state Field state

U(t) = Te—i Jo ds[H@Ina+3,, (iILm®}, (s)=iL},@¢m (s))]
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Observable

B The observable In continuous measurement IS

N = z C.N,
m

B V., can be calculated by the t(T)taI number operator

N, = f dt §1 () (D)
0

B Then, the expectation of N,,, becomes
4 cMPS state

(Y(D|ls ® Ny |¥ (1))




Classical Cramér-Rao inequality

Classical estimation

Prob. dist. Sampling Estimation
P(z;0) D = {x1,x2,..., TN, } ©(D)
B Crameér-Rao inequality . P
Var|d] > F0) = —< lnP(x|9)>
6] = B 002
B Generalized Crameér-Rao mequallty Fisher information
Var|© (9)]

(06(8))° T(Q)
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Classical and quantum estimation

Classical estimation

Prob. dist. Sampling Estimation
P(x;0) D= {z1,22,...,
Quantum estimation
Quantum state Measurement Sampling Estimation




Quantum Fisher information

B |[n quantum estimation, there is freedom on the measurement operator
1, (POVM)

B Quantum Cramer-Rao inequality IS

Var|6]| > -
ar[]_TQ(H)

where F(8) Is the quantum Fisher information (QFI)

B For mixed state and non-unitary dynamics, QFI is difficult to calculate In
general

B For pure state [yg), Fo(0) Is given by
FQ(6) = 4|(@ovo | Butbo) + (Butbo | 0))’
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Quantum TUR for continuous measurement
[Hasegawa, Phys. Rev. Lett., 2020]

B Consider a hypothetical parameter inference in continuous
measurement

M| et 6 € R be a parameter. Suppose
L,(6)=vV1+6L,,, H®) =1+6)H

B From quantum Cramer-Rao inequality
Z N = z CouN

Var|N -
(69<N>9)2 B :FQ (‘9) The nﬁlmber of
B \\Ve obtain Jumps

Var|N
(N )2 fFQ (Hw h depends on type

of continuous
measurement
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Quantum TUR for continuous measurement
[Hasegawa, Phys. Rev. Lett., 2020]

B Quantum Fisher information for continuous measurement can be

calculated via two-sided GKSL equation [Gammelmark & Malmer, Phys. Rev.
Lett., 2014]

B For the jJump measurement (h = 1)

Var|N] 1 .
> > (steady-state condition)
(N) A(T) Bq (7) Var[N] 1 { Clacsicn J
T:time duration INZ Z A assical case

At) =1 Z Tr[meSSL;rn] : frequency of jump
(COI‘I‘ngpOHdS to dynamical activity )
B,: coherent term contribution (difficult to calculate)

A(T) + By (1) : Quantum dynamical activity
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Exact representation of quantum dynamical activity
[Nishiyama & Hasegawa, Phys. Rev. E, 2024]

M |[n [Hasegawa, Phys. Rev. Lett., 2020], only T — oo representation was
calculated

M In [Nishiyama & Hasegawa, Phys. Rev. E, 2024], we derived its exact
representation for arbitrary t

B(r) = A(r) + 8 /OT ds, /0 dsyRe (Trg [H;fﬁf[g (51 — 83) ps (SQ)D —4 (/OT dsTrs [Hspg(s)])

\ ] |\ J
| |

Classical dynamical activity Coherent dynamics contribution
A(r) =7 T [Lmp™ L]

2
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Exact representation of quantum dynamical activity

[Nishiyama & Hasegawa, Phys. Rev. E, 2024]

B Upper bound can be derived B
B(tr) < B(1)

B(1) = A(T)—I—S/ dslaHS(sl)/ dsyop . (82)

) =1/((0 - (0)(s))} (0 -

B The upper bound scales as 0(74)

O)) <

Standard deviation
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Exact representation of quantum dynamical activity
[Nishiyama & Hasegawa, Phys. Rev. E, 2024]

H=A ‘6) (6‘ -+ (Q/Z) (‘6) <g‘ —+ ‘g) <€D le): excited, | g): ground

L = /k|g) (e
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Heisenberg-Robertson uncertainty relation and TUR

[Hasegawa, Nat. Comm., 2023]

B Consider the Heisenberg-Robertson uncertainty relation in the bulk space

T X = 5 Kl Y|

B Considering specific X and Y, it is shown that the uncertainty relation
reduces to qguantum TUR
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Heisenberg-Robertson uncertainty relation and TUR

[Hasegawa, Nat. Comm., 2023]

B Recall that the scaled unitary for the cMPS is

U(t) = Texp {—i[(:ds (%Hy ®Ina+ ) (z‘\/ng ® ¢'(s) — i\/gLIn ® ¢(s)))]

B Corresponding Hamiltonian can be defined by

AUt (

Tt

M et C be a counting observable. Define its Heisenberg picture:
C(t) = UT(t)CU(t)

K(t) = Dty () = Te— o K(¥)a
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Heisenberg-Robertson uncertainty relation and TUR

[Hasegawa, Nat. Comm., 2023]

B Then the Heisenberg-Robertson UR provides a quantum TUR
1 _
[K@OLC@] = 5 [WDIIKR), C@)]14)]

$

[clz . 1

2 (0,(C)-)* ~ B(7)

M [t can be seen that the Helsenberg-Robertson uncertainty relation
plays an important role not only for QSL but also for TUR.
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Application of another uncertainty relation
[Nishiyama & Hasegawa, arXiv:2402.09680]

B Using the scaled cMPS representation, we can identify the continuous
measurement as a closed quantum dynamics (i.e., unitary evolution)

B Besides the Heisenberg-Robertson uncertainty relation, we can apply
other uncertainty relations to obtain TURs and QSLs in GKSL
dynamics

N—> ¢
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Maccone-Patl uncertainty relation
[Maccone & Pati, Phys. Rev. Lett. 114, 039902 (2015)]

B Maccone and Pati derived an uncertainty relation that is tighter than
Helsenberg-Robertson uncertainty relation

M et A, B be Hermitian operators and @) be a state orthogonal to [y)

[A]* + [B]" > -

[A][B] = £

[A] : Standard deviation of 4

iyl [4, BlJY) + (]
L[4, B]IY

(A -
)

= iB)|)|?

L 3 [(o |y 2| 9]

B Then we derived guantum TURs and QSLs for open quantum
dynamics using the Maccone-Pati uncertainty relation
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Concentration inequality

B Many TURs take advantage of information inequalities such as
Cramer-Rao inequality
1

Var[d] > m

B Concentration inequalities constitute another pivotal class of
statistical tools.

EIX] pz > o) > (1 — 02 2L

B \\e derived the thermodynamic concentration inequalities (TCI)
that provide lower bounds for the probability distribution of
observables.

26



Dynamics

W Again, we consider continuous measurement in GKSL equation

dp

. Lo |
dt —ilH, p] + 2 LinpLy, — E{Lmme T meLm}
| _

B GKSL equation can recover classical Markov process as a particular
case

d
—P(t) = WP(t)

where P(t) is probability distribution and W is transition rate.
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Observable with no-jump condition

B So far, we have considered the counting observable that counts the
number of jumps within time interval

B Here, we consider an observable that satisfies “no-jump condition”
M |_et ¢ be a trajectory of continuous measurement

Excited
state

N

Ground
state

' >
(tr,my =1) (lb,mo =2) (3, m3 =1) Time

Trajectory (, = [(t1,my =1),(k, M2 =2),(tz, M3 = 1)]
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Observable with no-jump condition

M et N({) be a function of a trajectory ¢
B N ({) can be arbitrary as long as the no-jump condition Is met
B The “no-jump condition” 1s given by
N({p) =0
where {y IS a trajectory with no-jump

B Apparently, this condition Is met by the counting observable that
counts the number of jump events
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Thermodynamic concentration inequality
[Hasegawa & Nishiyama, arXiv:2402.19293]

B For the observable with the no-jump condition, the following relation
holds

2

COS % / : l:(t) dt| <P(N(r)=0) Quantum case
0
e~ A < P(N(7) = 0) Classical case

B(7) : Quantum dynamical activity
A (1) : Classical dynamical activity
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Thermodynamic concentration inequality
[Hasegawa & Nishiyama, arXiv:2402.19293]

B Dynamical activities A () and B(t) quantify the activity of the
system

M Larger A(t) and B(7) = more jumps, more intense coherent dynamics

B As the dynamical activity increases, the probability P(N(7) =
0) decreases.

B By using the thermodynamic concentration inequality, several trade-
off relations can be derived

31



Sketch of derivation

B From MPS representation

@)= D Vi Vg [5(0)) @ g, -+, )

mK—li.“imO

m = 0 Is associated with
no-jump

= Vl$s(0) @ Im)

B Then the probability of no-jump is

p(r) = (¥s(0)[V{Vois(0))
(T(0) | T(1))]* = |(¥5(0)|Vo|ys(0))°
(450)|Vivolys(0))]
(7). §
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Sketch of derivation

B Next, we obtain a lower bound of the inner product

B From geometric QSL, the inner product and the quantum Fisher
Information is related via

%/OT V l:(t) di — %/OT J (t)dt > arccos |[(¥(7) | ©(0))]

1 f2
N N = / dtNIT (@)
Quantum dynamical Quantum Fisher t
activity information |W(t1)) 7

.". "%
L »
llllll
llllllllll

geodesic

Lo(|Y(11)),[¥(2)))

33



Application: Petrov inequality case

B From the thermodynamic concentration inequality, several trade-off
relations can be derived

B Consider the Petrov inequality [V. V. Petrov, J.Stat. Plann. Inference (2007)]
(B[ X["] - )"

P(|X| >b) > —
E[ x|

wheres >r >0andb >0
B \\e combine the TCI with the Petrov inequality with b = 0
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Application: Petrov inequality case

B Combining the Petrov inequality with TCI, the following relation

holds

—2

EIN@ITC™ 1 VB
E[|N ('r)|"']3/ (s=r) = s 5/0 t i Quantum case
E N('T) s:'r/(s—'r) 1
E[|N(7)|" s/(s—) = 1 — ¢—A() Classical case

where N (1) Is the observable satisfying the no-jump condition.
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Application: Petrov inequality case

BForr=1ands =2

Var[N(OIl _ [1 / VB®) ,
0

EINDIP T |2 t

2

B This bound Is identical to that derived in [Hasegawa, Nat. Comm.,
2023]

B For classical case, the bound becomes
Var||N(7)|] S 1
E[IN(7)|]? — eAD —1
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Application: Markov inequality case

B The reverse Markov inequality states
E[Xmax — X]

max — @

P(X<a)<

where X,,,,, 1S the maximum of X.
B Substituting the bound in the reverse Markov inequality, we have

E[|N(7)]] < Nocsin | - /0 Y ’f“) it

E[|N(7)[] < Nmax(l _ e_A(T))

B This provides upper bound on the expectation



Integral probability metric

B Integral probability metric (IPM) Is defined by

Dr (%, Q) = max|Ep[f(X)] — Eq[f(Y)]]

feF

B IPM becomes total variation distance or Wasserstein-1 distance for
particular set F

B |[PM is recently used in trade-off relations [kwon et al. arxiv:2311.01098 (2023)]

B Combining the IPM with the thermodynamic concentration inequality,
we have

Dz(P(7),P(0)) < Fuax (1 - e_A(T))
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