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Quantum time-keeping device
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Continuous measurement

◼Chime quantum clock inevitably interacts with environment

◼ Such dynamics can be described by the  Gorini‒Kossakowski‒

Sudarshan‒Lindblad (GKSL) equation
𝑑𝜌

𝑑𝑡
= −𝑖 𝐻, 𝜌 +෍

𝑚

𝐿𝑚𝜌𝐿𝑚
† −

1

2
𝐿𝑚
† 𝐿𝑚𝜌 + 𝜌𝐿𝑚

† 𝐿𝑚

where 𝐿𝑚 is a jump operator and 𝜌 is density operator

◼ For example, 𝐿 = 𝜅 𝑔 ⟨𝑒|
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Continuous measurement and matrix product state

◼Continuous measurement is represented by the Kraus operator

◼ For [𝑡, 𝑡 + 𝑑𝑡]
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Continuous measurement and matrix product state

◼Applying the Kraus operators repeatedly within [0, 𝜏]

◼Continuous measurement can be represented by a matrix product state 
(MPS)
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Continuous measurement and matrix product state

Ψ(𝜏)

◼All the jump information is 
encoded in MPS

◼Measurement of jump 
information can be 
performed by Hermitian 
operator at the final time
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Continuous matrix product state (cMPS)
[Verstraete et al., Phys. Rev. Lett. 2010, Osborne et al., Phys. Rev. Lett., 2010]

◼ In the continuous limit, MPS becomes continuous MPS (cMPS)

◼ cMPS encodes classical/quantum stochastic processes into quantum 
field

𝜙𝑚
† (𝑠): field operator satisfying the commutation

System state Field state
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Observable

𝜙 = ෍

𝑚≠𝑛

𝐶𝑚𝑛𝑁𝑚𝑛

𝑁𝑖𝑗 is the number of 

transitions from 𝑖th state 
to 𝑗th state

𝑁 =෍

𝑚

𝐶𝑚𝑁𝑚
𝑁𝑚 is the number of 
𝑚th jump event

Classical 
Quantum
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Observable

◼The observable in continuous measurement is

𝑁 =෍

𝑚

𝐶𝑚𝑁𝑚

◼𝑁𝑚 can be calculated by the total number operator

෡𝑁𝑚 = න
0

𝜏

𝑑𝑡 𝜙𝑚
† (𝑡) 𝜙𝑚 𝑡

◼Then, the expectation of 𝑁𝑚 becomes

Ψ(𝜏) 𝐼𝑆 ⊗ ෡𝑁𝑚 Ψ(𝜏)
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Classical Cramér-Rao inequality

◼ Cramér-Rao inequality

Var ෠𝜃 ≥
1

ℱ(𝜃)
◼ Generalized Cramér-Rao inequality

Var ෡Θ 𝜃

𝜕𝜃 ෡Θ
2 ≥

1

ℱ(𝜃)

ℱ 𝜃 = −
𝜕

𝜕𝜃2
ln 𝑃(𝑥|𝜃)

Fisher information

Classical estimation

Prob. dist. EstimationSampling
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Classical and quantum estimation

Classical estimation

Quantum estimation

Prob. dist.

Sampling

Estimation

Estimation

Sampling

MeasurementQuantum state
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Quantum Fisher information

◼ In quantum estimation, there is freedom on the measurement operator 
Π𝑥 (POVM)

◼Quantum Cramér-Rao inequality is

Var መ𝜃 ≥
1

ℱ𝑄 𝜃

where ℱ𝑄(𝜃) is the quantum Fisher information (QFI)

◼ For mixed state and non-unitary dynamics, QFI is difficult to calculate in 
general

◼ For pure state |𝜓𝜃⟩, ℱ𝑄(𝜃) is given by
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Quantum TUR for continuous measurement
[Hasegawa, Phys. Rev. Lett., 2020]

◼Consider a hypothetical parameter inference in continuous 
measurement

◼Let 𝜃 ∈ ℝ be a parameter. Suppose

𝐿𝑚 𝜃 = 1 + 𝜃𝐿𝑚, 𝐻 𝜃 = 1 + 𝜃 𝐻

◼ From quantum Cramer-Rao inequality
Var 𝑁

𝜕𝜃 𝑁 𝜃
2
≥

1

ℱ𝑄(𝜃)

◼We obtain
Var 𝑁

𝑁 2
≥

ℎ

ℱ𝑄(𝜃)

𝑁 =෍

𝑚

𝐶𝑚𝑁𝑚

The number of 

jumps

ℎ depends on type 

of continuous 

measurement
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Quantum TUR for continuous measurement
[Hasegawa, Phys. Rev. Lett., 2020]

◼Quantum Fisher information for continuous measurement can be 
calculated via two-sided GKSL equation [Gammelmark & Mølmer, Phys. Rev. 
Lett., 2014]

◼ For the jump measurement (ℎ = 1)

𝑇: time duration

𝒜(𝜏) = 𝜏෍

𝑚

Tr 𝐿𝑚𝜌
𝑠𝑠𝐿𝑚

† : frequency of jump

(corresponds to dynamical activity )

ℬ𝑞: coherent term contribution (difficult to calculate)

Var 𝑁

𝑁 2
≥

1

𝒜(𝜏)

Var 𝑁

𝑁 2
≥

1

𝒜(𝜏) + ℬ𝑞(𝜏)
Classical case
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Exact representation of quantum dynamical activity
[Nishiyama & Hasegawa, Phys. Rev. E, 2024]

◼ In [Hasegawa, Phys. Rev. Lett., 2020], only 𝜏 → ∞ representation was 
calculated

◼ In [Nishiyama & Hasegawa, Phys. Rev. E, 2024], we derived its exact 
representation for arbitrary 𝜏
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Exact representation of quantum dynamical activity
[Nishiyama & Hasegawa, Phys. Rev. E, 2024]

◼Upper bound can be derived

ℬ 𝜏 ≤ ℬ(𝜏)

◼The upper bound scales as 𝑂(𝜏2)
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Exact representation of quantum dynamical activity
[Nishiyama & Hasegawa, Phys. Rev. E, 2024]
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𝑒 : excited, 𝑔 : ground



Heisenberg-Robertson uncertainty relation and TUR
[Hasegawa, Nat. Comm., 2023]

◼ Consider the Heisenberg-Robertson uncertainty relation in the bulk space

◼ Considering specific 𝒳 and 𝒴, it is shown that the uncertainty relation 
reduces to quantum TUR
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𝒳 𝒴 ≥
1

2
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Heisenberg-Robertson uncertainty relation and TUR
[Hasegawa, Nat. Comm., 2023]

◼Recall that the scaled unitary for the cMPS is

◼Corresponding Hamiltonian can be defined by

◼Let 𝒞 be a counting observable. Define its Heisenberg picture:
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Heisenberg-Robertson uncertainty relation and TUR
[Hasegawa, Nat. Comm., 2023]

◼Then the Heisenberg-Robertson UR provides a quantum TUR

◼ It can be seen that the Heisenberg-Robertson uncertainty relation 
plays an important role not only for QSL but also for TUR.
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Application of another uncertainty relation
[Nishiyama & Hasegawa, arXiv:2402.09680]

◼Using the scaled cMPS representation, we can identify the continuous 
measurement as a closed quantum dynamics (i.e., unitary evolution)

◼Besides the Heisenberg-Robertson uncertainty relation, we can apply 
other uncertainty relations to obtain TURs and QSLs in GKSL 
dynamics
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Maccone-Pati uncertainty relation
[Maccone & Pati,  Phys. Rev. Lett. 114, 039902 (2015)]

◼Maccone and Pati derived an uncertainty relation that is tighter than 
Heisenberg-Robertson uncertainty relation

◼Let 𝐴, 𝐵 be Hermitian operators and 𝜓  be a state orthogonal to 𝜓

◼Then we derived quantum TURs and QSLs for open quantum 
dynamics using the Maccone-Pati uncertainty relation
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Concentration inequality

◼Many TURs take advantage of information inequalities such as 
Cramer-Rao inequality

◼Concentration inequalities constitute another pivotal class of 
statistical tools.

◼We derived the thermodynamic concentration inequalities (TCI) 
that provide lower bounds for the probability distribution of 
observables.
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Dynamics

◼Again, we consider continuous measurement in GKSL equation
𝑑𝜌

𝑑𝑡
= −𝑖 𝐻, 𝜌 +෍

𝑚

𝐿𝑚𝜌𝐿𝑚
† −

1

2
𝐿𝑚
† 𝐿𝑚𝜌 + 𝜌𝐿𝑚

† 𝐿𝑚

◼GKSL equation can recover classical Markov process as a particular 
case

where 𝐏(𝑡) is probability distribution and 𝐖 is transition rate. 
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Observable with no-jump condition

◼So far, we have considered the counting observable that counts the 
number of jumps within time interval

◼Here, we consider an observable that satisfies “no-jump condition”

◼Let 𝜁 be a trajectory of continuous measurement
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◼Let 𝑁(𝜁) be a function of a trajectory 𝜁

◼𝑁(𝜁) can be arbitrary as long as the no-jump condition is met

◼The “no-jump condition” is given by
𝑁 𝜁∅ = 0

where 𝜁∅ is a trajectory with no-jump

◼Apparently, this condition is met by the counting observable that 
counts the number of jump events

29

Observable with no-jump condition



Thermodynamic concentration inequality
[Hasegawa & Nishiyama, arXiv:2402.19293]

◼For the observable with the no-jump condition, the following relation 
holds
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Quantum case

Classical case

ℬ 𝜏  : Quantum dynamical activity

𝒜(𝜏) : Classical dynamical activity



◼Dynamical activities 𝒜(𝜏) and ℬ(𝜏) quantify the activity of the 
system

◼Larger 𝒜 𝜏 and ℬ(𝜏) = more jumps, more intense coherent dynamics

◼As the dynamical activity increases, the probability 𝑃(𝑁(𝜏) =
0) decreases. 

◼By using the thermodynamic concentration inequality, several trade-
off relations can be derived
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Thermodynamic concentration inequality
[Hasegawa & Nishiyama, arXiv:2402.19293]



Sketch of derivation

◼From MPS representation

Φ(𝜏) = ෍

𝑚𝐾−1,⋯,𝑚0

𝑉𝑚𝐾−1
⋯𝑉𝑚0

𝜓𝑆 0 ⊗ |𝑚𝐾−1, ⋯ ,𝑚0⟩

=෍

𝒎

𝒱𝒎 𝜓𝑆 0 ⊗ |𝒎⟩

◼Then the probability of no-jump is
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Sketch of derivation

◼Next, we obtain a lower bound of the inner product

◼ From geometric QSL, the inner product and the quantum Fisher 
information is related via 
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Application: Petrov inequality case

◼ From the thermodynamic concentration inequality, several trade-off 
relations can be derived

◼Consider the Petrov inequality [V. V. Petrov, J.Stat. Plann. Inference (2007)]

where 𝑠 > 𝑟 > 0 and 𝑏 > 0

◼We combine the TCI with the Petrov inequality with 𝑏 = 0
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Application: Petrov inequality case

◼Combining the Petrov inequality with TCI, the following relation 
holds

where 𝑁(𝜏) is the observable satisfying the no-jump condition. 

35

Quantum case

Classical case



Application: Petrov inequality case

◼For 𝑟 = 1 and 𝑠 = 2

◼This bound is identical to that derived in [Hasegawa, Nat. Comm., 
2023]

◼For classical case, the bound becomes
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Application: Markov inequality case

◼The reverse Markov inequality states

where 𝑋𝑚𝑎𝑥 is the maximum of 𝑋.

◼ Substituting the bound in the reverse Markov inequality, we have

◼This provides upper bound on the expectation
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Integral probability metric

◼ Integral probability metric (IPM) is defined by

◼ IPM becomes total variation distance or Wasserstein-1 distance for 
particular set ℱ

◼ IPM is recently used in trade-off relations [Kwon et al. arXiv:2311.01098 (2023)]

◼Combining the IPM with the thermodynamic concentration inequality, 
we have

38



Conclusion
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