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Unprecedented control in manipulating many-body systems (and measurements)

Understanding how quantum resources evolve is a key question




Quantum information dynamics is challenging

Quantum resources are non-linear objects in the system state, system sizes are
exponentially large with the degrees of freedom.

These same resources sometime constrain the numerical efficiency of
simulation algorithms.
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Example: S, = log tr(pf) pA = trg|V) (V]

It limits the computational efficiency of simulating a given state via tensor networks.
Bond dimension y ~ exp(St™), and ST™ « ¢ for generic evolutions.

U. Schollwock, Annals of Physics 326, 96 (2011)



Desiderata

Obtain quantitative, possibly analytical, insights on quantum dynamics for large
systems and any given evolution.

but

Hamiltonians are complicated. Their fine structure determine the effective
degrees of freedom, quasiparticles and their interactions and decays, etc.



Desiderata

Obtain quantitative, possibly analytical, insights on quantum dynamics for large

systems and any-given-evelution for typical guantum evolution, based solely on
minimal principles:

1. Locality

2. Unitarity (for noisy dynamics complete-positive-trace-preserving-ness)

3. Symmetry
4. Topology



Random quantum circuits

* lypicality: each gate is randomly Iid
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M. Fisher, et al. Annual Review of Condensed Matter

Physics 14, 335 (2023)

from ensemble &

» |Locality: The gates act on a given
geometry and architecture

e Unitarity: The ensemble & is a
subspace of % unitary gates

« Symmetry: The elements U of &
commute with each symmetry

generator G, i.e. [U,G] =0



Random quantum circuits

Y ) () * A single re_alisation of thelcircuit 1S
Y () () exponentially costy to simulate (for

—I— —L  — generic chaotic systems)
) —.—

* |t Is ensemble-averaging that
t _'_._ — leads to substantial simplifications:
-_'_'_ emergent statistical mechanics
_I_ _'_ description and tensor network
.— —Y — simulability.

M. Fisher, et al. Annual Review of Condensed Matter
Physics 14, 335 (2023)



Recelipt

We focus on a particular class of operators which are written for p = UpyU T

A=—log | Y w(wulm@Uh™) | B = —log [tr ([trx (U[W)(W|UT)]™)]

WeWw _

Up to pre-factor, these formulae include as magic measures and participation
entropies, and entanglement entropy, etc.

The general receipt for analytical insights and efficient tensor network
representation requires three ingredients

1. The replica trick

2. Self-averaging of the ensemble
A. Nahum, et al. Phys. Rev. X '7, 031016 (2017)

3. The Weingarten calculus for & A. Nahum, et al. Phys. Rev. X 8, 021014 (2018)
X'T, P. Sierant, Phys. Rev. Lett. 138, 140401 (2024)
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Recelipt: observable and replica-trick

Using properties of the tensor product we find

A = —log Z tr (WE™(U W) (T|[UT)®™))
TWew

Consider the doubled space p — |p)), UpU" » UQ® U | p)),
tr(A"B) = ((A | B)). Simple algebra leads to

A = —log [((V|(U @ U*)®™)|T))&2m

Where we have defined the operator

y= ) wen

wew



Recelpt: self-averaging
We have U = H H U, i1, the time evolution of the circuit, with each

t o di+1
U; .11 € €. Since this is a stochastic space, we can consider multiple proxies
A = —log [{(VI(U & U")*™)[®))=="]
Quench average A=—TF ¢(A)

Annealed average A = — log 435<<V|(U ) U*)®m|qj>>®2m

In general the results for of and & can be different. However, If the measure

in & is concentrated, then self-averaging emerge. E.g., when & = % the unitary
group with Haar measure
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Receipt: Weingarten calculus

The annealed average translate into a tensor network by linearity

A = —log((V[Ee[(U @ U")®™]|@))**™

This requires the calculation of

11, 7,eComm

(U ® Ui )®" = ), Wgg  R(TR(T)

Where Comm is the set of operators O such that [O, U®™] = 0 and R(T)) is a

representation of 7 ,.

D. Gross, S. Nezami, M. Walter, Communications in
Mathematical Physics 385 (2021), 1325-13938 **




Receipt: Weingarten calculus

The annealed average translate into a tensor network by linearity

~

A = —log((V|E¢[(U ® U")*™]|¥))=="
) ) A
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Efficient tensor network implementation

* Everything now maps to the
@ @ @ @ @ @ problem of computing this partition
function/ tensor network
l : contraction.

e Caveat: the qubit dimension is fixed
by the dimension of the commutant

space. E.g., for random Haar gates

this is m!
* The choice of operator to study

fixes mostly the boundary
conditions.
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Showcase of examples:

Entanglement growth

Anticoncentration aka Hilbert space delocalization

Magic propagation

Quantum Mpemba effect

Error-resilient phase transitions

U(1) symmetry
1+1 Architecture

No symmetry
all-to-all architecture

No symmetry
1+1 architecture
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Renyi-2 entanglement entropy

Requires the calculation of $, = — log tr(pj) for a bipartition of my system
A U B. The problem becomes that of a boundary defect
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A. Nahum, et al. Phys. Rev. X 7, 031016 (2017)  uy= 3 % Sin(n(z;; 1))COSt—1(7T(211:I+ 1))Sin(7r(21;\-; 1)2)

XT, P. Sierant, Entropy, 6, 471 (2024) V=0 16




Participation entropy

Measures how much the system is localised in the basis %. We consider { |n)}
the computational basis. Then the inverse participation ration and participation

entropy are : ,
I;= ) ((nlpln))? = ). P, Sq = 1_ ln[Iq]
neBB nelB q
0 Sy, N=12 - oaNeKy O
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X'T, P. Sierant, Entropy, &6, 471 (2024)




Stabilizer and CSS entropy

Scalable measures of magic (nhonstabilizerness). We consider two examples, for

qubits (4 replica) and qutrits (3 replica)
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BE. Tirrito, P. Sierant, arXiv: 2407.03929
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Lessons

A main result is that the timescale for both Hilbert space delocalisation
(“anticoncentration”) and magic spreading is logarithmic in system size

7 ~ 1og(N), while entanglement requires timescales 7 ~ N to saturate.
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XT, P. Sierant, Entropy, 86, 471 (2024)
XT, E. Tirrito, P. Sierant, arXiv: 2407.03929

19



Qualitative explanation

Swa ldentity Permutation . . . .
b y Single domain wall configuration

Entanglement

Localization features correspond instead of free (quasi-free) boundary conditions. The sum
over all possible configurations of domain walls among all d! permutations.

Random strings in Z ; = Domain walls annihilate faster — In large d this gives an exp. decay.

T. Zhou, A. Nahum, Phys Rev B 99, 174205 (2019)
X'T, P. Sierant, Entropy, &6, 471 (2024)
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Quantum Mpemba effect

A non trivial example is when symmetry is present. Symmetry increase the
dimension of the commutant space.

A case of study is the Quantum Mpemba effect. Roughly this states that the
farther from the equilibrium, the fastest | equilibrate. While non-universal, its
appearance is ubiquitous.

For isolated quantum systems, a version of Mpemba eftect has been recently
discussed in the framework of asymmetry.

Quantum circuits allow to unveil the origin of the Mpemba physics for generic
chaotic (isolated) systems.

E B Mpemba and D G Osborne 1969 Phys. Educ. 4 172
M. Moroder, O. Culhane, K. Zawadzki, J. Goold, arXiv: 2403.16959
F. Ares, S. Murciano, P. Ca,labrese Nat Commun 14, 2036 (2023)
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Quantum Mpemba effect in random circuits

The evolution U, = H H U, is1, preserves the global U(1) symmetry

s 1,i+1
generated by the operator O = Z Z,. Consider a state that breaks the U(1)
i N
symmetry, like the tilted ferromagnet | W(0)) = ®e_19Yi |10).
i=1

For any bipartition, p4 —,_ . [/ 24 because of simple thermodynamic

principles. In particular, it restores the symmetry. How fast is this restoration
obtained?

S. Liu, H.-K. Zhang, S. Yin, S.-X. Zhang, arXiv:2403.08459
XT, A. De Luca, P. Calabrese, arXiv:2405.14514
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Quantum Mpemba effect in random circuits

Entanglement asymmetry

ASY (pa) = Su(pa,@) — Su(pa) pa = trpU|U(0)) (¥ (0)|U]

paq =) Un,pally,
N a

PA PAQ =

F. Ares, S. Murciano, P. Calabrese Nat Commun 14, 2036 (2023)



Quantum Mpemba effect in random circuits

 Mpemba physics visible from the
crossing of the entanglement
asymmetry.

 Microscopic understanding Is also
possible. Quite technical:
macroscopic fluctuation theory at
large qudit dimension + operator
spreading arguments.

XT, A. De Luca, P. Calabrese, arXiv:2405.14514
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Encoding-decoding circuits with quantum noise

encoder error decoder

— X Logical qubits
N =|XU X‘ Total qubits
T = K/N Code rate

S(o) — Z Ku O KZL Error model

 logical
——
-
——
code — space

I3
Decoded state

Initial state
po,x = |¥x)(¥x p=UEWUpUTU
0¢|pl0g
po = po,.x @ |0%)(0x| px = —ox1PlOx)

tr((0x|p|0x))
We expect that py # p, x
X'T, P. Sierant, Phys. Rev. Lett. 138, 140401 (2024)



Error models

We consider coherent errors or incoherent errors (specifically depolarization)

N
ga(o) _ H 6—”@0{2@'/2 o e—l—iOéZi/Q

1=1

Exo) =11 (1 i)\) O%A Y PoP

i=1 P=X.Y.Z

X'T, P. Sierant, Phys. Rev. Lett. 138, 140401 (2024)
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Results for the fidelity

Coherent errors i (2N — 1) (2N cos* (%) T 1)
2N (2N — 2k) cog?N (&) 4 2k+N — ]

~

lim ['=1-—0(a > 2arccos(277/?))

k,N—oo,r=const

(2N — 1) ((4 = 3NN +2V)

Incoherent errors __
—25(4 = 3NN + 2028 + (8 — 6A)V — 27

lim F=1-— O(A < A(1)) Ae(7) = - (1 — Qr_l)

k,N—oo,r=const 3



Error-resilience transitions

In the scaling limit K, N — oo, r = const, non-trivial phase diagram varying o
orAandr

0.75
0.00
0.25

0.0 05 «ol1l0  1.50.0 0.5 ) 1.0

Furthermore, both error-protecting and error-vulnerable phases (EPP and EVP)
have multi-fractal features

28



Results for the fidel

Incoherent errors

Coherent errors




Further applications of random circuits

» (Classical) Shadow Tomography
 Randomised benchmarking

« Random generators

» Verification and validation

e Quantum error correction



Conclusion

« Random quantum circuits are versatile tools to understand many-body
quantum dynamics without the detailed knowledge of tailored Hamiltonian or

specific gates.

* They allow for both analytical insights and efficient numerical methods,
provided self-averaging is present. (Example where this is not the case:
measurement-induced transitions)

 The Tensor Network representation is efficient because the gates are non-
unitary after averaging. Bond dimension does not grow extensively, and

remains bounded to poly( effective qudit dimension).

* QOutlook: extension to noisy quantum dynamics (unital and non-unital noise).
State becomes mixed, but self-averaging still holds.
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