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Microscopic heat engines: Introduction




Downsizing the heat engines

Technological developments
allow us to downsize the heat engines.

A small system as a working substance.

“small” : Number of DOF is small.

An ion in a trap
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Blickle & Bechinger, Nat. Phys. 8, 143 (2012) RolRnagel et al., Science 352, 325 (2016)



. Thermodynamic quantities in macroscopic vsS microscopic sys.

Thermodynamic quantities (e.qg., E, W, O, etc.)

Conventional thermodynamics

Same value for all the realizations (deterministic)

Always same amount of W
—
for the same protocol.

Thermodynamics of small systems

Their value is different for each realization (stochastic)

Every time, different amount of W
even for the same protocol.

Thermodyn. quantities are random variables! .e i




Thermodynamic cycles of small systems

In small sys., E,P,W, Q, etc. are random variables.

- Even if the control parameters return to the initial value,
these random variables do not return to the initial value.

However, statistical properties should return to the initial state.

~
Thermodynamic cycle of small sys.:

- Control parameters 4, (such as 4,T) must be cyclic.
A, (t+71)=2,(8)

- Phase-space distribution function p(T, t) must be cyclic.
p(l,t+1)=pd,t)

7. cycle period
\. y i
.




! Experimental platforms

* Brownian particles » Trapped ions
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Roldnagel et al., Science 352, 325 (2016)

Blickle & Bechinger, Nat. Phys. 8, 143 (2012) . CO”OIdS in an active bath
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Microscopic heat engines: Grand motivation

Grand motivation of microscopic heat engines

1. Practical side

[ Miniaturization of refrigerators ]

>k
Study on microscopic heat engines would E“ pr :
open a way to miniaturize refrigerators.

(Ronnie Kosloff @ KIAS Workshop on
Quantum Information and Thermodynamics, Nov. 2019)

Ronnle Kosloff

[ Microscopic thermal machines are ubiquitous ]

bW
e.g., biological molecular motors \kinesin motor

Bustamante et al., Phys. Today 58, 43 (2005)




» Microscopic heat engines: Grand motivation

2. Fundamental side

[ Understanding of thermodynamics of small systems.]

Main agenda:

* How small can systems go for thermodynamics to be
applicable?

* Is the formulation of thermodynamics possible for
microscopic systems (classical and quantum)?

« What is microscopic origin of the laws of thermodynamics?

how (and to what extent, and in what forms) the laws of
thermodynamics apply to microscopic systems
8) ‘10 '

Christop P Jarzynski Jarzynski, Eur. Phys. J. B 64, 331 (200




Fluctuations in small heat engines

Small systems (number of DOF is small)

m) Fluctuations are non-negligible.

Characterization of the performance beyond mean values
Is important for small heat engines.

Conventional measures of the performance:

W) W)

1o : = ower: P=——+
efficiency : 7 (On) P .

(---) : ensemble avr.
.M i




Fluctuations in small heat engines

Performance of the engine largely fluctuates btwn. realizations!

pdf of efficiency for 7 = 40ms

Probability density function

n/nc
Martinez et al., Nat. Phys. 12, 67 (2016)

)

Variance of efficiency is ~1 and
pdf of efficiency spreads even to the negative side.

7. cycle period



Fluctuations in small heat engines




From quasi-static to finite-time regime

1. Quasi-static limit (1 - 0) “Almost still”

A/ = e (atleast //; > o) WP P(L,1) = peq(T (D)

2. Linear response regime  “Very slow”
/1/;‘[ > Tcorr  but ’1//-1 IS finite.

m) p(10) = peg (T A1) + 6p(T,t) with Sp(T,¢) o A(¢)

3. Beyond linear response regime  “Fast”

/1/ i = Tcorr
.’\4 i



From quasi-static to finite-time regime

1. Quasi-static limit (1 — 0) lto, Xu, et al., arXiv:1910.08096 (2019)

Universal relation btwn. fluctuations of work & heat

o (AWM TN
N (INoI <1 )

2. Linear response regime GW & Minami, PRR 4, L012008 (2022)

Theory of finite-time thermodynamics of fluctuations.

Brownian Carnot cycle allows us to minimize the mean
and fluctuation of the dissipation simultaneously.

3. Beyond linear response regime (’1//-1 S Teorr)
Xu & GW, PRR 4, L032017 (2022)

Stabilization of the performance by the intercycle correlation. i
15



From quasi-static to finite-time regime

1. Quasi-static limit (1 - 0) “Almost still”

A/ = e (atleast //; > o) WP P(L,1) = peq(T (D)




B Carnot cycle

P A
0 - Reversible cycle consisting of

4

T ( 2 quasi-static isothermal strokes:
h- 0—1 2—3

3 What are the proper ties Of tic strokes:
fluctuations of W & Q 4

in small Carnot engines.

G. . .bI ﬁ. . I < > 1 TC
- Gives maximum possible efficiency: = =1—-—
P y: (@Qhn) 1h
TC . .
nc=1— - (Carnot efficiency)
T

Sadi Carnot _ .
(1796-1832) - Plays a key role in thermodynamics. ﬂ



Deterministic work in quasistatic isothermal processes

Trajectories of a Brownian particle Random force from the heat bath

30

! N

trajectories w ] ‘ Work in an isothermal process

st RN S is stochastic.
10} G TR SIS
GEERILAAE ok
A N ' * i SRy v- \1 A

20

Wly] # (W)

Work along a trajectory y:

o u ,&\'\‘ .
Lol - findX OH\[7]
Wiv| = dt
] / At O\
power

=30 Il | ! Il t. .
0 20 40 60 80 100 init

However, fluctuation of work becomes negligible
for quasi-static isothermal processes.

- The system thoroughly takes all the possible microstates
at each instant value of A.

Law of large numbers = W[y, = W[y,] = --- = (W) i
) 19

Sekimoto, Stochastic energetics (Springer, 2010



On equilibration in adiabatic systems

- Thermodynamics for macroscopic systems

( N
After a sufficiently long time, adiabatic systems will be in

an equilibrium state at some temperature.
. J

» Thermodynamics for small systems

[ Adiabatic systems might never relax into an equilibrium state. ]

After an adiabatic process, even if it is quasi-static,
the final state is different from canonical state in general.

)



® Quasi-static adiabatic process in small systems

P 1 : canonical st. for 2; & Ty,
1*: a microst. chosen from

2 : a microst. adiabatically
evolved from the one at 1+

V' 2+ canonical st. for Ay & T,

canonical distribution for 4; & T},

l g.s. adiabatic evolution

Different
- distribution
in general.

- To be reversible, the final st. of q.s. adiabatic strokes
should follow the canonical distribution of the subsequent

g.S. isothermal stroke.

m) Otherwise, irreversible heat flow occurs at points 2 and 4. i

0



Working substance considered

4 . . . . N
Condition for “adiabatic reversibility”:
For adiabat from (44, T;) & 4; = A,
Final state of the quasi-static adiabatic stroke is consistent
with the Canonical ensemble for H,  at some temp. T,.
Ey  Es
&) ——— = — uptoaconstant.
q Iy 15 y

Sato, Sekimoto, Hondou & Takagi, PRE 66, 016119 (2002)

Our working substance:
Such T, can be found for any 4, 1, & T;.

i.e., Carnot cycle can be formed for an arbitrary choice of T;, & T, and
arbitrary A at starting points of quasi-static adiabatic strokes.

Example: Working substance with the number of st. I, (F) = f(\)E®

. I, =210 E
A single particle trapped in 1D HO pot. L, e
1D box pot. I; = v8md E'/?



Universal relation & bound of fluctuations

[ Fluctuations in microscopic Carnot engines ]

- Universal relation btwn. fluctuations of work and heat

(AW TA"
N INOBT (1 )

central moment ((AX)") = (X — (X))™)

n™ depends only on the temperature ratio T./Ty.

+ 1) of the Carnot cycle is maximum among quasi-static cycles.

2 2
(2) _ (AW=) < 2 : (2) _ (1 _ Le

lto, Xu, Jiang, Roldan, Martinez, Rica, GW, arXiv:1910.08096
[see also Saryal et al., PRL 127, 190603 (2021) (quantum steady-st. engine).] 2



! Experimental verification

Correspondence relation btwn. work variance of the true adiabatic
stroke & heat variance of the isentropic stroke in the Brownian engine:

((awrey’) = ((agProw)’) - 2k37, .

mm) Evaluate n® using exp. data of the Brownian Carnot engine.
Exp.: Martinez et al., Nat. Phys. 12, 67 (2016)

Consistent with the exp. data
even in the non-quasistatic

HH—}I H~ regime!

_1 1 1 1 1
0 50 100 150 200
7/ms 3

eff\2
)
w

77(2)/(770
N




! Application of our results

4 )
(2) _ (AW?) < (2 - .
= (AQ2) = Uls New quiding principle
v in optimizing fluctuations
2) Te in small heat engines
ne’ = | 1- T_h
\_ y
4 )

V(AW?) < ey /(AQ7)

To reduce fluctuation of the work output, fluctuation of
heat input from the hot heat bath should be reduced. y

4




! Application of our results

4 )
V(AW?) < ney/(AQ7)

To reduce fluctuation of the work output, fluctuation of

\heat input from the hot heat bath should be reduced. y

Example: Carnot cycle (W) =nc(Qn) /(AW?2) = noy/(AQ?)
We can reduce (AW ?#) with keeping (W) fixed.
e.g., by using a box pot. instead of HO one

B
; \ Working substance with I\ (E) = f(A)E® (I: phase-space vol.)
—————— - f(M)

3 2 (Qn) = kpThIn &= Depends only on A.

> f(Xo)
A
(AQ}) = (AEG) + (AET) = 2(kpTy)°a 4= Depends only on a.

box pot.: a =1/2
HO pot.:a = 1 O



From quasi-static to finite-time regime

2. Linear response regime  “Very slow”
/1/;‘[ > Tcorr  but ’1//-1 IS finite.

m) p(10) = peg (T A1) + 6p(T,t) with Sp(T,¢) o A(¢)

px



» Motivation

Finite-time operations of small heat engines

« Small sys. (small DOFs): Fluctuation is non-negligible!
* Finite-time operations: Dissipation is non-negligible!

Linear response regime: ’1//-1 is finite but ’1//1 > Tcorr

# Key quantity: Fluctuation of dissipation

Guiding principle to suppress both the mean & fluctuation
of dissipation is highly desirable.

[ Finite-time thermodynamics of fluctuations in small sys.

GW & Minami, Phys. Rev. Res. 4, L012008 (2022) A




Dissipated availability

Dissipated availability A: Quantity characterizing dissipation.

Salamon & Berry, PRL 51, 1127 (1983)
Brandner & Saito, PRL 124, 040602 (2020)

[A = (thermal energy input) — (work output) = U — W ]

thermal energy input U = deS
C

work output |/ = %PdV
C

U = Q (heat input) for quasi-static cycles, but U + Q in general.

(- Temp. of the sys. is not necessary equal to T'.) i
)



B Impact of A on efficiency and its fluctuation

Efficiency €= % ~1— %

W . quasi-static work, deterministic (W = (W))

Stochastic efficiency € =

Simultaneous reduction of (4) & (AA?%) is desirable! ‘

px



Dissipation in terms of metric tensor

(A) can be written by g,,, and can also be related to the length
defined by this g, .

Parameters (displacements) : 4, = (4,,,4,) = (V,T)

Conjugate forces : X, = (X,,,X,) = (P,S5)

T
() —de () A,
linear approx.: (XM> o <X“>eq + Ry, i
L T \
(1) 5 3 response coeff.
c i — fdtguv /111 Av
i 0

. 1)
With gy = =Ry + Ry /2 i



& Geometric interpretation of dissipated availability

Mean dissipation (A4) is lower bounded by the “length” of the path

in the control parameter space.  salamon & Berry, PRL 51, 1127 (1983)
Brandner & Saito, PRL 124, 040602 (2020)

A A L(l) 2
" 4y = L)/
thermodyn. length:
LW = 7@ \/gf}v)daudav
C

C Once the path is given, £ is fixed.
—< Ay  (geometric quantity)

»
Even if the path is given, (A) depends on
how to traverse the path. I
15\




¥ Time scale matters

To describe the fluctuation of work, information of the time scale
of the system is necessary.

tr . _O0H(Y)
W=-— . dt A(t) 37
» 2nd moment:
ty t faH t) OH(t' \
(W2)=j dt dt’ A(t) A(t") (t) oH(t)
) Py YY)
l l k J

<6H(t) OH(t"

I 7 > two-time correlation function

4



Introducing time scale in thermodynamics

Correlations in the sys. under thermal environment often show
exponential decay asymptotically.

v Exponential Decay
In coarse-grained timescale, exp with

decay time t can be approximated by a
half-delta function with strength 2t:

e T - 2t8(t) [t=0]

917235 45678 5N

[ (AX,(t) AX, (")) = 2 (AX, () AX,(£)) 7,0, (8) 6(t — ¢") ]

T,y . correlation time

Minimal prescription to introduce time scale through 7,,,,. 31



Fluctuation of dissipated availability

[ (AX,(t) AX, (")) = 2 (AX, () AX,(£)) 7,0, (8) 6(t — ¢") ]

with [g?) () = 2 7, (1) (AX,,(2) AX, ()]

Similarly to (A4), we obtain:

A42y > £ (2))2/T

L@ = Jdt\/g(z)/l i, —jﬂ\/g@ dA,dA,
Equality holds if and only if g(z)/l A, = const. ‘ i




& Geometric interpretation of dissipated availability

Fluctuation (AA?) is also lower bounded by another length of the path

in the control parameter space. GW & Minami, PRR 4, L012008 (2022)

A Ay
L(Z) 2
a4y > L)/
thermodyn. length for 2nd moment:
+ E(Z) L(Z) — i\/g;(i/) dﬂ,ﬂdlv
- - 2 @) =2 AX,(t) AX
w 9uv (t) = T,uv(t) ( ,u(t) v(t)>
>

correlation time

4



Relation between g

Linear-response regime: 4/, > 7.,y

Coarse-grained timescale At: 4/ 5 > AL Teory

‘ Relation between the metrics for (4) and (AA?%).

4 )

g2 () = 2kpT(t) g5 (8)

. J

(analogous to the fluct-dissip. relation)

px



Application to the Brownian Carnot cycle




Brownian Carnot engine

Carnot engine with an overdamped Brownian particle in a
harmonic oscillator potential.

Ay
H(q, 2, () =V(q) = — 9’

Metric for (AA%): gﬁ)(t) = 27, (1) (A%, (£) AXV(t)>eq

g® _ V[ kgT/A)? —kBT/lW]
w =2 —kgT/A,, 1

‘Singular metric with zero eigenvalue. ‘

1



Simultaneous optimization of (4) & (AA?)

direction of zero eigenvalue Carnot cycle
Lol ey
|/ /A
'/ //,,//4/ :
|22 7 Tt
L, — > _
O . O »

Isentrope is along the path of the zero eigenvalue.

m) (4),(AA?), LO =0 for the isentropic strokes

Only isothermal strokes should be optimized.

gﬁ,) = gfﬁ,), but they differ just by a constant factor (2kzT)

In iIsothermal strokes.
‘ ‘Simultaneous minimization of (4) & (AA?) is possible! ‘ 5




Stiffness

Optimization for current experiment

Martinez et al., Nat. Phys. 12, 67 (2016)

Isothermal

compression

| | |
/\)B W\ //’ d) :\ ;/L,
)

Adiabatic : Isothermal

compression | expansion

Adiabatic 4

expansion

3

| | \
| I

| |

| | Th

| | |

: : \
i protocc,lﬁl in exp~ -

aJnjesadws |

N
N
IN\J

T, = 300K T = 200ms

Ty, = 525K ¥y = 8.4 pNum~! ms

t, = 0.261,t, = 0.57,t3 = 0.757

AW,O = 200, )’W,l = 62, AW,3 = 2.0 pN l.lm_l

Optimal protocol vs protocol in exp.

(AAZpe)
(Aexp> <AAgxp>

Improvement by 30-35%. l
0

= 0.70




Extension for multiple time scales

GW, Xu, Minami, in prep.
Two-point function of AX, & AX,,:
(AX,(0) AX, (t") = 2 (AX,,(£) AX, (D)) 2 Gy exp (—lt —t'|/z5)

l

rﬁ? can be complex in general

‘ (AX,(t) AX, (t")) = 2 (AX, () AX,(£)) T, (8) 6(t — t")

with | T = ) G 7f0

l

4



From quasi-static to finite-time regime

-
3. Beyond linear response regime  “Fast”

/1/ i < Teorr




Single cycle or multiple cycles?

In textbooks of thermodynamics, we consider a single-cycle
operation to evaluate the performance of an engine...

Carnot cycle

A
P 0
4
T, 0 (start) - 4 (end)
1
3
T, 2
I

4



Single cycle or multiple cycles?

Question

|s analysis based on a single-cycle operation sufficient for
practical situations?

- No, for cycles with finite period.

There is intercycle correlation (influence over different
cycles) unlike quasi-static case.

4



Fluctuations in multiple cycles
Quasistatic limit period > correlation time
intracycle
initial point 0 correlation
Finite-time regime period ~ correlation time

intercycle correlation

initial point 6,

time

7

Motivation: Make use of intercycle correlation to reduce fluctuations |
Xu & GW, PRR 4, L032017 (2022) 4&?



B Uncertainty of work

Effect Cg;) of intercycle correlation: Var[W,"] = n Var[W, "] + €,

Uncertainty of work for n-cycle operation (8,: start point)

4 ) )
Var [WQ
n) _ 0
Aeo =n o 5
(s
\_ J

WH(:) . work through n-cycle operation starting from 6,

2
Scaled by the factor of n since Var [WH(O”)]/<W9?)> ~1/n forn > 1.

Goal: Find a protocol giving A% [= lim Agg)] < A‘(910)

n—->0o

(i.e., Ctg;) < 0) for any 6,. 61



» Model

Example: Otto engine with an overdamped Brownian particle

Ter
A 2
Th fooooe SERLEEEE : H(q, A1) = V() = 5q
- 2
| isentropic 1
| expansion £
| hot ) T. Schmiedl and U. Seifert,
| sochore EPL 81, 20003 (2008)
b 2"
cold 1
igochore
T 2 Ilsentropic _ !
¢ | compression |
Ac An A

2 isochoric strokes & 2 isentropic strokes
Isentropic strokes:
Quench T & A simultaneously to keep the Shannon entropy (S) unchanged.
. i

(§) = —kp(Inp)



Stability induced by intercycle correlation

Fluctuation of the performance can be reduced by the
intercycle correlation!

Xu & GW, PRR 4, L032017 (2022)

A C.
|
|
C13 I C | C24
)\h I 23
)\c —— :
1 2 | 3 4

1stcycle 2" cycle
Example: n =2 cycles

Intercycle correlation btwn. compression & expansion: C,; < 0 and dominant.

Optimize the protocol to make the net correlation negative:
Cor = Cp3+ Cra+ Ci3+ C14 <0 g



@ Reduction of uncertainty by intercycle correlation

€h
1 (b) - - -
80 R_eglon | ) Iil_eglon Il 20 I?eglon [
X 70
0.8§ : - 08 . 08
0.6
80| 65+ 0.6 8ol 0.6
I £ |. 04 0.4
06} 1 8 0.2 60 04 o
o q 40 A 0.6 08 1 06 08 1 50 06 08 1
o 40 , - _ _ . :
0.4l - % A 85| . a
< oy 500 °, bk
20+ Ms a 40r. 1
02 } | 45+ 00 AAM A MWM!
o | n
0 % 10 2 10 2 10 2
0 0.2 0.4 0.6 lz l 0 0 n 0 30 0 0 n 0 30 0 0 ] 0 30
ec T ¢7‘

e; = e 2*4%i (incompleteness of equilibration)

br = P11/d22 Py = (x(t:) x(t;) )

A < Ay in Regions 11 & III.

Uncertainty is reduced by the intercycle correlation!
Xu & GW, PRR 4, L032017 (2022) &¥




B Experimental feasibility

12 A/ A0
exp
111 AOC/AE;L)m |
T, = 300 K Lo S E.
p=0.119 ym-pN—1.ms™!
Ae = 1.6 pN-pym™—1 091
A\ = 2.4 pN-pm ™! 0.8 L

7. = 0.7 ms
75, = 0.3 ms

0.6

051

|
|
|
0.7 I
|
|
|
|
|

04 1 1 1 1 | 1 1 | 1
1.5 2 2.5 3 3.5 4 4.5 5 |5.5 6 T/T
h ¢

A°°/A%10) < 1 forany 6 |

4 N
Stability induced by intercycle correlation can be realized

for parameters comparable to current exp.!
\. J




1. Quasi-static limit (1 — 0) Ito, Xu, et al., arXiv:1910.08096 (2019)

Universal relation btwn. fluctuations of work & heat

my _ QAW) o T\,
IS (1 Th) — e

Universal bound on n?

2. Linear response regime GW & Minami, PRR 4, L012008 (2022)

Geometric formalism of finite-time thermodynamics of fluctuation.

Simultaneous minimization of (4) & (AA?) is possible for Brownian
Carnot cycle!

3. Beyond linear response regime (’1//-1 S Teorr)

Xu & GW, PRR 4, L032017 (2022)
Stabilization of the performance by the intercycle correlation. i\ i



! Future prospects

1. TUR for cyclic heat engines (with Xu & Saito)

Also Vu & Hasegawa, PRRes (2020); Cangemi et al., PRB (2020);
Koyuk & Seifert, PRL (2020); Miller et al., PRL (2021); etc.

Geometric bound on fluctuation.

Please see today’s poster by Guohua Xu for details.

2. Finite-time thermodynamics of fluctuation for quantum sys.
Also Miller et al., PRL (2019); etc.

Formalism applicable to both overdamped & underdamped

regimes
A






Condition for reversibility

-
Condition for reversibility:

Canonical ensemble for H,, at some temp. T, is consistent
with the final state of the quasi-static adiabatic stroke.

= T — T, Up to a constant.
\_ 1 2 )
Sato, Sekimoto, Hondou & Takagi, PRE 66, 016119 (2002)
(Proof) o— 51 Ex -
Ps. x, (B1) dBy = gx, (E1) dEq DOS: gx(F) = A(B)
| 281, M\ oOFE

Adiabatic theorem: I,,(E1) = I\,(E2) m» gy, (E1)dEy = gx,(E2) dE;

Probability conservation: PB Ay

(E))dE, = Py, (Es) dEs

—51E1

" P\, (FE2)dE, = Pg!

o (E1)dE, =

This is supposed to agree with P, (




Central relation of thermodynamics

For two g.s. isotherms connecting two q.s. adiabats.

T A ad‘\ \ad In macroscopic thermodynamics
T |--- Qh ; ________
h \heat input * <Qh> (Qc)
\ —
\ \\\ Th Tc
\ Q \
) SN RN |
¢ ~ Jfeat output~ ... this is the center of the universe of
—> thermodynamics.” (R. P. Feynman)

In small systems, similar relation holds for nth order moment:

((AQp) ™)  ((AQL)™)
T TE

lto, Xu, Jiang, Roldan, Martinez, Rica, GW, arXiv:1910.08096 ﬁg,i



¥ Universal bound on n(?)

+ 1) for the Carnot cycle is maximum among quasi-static cycles.

(cycles consisting of g.s. isothermal, g.s. adiabatic, isochoric, or g.s. isobaric strokes)

Pressure (P)

( N
2 2
@ - AW o) @ _ [, 1
\_ y
Caveats

1. Working substance satisfying the reversibility condition.

2. Adiabatic expansion (compression) strokes are preceded (followed)
by a heat exchange stroke with hot bath.

o

Hot isoch.

€ All the typical cycles satisfy this condition.

Pressure (P)

Hot isobar.

D
Cold isobar.

Pressure (P)

!

o

Hot isoch.

Regen Heat In

AT=0
Expansion

a Cold isoch.

Compression

Volume (V)'

Brayton

Volume (V)'

Stirling b



! Sketch of the proof

Fluctuation of work through quasistatic isothermal strokes is negligible.
AW =W — <W> = Wadiab — <Wadiab>
AQy = O —(On) = (E1 —(E1)) — (Eo—(E0))  On=E1—Eo+ Wy

A
Adiabatic reversibility condition: ! 0 1
Einit Eﬁn Th 40\
Linit B T6in \ \
Lo 3 2
Work through reversible ad. strokes depends >
solely on the energy of initial or final state. A

AW = [1— (Te/Ty)|[(E1 — (E1)) — (Eo — (£o))]




Fluctuations of work output & heat input

Fluctuations of work output & heat input through stroke i - i + 1

Process W2, 007, )
(1) Isothermal 0 (AE?) + <AEZ-2+1>
) adiabatic ||~ (Tt /T))” (AE?) 0

= [(T:/Tis1) — 1)° (AEE )
(3) Isochoric 0 (AE?) + <AE,-21L ()
(4) Isobaric 0 <AE12> + <AEZ.2+1>

- Only adiabatic strokes have non-zero work fluctuation.

 The other heat exchanging strokes have non-zero heat fluctuation.

- Heat fluct. is given by the variance of the internal energy at end points. |



! Sketch of the proof

Process (AW2, 1) (AQT 1)
(1) Isothermal 0 (AE?) + <AE12+1>
For ith adiabatic expansion stroke: J; — J; + 1 @ adigbatic [~ Tt /TL (AE7) 0
=(T;/Tis1) — 1] (AE; )
For jth adiabatic compression stroke: K; — K + 1 () Isochoric 0 (AEP) +(AES, )
(4) Isobaric 0 (AE; >+<AE12+1>
expansion compression
Ty K+1y
L Ejpi =T /Th)E, J FEx,=Tk,;/Tk;+1)Er, 11
o __ L1 K

Only adiabatic strokes contribute to the work fluctuation:

2
(AW?) = " [1— (T, 41/T5)] (AET) + ) [1 = (Tk, /Ti;+1)]” (AEK, 41)
i expansion j compression

<[ = (T/T) (DD(AES) + D (ABE 1))

i j

In addition to nodes J; and K; + 1, other nodes might contribute to (AQ7):
(AQ7) > > (AET)+ ) (AE% 1) (AW2)

j 2) =
= | "= e




Brownian Carnot engine

Carnot engine with an overdamped Brownian particle in a
harmonic oscillator potential.

Ay
H(q, 2, () =V(q) = — 9’

x,=p=-H__ @
v o 2
_ ¢ _ eq _ Aw
X, =S =—kglnp 1 = kg ,8761 +1InZ

m) Both AX, & AX, x A(g?)

- B (6) AXy (0)) oo (a5(D) % (0)Deq — (47D

q




Correlation time and metric

From the solution of the FP eq. for Ornstein-Uhlenbeck process,
correlation func. of g# reads
kgT\* 22t
(@*(0) 42 (0)eq — (4%)2q = 2 (=) .
w

(y: friction coeff.)

) Ty = Tyy = Ty = /2/1W
Metric for (AA?): gﬁ)(t) = 27,,(t) <AXﬂ(t) AXV(t)>eq

g® _ V[ kgT/A)? —kBT/lW]
w =4 | —kgT/A,, 1

‘Singular metric with zero eigenvalue. ‘ : i




