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Main points

* Anticipatory dynamics (AD) is unusual in that causality is not ordered by time: a retina can produce AD
* The phenomenon of Negative Group Delay (NGD) in the propagation of a pulsed signal can give rise to AD.
* Our goal: to understand the mechanism of anticipatory dynamics by using the concept of negative group delay in a retina
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Delayed negative feed back can produce prediction
The response y(t) is now ahead of the input x(t) [2]
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1. Anticipatory dynamics in a retina can be understood as a
phenomenon of negative group delay

2. Only slow varying signal can be anticipated
3. There is no violation of causality

y(t) = —ay(t) + K(x(t) — z(t))
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» Relaxational entropy production Can cIassify

interaction networks

. The classification reflects structure of

interaction networks

/ /
/N

-

\
\

\
\

\
\

In poster...
« Pathways of flux

/

/
7

/

/
(]

* Quantifying network structure

et Tt




Scaling in Collective Intermittent Wind
Power Production

Poster 4 OIST

Samy Lakhal’, Jim Sardonia2, Mahesh M. Bandi'.

Power turbines measure wind speed fluctuations.
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Unexpectedly, total farm power is more intermittent than single turbine.
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An explanation: atmospheric wind is correlated in time and space, and so are power

output.
These correlations prevent extreme-events from smoothing out during aggregation.
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Irreversibility properties of ECGs as indicators of heart conditions
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Healthy (& young) bodies produce more entropy than ill (& elder) ones.

We obtain data from PhysioBank We compute irreversibility indices for those symbolized sequences
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We introduce the Lag irreversibility function given by:
C
b L(T) = D(P(Xn = sgi Xnt7 = 57)|P(Xn = s7i Xptr = 50))
a P(Xn = 593 Xy pr —
= 50i Xn47 = s7)
=3 S B(Xn = s0i Xpgr = s7) log (é) .
S0 st P(Xn = s7; Xptr = )

We do it for 3, 5, and 7 symbols.




Irreversibility properties of ECGs as indicators

We obtain clearly higher values of EPR and KLD in healthy subjects
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We test the efficiency of our method of discrimination using ROC

analysis

Joint work with Nazul Merino. Ir ibility indices as indic of
heart conditions from electrocardiographic signals. Physica A. 2024

of heart conditions

We compute the 1-step Lag irreversibility function for joint variability

signals
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Conductance transition with interacting The Model

bosons in an Aharonov-Bohm cage The considered setup is described by the following master

P.S. Muraev 12 A, R. Kolovsky , 2% and S. Flach? equation for the reduced density matrix R(t) of microwave
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where y is the rate of photon absorption by a measurement
device and the Hamiltonian #H has the form

Introduction — effAZ fi; — = z I l,heff(al ay + Hc.) +
One of the most famous example of the ABF (all bands are ”,
flat) lattices is the m-flux diamond chain. In the present work gh? L \/—
we address the effect of an interparticle interaction on the + Zeff (A —1) + 4 Jr +a,).
transport of Bose particles across the diamond lattice from =1
the viewpoint of laboratory experiments where one injects
bosons into the first site of the lattice by using an external “
coherent driving pump and withdraws them from the last site We demonstrate that in the classical regime the system is
with a sink. insulating up to a critical value of the pump strength in the
Source of system empty bath presence of mean-field interactions, while in the quantum
. regime there is a particle pair transport and weak conductance
particles (absorber)

below the critical pump strength. Additionally, we will show
J RN B o (R that there is a swift crossover from the quantum into the
classical regime by using a pseudoclassical method upon
lead increasing the number of particles or decreasing the effective
Planck constant 7.




7. Trapping of active Brownian and run-and-tumble particles: A first-passage time approach
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P. 8

lattice random walk model

Kazuhiko Seki

AIST, k-seki@aist.go.jp

Influence of reflecting boundary on fluctuation relation in a

https://arxiv.org/abs/2308.13744v2

K. Seki, J. Stat. Mech. (2023) 123207
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Local detailed balance I (F)
q :Charge P — exp [qu/(kBT)]
\_F :External electric field I'n(F)
Fluctuation relation Go(Xp, X;, 1) — exp [(x — x)qF/(k T)]
G()(Xi, Xty t) f 1 5

& G(x, x;, T) Conditional probability (Green function)
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Exact Work Distribution and Jarzynski’'s Equality
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Background and motivation
The Jarzynski's equality

« Second law of thermodynamics: = A
e Jarzynski’'s equality:
— — — A

* |tis possible to obtain equilibrium thermodynamic

parameters from non-equilibrium processes.
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Background and motivation
The Jarzynski's equality

» Trajectory work: _Z

(9o, Po)

A t,

W(qo,po)=H (g1, p1;24)—H(qo, Po; Ao)
* The proof of Jarzynski’'s equality:
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C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
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Background and motivation
Piston model

* Piston model: Paradigmatic

Adiabat: Q=0

Volume

Carnot cycle

(d) (c)
Landauer Principle




Background and motivation
Piston model

 Piston model: Exact solvable

* Previous work:
Classical Newtonian piston [R. C. Lua and A. Y. Grosberg, 2005]
Quantum non-relativistic piston [H. T. Quan and C. Jarzynski,
2012]
Classical relativistic piston (single kick limit) [R. Nolte and A.
Engel, 2009]



Outline

Background and motivation

Setup of the relativistic piston model

Trajectory of a particle and verification of the Jarzynski’'s
equality

Relativistic work distribution and its non-relativistic limit

Summary



Setup of the relativistic piston model

'

X Vg v

L+ UpT

* A single particle inside a one-dimensional cylinder
with a moving piston
* The collision with the piston is elastic.

* The gas is of the inverse temperature .



Setup of the relativistic piston model

(qo,po) -

L+ VT

 Elastic collision: in the piston frame, the speed of the
particle doesn’t change during a collision.
 Trajectory work:  W(qopo)=H(q1, P1;A4)=H(Qo, Po; Ao)

« Time slides are defined in the laboratory frame.

10



Setup of the relativistic piston model

M-J Distribution

:\ === High temperature( = 1) 'f‘
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Trajectory of a particle and verification
of the Jarzynski’'s equality

« Trajectory of a particle:

position

piston

slopevp

initial slope vo
/ particle

|
|
|
|
I
|
|
t

Tt

1
t1

* The key is to obtain the speed after the n-th collision

and the time of the n-th collision with the moving

_ 13
piston.



Trajectory of a particle and verification
of the Jarzynski’'s equality

Before the n-th collision After the n-th collision

Vp
—ﬂ
— . D — =

Vn V'n -V'n “Vn+1
Lab frame Piston frame Piston frame Lab frame

» Recursion relation of the speed :

(c? + wﬁ]er,t — Z'E.'pr:j

c2 4 e.-‘ﬁ — 20pUn

Uh+1 =

 Solution to the recursion relation:

(c+ ;.‘}f.nﬁ” =g+ c—vp

- s {:1 1 iy e —
(e + -r}r.tﬁ” +c—v with P e+,

T
.!'.” —
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Trajectory of a particle and verification
of the Jarzynski’'s equality

L+vptn n-th collision (n+1)-th collision
D ~ Vn
: »> AN = —_
-Vn Vp 1
L+vptn+1

 Recursion relation of the time of the n-th collision

with the piston: PO L i

T.In AT |!‘1I'_|

 Solution to the recursion relation:

v 2 :
n+1 n n+1 n 2n
— Qp+ 0y -{-(11;,); —I—(—np + 05 )=+ (0 — 0, )}

L
-1 L(1+4+ oap)
c(l—ay,)’

2n

f“ = (_(lp

[ ‘ : U
2n 2n
_(}P + ('tp + ((lp _I_ (lp );}




Trajectory of a particle and verification
of the Jarzynski’'s equality

l.t|j '

L+vptn n—ﬂ;l"collisior:{ (n+1)-th collision o.al I ______‘—————______________
-vn Vp : At = tnyy — — i )
=Vn (. e -
L+vptn+1 ' = T = —_— |
0.4
(1] o = e E— .
Dy ===
{1,004
1. 0 0.0 ) 1.
« Solution to the recursion relation:
r - v x .
tn = |(—ap" —ap + n;:H - (1;:)(— —l-(—a;jﬂ - ”;:)E + (ap — nﬁ”)}
| ; on V1~ L(1+ ap)
2n 2n ‘!:| P
— p = i) fi ' )
—ap +ap + (ap + o, ){. Al—a,)
* Final collision number: =max{ | = }
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Trajectory of a particle and verification
of the Jarzynski’'s equality

* Final position and momentum:

(JIT'.-;'-UT} = {|_|[. — DT {'L"r-[ -+ f1g}}tn|5 FH:I with Pn =

» Liouville’s theorem can be proved:

— =1

which verifies the Jarzynski’s equality. 1
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Relativistic work distribution and its
non-relativistic limit

 Non-dimenssionalize: m, L, ks, c=1.

* Definition of the work distribution:
VISIEW — W ( v))
Al / / 2K1(8)(1 — v2)3 ’

o After some tedious calculations, the distribution

function of W can be analytlcally expressed as
e~ B 1—v (W)?

P(W) =Fyo(W) +

3‘h1 Z‘f - (n;”—l}[1+n — v, (H;(l—m;;)]'

19



Relativistic work distribution and its
non-relativistic limit

« The work distribution P(W)

P(W) =Pyd(W)

« With

* Overlap factor:

n(vn (W)

e BN 1=va (W)

(”f‘?ﬂ —1) [1+ a2 — v, (W)(1—-ar)]

(1—ap )3 (1+ag)+4W

Qe ((1-a m)P +ogW 2)

(1 —03")* + 23~ W*

1of

LR

_.Yn —1 ! 4 as :
1—6u(v), 2 <oa(W) < Xt
; - = .’\-n-;- -1
2 %"—i__l < Un [”' j < T:.LJ—I
P . Xnt1+1
1 +‘£n+1{¢-‘}-. '1'_+1| < !n{” } T:-'l_l
. | 1{_]]! +1 __—____—__
||l_-.'llu ]
i _—__—__——_—_'_'"“——__‘.—
__\_\_—‘—‘——_‘—‘——\_._
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Relativistic work distribution and its
non-relativistic limit
 We may recover the dimension of the expressions
and let - oo, then we have the non-relativistic limit

of the work distribution.

2 - o ﬁ _E{.L-I_?il' ].2
P(W) =Pyd(W) + e~ 7 (mmop tnoe)” (7).
. ,]'I U [ JI ‘.,-""IE.F'H-‘P f( ,]'I

dnuvp’ ; : .2 nvp —
1, (n—1)(vp+2)+2< 55— < (n = 1)(v, +2) + 2+ 2u,
i

—(n—-1)(1+4 F)+ (n—1)(v, +2) < 32 < (n—1)(vy, +2)+2
f(W) = _ _
(n+1)(1+ =2) - 4::%. (n=1}vp+2)+242v, < ﬁ < (n+1)(v, +2)

R. C. Lua and A. Y. Grosberg,
J. Phys. Chem. B 109, 6805 (2005) 21



The comparison between relativistic work

distribution and its non-relativistic limit

N o= B\ T=0. (W2
P(W) =Pyd(W) ' ' '
(W) =Pod( 2; @ — D) [L+as — v (W)(1—ap)]
(1-— (.r;"i]g(l +ap) +4W, /fadn ((1 —a0 )2+ ugl-l-rz}l
11ﬂ{1.-[.-'} = (l = {--t’?n) i _l“.;_'ﬂ W2 7
‘{ 7 XNptl
1 - &a{v), L < (W) < "{T: )
i 1 2 () < S
1+ &nt1(w), YT+41_. - <va(W) < YT:?LI

Vv 21n -a.‘p

{{u - 1)(1+ t” ) + -1:;; (n=1)(vp+2) < ﬁ Sn—1)(vp+2)+2

P(W) =P,6(W) e~ 7 (mmop tnoe)” (7).

FW) =

dnuvy

1, n=1D{vp,+2)+2< % <(n—=1}vp +2)+ 2+ 20,
(n+1)(1+ =2) - S (- I v+ 2) + 24 2v, < ﬁ < (n+1)(v, +2)
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The comparison between relativistic work
distribution and its non-relativistic limit

=1 O,V;,:O,? B=3

= = non=-relativistic

relativistic
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0.0

1 ] ]
0.2 04 06
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60

Relativistic and non-relativistic work
distribution with different parameters.
The initial lengthis 1 . The protocol is:

a =03 , =3x10" /, =3x1012 ;
=1 , =1x10" /, =3x101 :
=3 , =3x10%5 s, =3x1010 .

Relativistic work distribution has no zeros,
which might be detected. 23
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Summary

1D classical relativistic piston model is an exact solvable model. We
analytical solve the trajectory and the work distributuion of the relativistic
piston model, and verify the Jarzynski’'s equality.

In the non-relativistic limit, our results recover the non-relativistic results
[Lua, & Grosberg, J. Phys. Chem. B, 109, 6805(2005)].

We also find that, unlike the non-relativistic case, the maximun number of
collisions in this relativistic gas model is finite, and the relativistic work
distribution no longer has zeros.

It is difficult to detect the relativistic effects of the work distribution of the
ideal gas in a piston system with the current experimental techniques.

25
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Geometric Thermodynamic Uncertainty Relation for Cyclic Heat Engines
Guo-Hua Xu, Keij1 Saito, and Gentaro Watanabe

Motivation

Providing a TUR of cyclic heat engines for general currents including work and heat

Setup: Flywheel as a Degree of Freedom

T = Q(Z',y) +€t7

. (&) = 2D6(t — s)
Yy=uw,

G | t
Working substance Flywheel eneral curren

h 4 O:/ dtA;(z,y) odz + Ay(x,y) ody
0



Main result I: TUR for cyclic heat engines

Using Cramer-Rao inequality

< > TUQ Effective entropy production (EP) rate:
T. Koyuk, U. Seifert, P. Pietzonka, EP rate for arbitrary distribution Q(x)
J. Phys. A: Math. Theor. 52, 02LT02 (2018)

Geometric bound in the linear response regime

Q(2) = Peg(Ao, Do)

T
0@ S —,62
2 00 is EP in the fast driving limit
Main result II: geometric TUR
Var [O} 4 Seeking Postdoctoral Position:
<O> 2 — o2+ If you know of any opportunities or

have suggestions, please feel free to
reach out to me. Thank you!



Non-equilibrium Design Principles — Intelligent Molecule for Temporal Pattern Recognition and Computation
Zhongmin Zhang and Zhiyue Lu, Department of Chemistry, University of North Carolina at Chapel Hill

Forced open , Configuration 010
~/ P

No. 12, 2nd week

pen (0)
Folded (1) | . '— .
~€ >
Spc;n;cj_neous End-to-end distance A
olding pulling and relaxing control
onte Transition table for the most probable next configuration
at control 4. where at most i units can be folded
) : "
1 AW ‘/\'\/~/ZA
| ’/\E)I1L1/L\ L 001 J
N
111 101 010 4 000
110 J 100
AZ L( ) A3 ( 1 [
\ 011 J| 001 L 011 /| 001 |
, ‘ \( — \e Mﬂ \
[ 111'\ \ 101 ;wJ| 010 l 000 J 11 ‘ W 010 l j\%)\o/z"J
AHBC \ 110 LJLG\OBVA %" 100
————— >B->C—->B—->C—B



SN

A mm—

>
= A Azs
8 S
N o
O O
% o
o
C s
== e
@) -
= o
O ()]
i -
— Unit 1 2 3 4 5 §)
O O

Discrepancy design rule:
thermally stable states are
kineticly slow to reach.
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Full Non-equilibrium Controllability
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System and Setup

Master equation 61;—9 = R p(t)
Only Requirement R isirreducible
Control Parameter R = R(§)
Modeling Response
(@) = %2 AQ) = (@) ~ (@)

Sensitivity Non-perturbative Response
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Information geometric
structure on the stochastic
trajectory level

Cramer-Rao Bound Geometric Bound

0r,. (Q)] < +/Var|Q] - {Q) — (@) < 2max |Q -sin(Gex)

Perturbative Response Non-perturbative Response
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