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Introduction

Setting

• OQS described by master equation
• Discuss quantum jump trajectories

What master equation?

• Lindblad

• Non-Markovian Lindblad (negative rates)
• Non-Physical Lindblad (complex rates, non-Hermitian H)
• Generic time-local master equation:

∂tρ = Aρ+ ρB† +
∑
α

CαρD
†
α

→ Most general mathematical form
→ Feedback, counting fields
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→ Markovian weak-coupling limit (cf. next talk)
→ Jump trajectory framework well known

• Non-Markovian Lindblad (negative rates)
• Non-Physical Lindblad (complex rates, non-Hermitian H)
• Generic time-local master equation:

∂tρ = Aρ+ ρB† +
∑
α

CαρD
†
α

→ Most general mathematical form
→ Feedback, counting fields

1/10



Introduction

Setting

• OQS described by master equation
• Discuss quantum jump trajectories

What master equation?

• Lindblad
• Non-Markovian Lindblad (negative rates):

∂tρ = −i[H, ρ] +
∑
α

γα
(
LαρL

†
α − {L†

αLα, ρ}/2
)

→ TCL master equation, Redfield equation
→ May be completely positive (not CP-divisible)

• Non-Physical Lindblad (complex rates, non-Hermitian H)
• Generic time-local master equation:

∂tρ = Aρ+ ρB† +
∑
α

CαρD
†
α

→ Most general mathematical form
→ Feedback, counting fields

1/10



Introduction

Setting

• OQS described by master equation
• Discuss quantum jump trajectories

What master equation?

• Lindblad
• Non-Markovian Lindblad (negative rates)
• Non-Physical Lindblad (complex rates, non-Hermitian H):

∂tρ = −i[H, ρ] +
∑
α

γα
(
LαρL

†
α − {L†

αLα, ρ}/2
)

→ Embedding for physical non-Markovian dynamics
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Lindblad equation

Lindblad equation:
∂tρ = −i[H, ρ] +

∑
α γα

(
LαρL

†
α − {L†

αLα, ρ}/2
)

Jump Trajectories:

• Stochastic evolution of pure state |ψ〉
such that ρ = E

{
|ψ 〉〈ψ|

}
• ∂t|ψ〉 =

∑
α

[
1

〈L†
αLα〉1/2

Lα|ψ〉 − |ψ〉
]

dNα

+
[
−iH −

∑
α γα(L

†
αLα − 〈L†

αLα〉)
]
|ψ〉dt

• dNα are Poisson increments, E{dNα} = γα〈L†
αLα〉dt

→ only works for positive rates

Focus on quantum jump unravellings (Poisson noise)
Quantum diffusion (Gaussian noise)→ Landi et al., PRXQ (2024)
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Lindblad equation

Advantages:

• Monte-Carlo simulations:
O(N2) → O(N) in parallel

• Theoretical access to fluctuations
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Lindblad equation

Advantages:

• Monte-Carlo simulations:
O(N2) → O(N) in parallel

• Theoretical access to fluctuations

Small advertisement:

• In cyclic operation,
∆S ≥ 2AλQ artanhλQ

λQ characterizes energy frequency dist.
• Leads to power-efficiency trade-off etc.

PM, C. Flindt, and K. Brandner, PRR (2020)
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Non-Markovian Lindblad

Negative rates (at some or all times):
∂tρ = −i[H, ρ] +

∑
α γα

(
LαρL

†
α − {L†

αLα, ρ}/2
)

→ Time-convolutionless (TCL) master equation
→ Redfield equation
→ Classical noise models

Approach 1: “backward jumps”

• Only works for completely
positive dynamics

• Evolution of different
trajectories is coupled

J. Piilo et al., PRL (2008)
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Non-Markovian Lindblad

Approach 2: “influence martingale”

• Introduce scalar µ with ρ = E
{
µ|ψ 〉〈ψ|

}
• |ψ〉 and µ satisfy coupled
stochastic differential equations

• Method is part of QuTiP v5 as nm_mcsolve
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• Example: Redfield
equation for two qubits
coupled to same reservoir
(10k trajectories)

• Instability at longer times
(µ grows exponentially)

B. Donvil et al., Nat Commun (2022)
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Generic master equation

Generic time-local master equation:

∂tρ = Aρ+ ρB† +
∑

α
CαρD

†
α

Hermiticity not preserved, ρ = E
{
|ψ 〉〈ψ|

}
clearly impossible

• Trajectories in double Hilbert space: ρ = E(|ψ1 〉〈ψ2|)
→ coupled SDEs for |ψ1〉 and |ψ2〉
→ same instability at longer times
Breuer et al., PRA (1999)

• Embedded in Lindblad equation for ρ̄ on double space:
ρ = e

∫ t
0 dτ α(τ) tra

[
Xaρ̄

]
→ same instability: α(τ) ≥ 0 (zero iff Lindblad)
Hush et al., PRA (2015)
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Non-Physical Lindblad

Complex rates and non-Hermitian Hamiltonian:
∂tρ = −i[H, ρ] +

∑
α γα

(
LαρL

†
α − {L†

αLα, ρ}/2
)

Why?
Pseudomode framework provides embedding of non-
Markovian dynamics (Gaussian bath) in such equation:
ρsys = trpm ρ exactly equals correct system state

=

PM, K. Funo, M. Cirio, N. Lambert, and F. Nori, arXiv:2401.11830
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Non-Physical Lindblad: Unraveling

Trajectories in double Hilbert space: ρ = E(|ψ1 〉〈ψ2|)

d|ψ1〉 =
[
−iH − 1

2

∑
α

(
γαL

†
αLα − rα

)]
|ψ1〉dt

+
∑

α

[√γα
rα
Lα|ψ1〉 − |ψ1〉

]
dNα,

d|ψ2〉 =
[
−iH† − 1

2

∑
α

(
γ∗αL

†
αLα − rα

)]
|ψ2〉dt

+
∑

α

[√γα
rα

∗
Lα|ψ2〉 − |ψ2〉

]
dNα

→ jump rates rα > 0 can be chosen freely
→ choose them to minimize fluctuations of |〈ψ2 | ψ1〉|
→ exponential growth of fluctuations unavoidable

PM, K. Funo, M. Cirio, N. Lambert, and F. Nori, arXiv:2401.11830
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Final Example

• Spin-Boson Model:
Hs =

∆
2 σx, coupling Q = σz

• Underdamped bath, finite
temperature, neglect Matsubara

• Exponential growth of required
trajectories

• Other stochastic methods have
similar problems
→ Stockburger, EPL (2016)
→ Luo et al., PRXQ (2023)
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PM, K. Funo, M. Cirio, N. Lambert, and F. Nori, arXiv:2401.11830
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Summary

• Quantum jump trajectories are a useful tool.
• For general master equations, one can do jump
unravelings in the double Hilbert space.

• They appear to be unavoidably unstable at long times.
• We determined the optimal rates to minimize instability.

• Outlook:
• Can we use unravelings like this to study fluctuations of
physical quantities? (If not, why not?)

• Is there a similar issue in classical stochastic dynamics?
• Can the instability be used to characterize
completely positive maps?

• Does it tell us anything about Markovian embeddings?
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