

JUMP TRAJECTORIES FOR GENERAL QUANTUM MASTER EQUATIONS

Paul Menczel, Theoretical Physics Laboratory, RIKEN 12 July 2024

Frontiers in Non-Equilibrium Physics 2024

Setting

- OQS described by master equation
- Discuss quantum jump trajectories

Setting

- OQS described by master equation
- Discuss quantum jump trajectories

What master equation?

• Lindblad:

$$\partial_t \rho = -\mathrm{i}[H,\rho] + \sum_{\alpha} \gamma_{\alpha} \left(L_{\alpha} \rho L_{\alpha}^{\dagger} - \{ L_{\alpha}^{\dagger} L_{\alpha}, \rho \}/2 \right)$$

→ Markovian weak-coupling limit (cf. next talk)
 → Jump trajectory framework well known

Setting

- OQS described by master equation
- Discuss quantum jump trajectories

What master equation?

- Lindblad
- Non-Markovian Lindblad (negative rates):

$$\partial_t \rho = -\mathrm{i}[H,\rho] + \sum_{\alpha} \gamma_{\alpha} \left(L_{\alpha} \rho L_{\alpha}^{\dagger} - \{ L_{\alpha}^{\dagger} L_{\alpha}, \rho \}/2 \right)$$

ightarrow TCL master equation, Redfield equation

 \rightarrow May be completely positive (not CP-divisible)

Setting

- OQS described by master equation
- Discuss quantum jump trajectories

What master equation?

- Lindblad
- Non-Markovian Lindblad (negative rates)
- Non-Physical Lindblad (complex rates, non-Hermitian *H*):

$$\partial_t \rho = -\mathrm{i}[H, \rho] + \sum_{\alpha} \gamma_{\alpha} \left(L_{\alpha} \rho L_{\alpha}^{\dagger} - \{ L_{\alpha}^{\dagger} L_{\alpha}, \rho \}/2 \right)$$

 \rightarrow Embedding for physical non-Markovian dynamics (pseudomodes)

 \rightarrow Non-Hermitian state ρ

Setting

- OQS described by master equation
- Discuss quantum jump trajectories

What master equation?

- Lindblad
- Non-Markovian Lindblad (negative rates)
- \cdot Non-Physical Lindblad (complex rates, non-Hermitian H)
- Generic time-local master equation:

$$\partial_t \rho = A\rho + \rho B^{\dagger} + \sum_{\alpha} C_{\alpha} \rho D_{\alpha}^{\dagger}$$

- \rightarrow Most general mathematical form
- ightarrow Feedback, counting fields

Setting

- OQS described by master equation
- Discuss quantum jump trajectories

What master equation?

- Lindblad
- Non-Markovian Lindblad (negative rates)
- Non-Physical Lindblad (complex rates, non-Hermitian H)
- Generic time-local master equation

Lindblad equation:

$$\partial_t \rho = -i[H,\rho] + \sum_{\alpha} \gamma_{\alpha} \left(L_{\alpha} \rho L_{\alpha}^{\dagger} - \{ L_{\alpha}^{\dagger} L_{\alpha}, \rho \} / 2 \right)$$

Lindblad equation: $\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} (L_{\alpha} \rho L_{\alpha}^{\dagger} - \{L_{\alpha}^{\dagger} L_{\alpha}, \rho\}/2)$ Jump Trajectories:

• Stochastic evolution of pure state $|\psi\rangle$ such that $\rho = \mathbb{E}\{|\psi\rangle\langle\psi|\}$

$$\cdot \partial_t |\psi\rangle = \sum_{\alpha} \left[\frac{1}{\langle L_{\alpha}^{\dagger} L_{\alpha} \rangle^{1/2}} L_{\alpha} |\psi\rangle - |\psi\rangle \right] dN_{\alpha} \\ + \left[-iH - \sum_{\alpha} \gamma_{\alpha} (L_{\alpha}^{\dagger} L_{\alpha} - \langle L_{\alpha}^{\dagger} L_{\alpha} \rangle) \right] |\psi\rangle dt$$

• dN_{α} are Poisson increments, $\mathbb{E}\{dN_{\alpha}\} = \gamma_{\alpha} \langle L_{\alpha}^{\dagger}L_{\alpha} \rangle dt$ \rightarrow only works for positive rates Lindblad equation: $\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} (L_{\alpha} \rho L_{\alpha}^{\dagger} - \{L_{\alpha}^{\dagger} L_{\alpha}, \rho\}/2)$ Jump Trajectories:

• Stochastic evolution of pure state $|\psi\rangle$ such that $\rho = \mathbb{E}\{|\psi\rangle\langle\psi|\}$

$$\cdot \partial_t |\psi\rangle = \sum_{\alpha} \left[\frac{1}{\langle L_{\alpha}^{\dagger} L_{\alpha} \rangle^{1/2}} L_{\alpha} |\psi\rangle - |\psi\rangle \right] dN_{\alpha} \\ + \left[-iH - \sum_{\alpha} \gamma_{\alpha} (L_{\alpha}^{\dagger} L_{\alpha} - \langle L_{\alpha}^{\dagger} L_{\alpha} \rangle) \right] |\psi\rangle dt$$

 $+ \left[-iH - \sum_{\alpha} \gamma_{\alpha} (L_{\alpha}^{\dagger} L_{\alpha} - \langle L_{\alpha}^{\dagger} L_{\alpha} \rangle)\right] |\psi\rangle dt$ • dN_{α} are Poisson increments, $\mathbb{E}\{dN_{\alpha}\} = \gamma_{\alpha} \langle L_{\alpha}^{\dagger} L_{\alpha} \rangle dt$ \rightarrow only works for positive rates

Focus on quantum jump unravellings (Poisson noise) Quantum diffusion (Gaussian noise) → Landi *et al.*, PRXQ (2024)

LINDBLAD EQUATION

Advantages:

- Monte-Carlo simulations: $\mathcal{O}(N^2) \rightarrow \mathcal{O}(N) \text{ in parallel}$
- \cdot Theoretical access to fluctuations

LINDBLAD EQUATION

Advantages:

- Monte-Carlo simulations: $\mathcal{O}(N^2) \to \mathcal{O}(N) \text{ in parallel}$
- Theoretical access to fluctuations

Small advertisement:

- In cyclic operation, $\Delta S \geq 2A \, \lambda_Q \operatorname{artanh} \lambda_Q$ $\lambda_Q \text{ characterizes energy frequency dist.}$
- Leads to power-efficiency trade-off etc.

PM, C. Flindt, and K. Brandner, PRR (2020)

Negative rates (at some or all times): $\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} (L_{\alpha} \rho L_{\alpha}^{\dagger} - \{L_{\alpha}^{\dagger} L_{\alpha}, \rho\}/2)$

- \rightarrow Time-convolutionless (TCL) master equation
- \rightarrow Redfield equation
- \rightarrow Classical noise models

Negative rates (at some or all times): $\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} (L_{\alpha} \rho L_{\alpha}^{\dagger} - \{L_{\alpha}^{\dagger} L_{\alpha}, \rho\}/2)$

- \rightarrow Time-convolutionless (TCL) master equation
- \rightarrow Redfield equation
- \rightarrow Classical noise models

Approach 1: "backward jumps"

J. Piilo et al., PRL (2008)

Non-Markovian Lindblad

Negative rates (at some or all times): $\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} (L_{\alpha} \rho L_{\alpha}^{\dagger} - \{L_{\alpha}^{\dagger} L_{\alpha}, \rho\}/2)$

- \rightarrow Time-convolutionless (TCL) master equation
- \rightarrow Redfield equation
- \rightarrow Classical noise models

Approach 1: "backward jumps"

J. Piilo et al., PRL (2008)

- Only works for completely positive dynamics
- Evolution of different trajectories is coupled

Approach 2: "influence martingale"

- Introduce scalar μ with $\rho = \mathbb{E} \{ \mu | \psi \rangle \langle \psi | \}$
- $|\psi\rangle$ and μ satisfy coupled stochastic differential equations
- Method is part of QuTiP v5 as nm_mcsolve

Approach 2: "influence martingale"

- Introduce scalar μ with $\rho = \mathbb{E} \{ \mu | \psi \mid \forall \psi | \}$
- $|\psi\rangle$ and μ satisfy coupled stochastic differential equations
- Method is part of QuTiP v5 as nm_mcsolve

B. Donvil et al., Nat Commun (2022)

- nm_mcsolve
 Example: Redfield equation for two qubits coupled to same reservoir (10k trajectories)
- Instability at longer times (µ grows exponentially)

Generic time-local master equation:

$$\partial_t \rho = A\rho + \rho B^{\dagger} + \sum_{\alpha} C_{\alpha} \rho D_{\alpha}^{\dagger}$$

Hermiticity not preserved, $\rho = \mathbb{E} \{ |\psi \rangle \langle \psi | \}$ clearly impossible

- Trajectories in double Hilbert space: $\rho = \mathbb{E}(|\psi_1 \rangle \langle \psi_2|)$ \rightarrow coupled SDEs for $|\psi_1 \rangle$ and $|\psi_2 \rangle$ \rightarrow same instability at longer times Breuer *et al.*, PRA (1999)
- Embedded in Lindblad equation for $\bar{\rho}$ on double space: $\rho = e^{\int_0^t d\tau \, \alpha(\tau)} \operatorname{tr}_a[X_a \bar{\rho}]$ \rightarrow same instability: $\alpha(\tau) \ge 0$ (zero iff Lindblad) Hush *et al.*, PRA (2015)

Complex rates and non-Hermitian Hamiltonian: $\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} (L_{\alpha} \rho L_{\alpha}^{\dagger} - \{L_{\alpha}^{\dagger} L_{\alpha}, \rho\}/2)$ **Complex rates** and non-Hermitian Hamiltonian: $\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} (L_{\alpha} \rho L_{\alpha}^{\dagger} - \{L_{\alpha}^{\dagger} L_{\alpha}, \rho\}/2)$

Why?

Pseudomode framework provides embedding of non-Markovian dynamics (Gaussian bath) in such equation: $ho_{
m sys} = {
m tr}_{
m pm}
ho$ exactly equals correct system state

PM, K. Funo, M. Cirio, N. Lambert, and F. Nori, arXiv:2401.11830

Trajectories in double Hilbert space: $\rho = \mathbb{E}(|\psi_1 \rangle \langle \psi_2|)$

$$d|\psi_{1}\rangle = \left[-iH - \frac{1}{2}\sum_{\alpha} (\gamma_{\alpha}L_{\alpha}^{\dagger}L_{\alpha} - r_{\alpha})\right]|\psi_{1}\rangle dt + \sum_{\alpha} \left[\sqrt{\frac{\gamma_{\alpha}}{r_{\alpha}}}L_{\alpha}|\psi_{1}\rangle - |\psi_{1}\rangle\right] dN_{\alpha}, d|\psi_{2}\rangle = \left[-iH^{\dagger} - \frac{1}{2}\sum_{\alpha} (\gamma_{\alpha}^{*}L_{\alpha}^{\dagger}L_{\alpha} - r_{\alpha})\right]|\psi_{2}\rangle dt + \sum_{\alpha} \left[\sqrt{\frac{\gamma_{\alpha}}{r_{\alpha}}}^{*}L_{\alpha}|\psi_{2}\rangle - |\psi_{2}\rangle\right] dN_{\alpha}$$

ightarrow jump rates $r_{lpha}>0$ can be chosen freely

- \rightarrow choose them to minimize fluctuations of $|\langle \psi_2 \mid \psi_1 \rangle|$
- ightarrow exponential growth of fluctuations unavoidable

PM, K. Funo, M. Cirio, N. Lambert, and F. Nori, arXiv:2401.11830

FINAL EXAMPLE

- Spin-Boson Model: $H_s = \frac{\Delta}{2} \sigma_x \text{, coupling } Q = \sigma_z$
- Underdamped bath, finite temperature, neglect Matsubara
- Exponential growth of required trajectories
- Other stochastic methods have similar problems
 - ightarrow Stockburger, EPL (2016)
 - ightarrow Luo et al., PRXQ (2023)

PM, K. Funo, M. Cirio, N. Lambert, and F. Nori, arXiv:2401.11830

SUMMARY

- Quantum jump trajectories are a useful tool.
- For general master equations, one can do jump unravelings in the double Hilbert space.
- They appear to be unavoidably unstable at long times.
- We determined the optimal rates to minimize instability.
- Outlook:
 - Can we use unravelings like this to study fluctuations of physical quantities? (If not, why not?)
 - Is there a similar issue in classical stochastic dynamics?
 - Can the instability be used to characterize completely positive maps?
 - Does it tell us anything about Markovian embeddings?

JUMP TRAJECTORIES FOR GENERAL QUANTUM MASTER EQUATIONS

Paul Menczel, Theoretical Physics Laboratory, RIKEN 12 July 2024

Frontiers in Non-Equilibrium Physics 2024