

Jump Trajectories for General Quantum Master Equations

Paul Menczel, Theoretical Physics Laboratory, RIKEN 12 July 2024

Frontiers in Non-Equilibrium Physics 2024

Setting

- OQS described by master equation
- Discuss quantum jump trajectories

Setting

- OQS described by master equation
- Discuss quantum jump trajectories

What master equation?

• Lindblad:

$$
\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} \left(L_{\alpha} \rho L_{\alpha}^{\dagger} - \{ L_{\alpha}^{\dagger} L_{\alpha}, \rho \}/2 \right)
$$

 \rightarrow Markovian weak-coupling limit (cf. next talk) \rightarrow Jump trajectory framework well known

Setting

- OQS described by master equation
- Discuss quantum jump trajectories

What master equation?

- Lindblad
- Non-Markovian Lindblad (negative rates):

$$
\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} \left(L_{\alpha} \rho L_{\alpha}^{\dagger} - \{ L_{\alpha}^{\dagger} L_{\alpha}, \rho \}/2 \right)
$$

 \rightarrow TCL master equation, Redfield equation \rightarrow May be completely positive (not CP-divisible)

Setting

- OQS described by master equation
- Discuss quantum jump trajectories

What master equation?

- Lindblad
- Non-Markovian Lindblad (negative rates)
- Non-Physical Lindblad (complex rates, non-Hermitian H):

$$
\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} \left(L_{\alpha} \rho L_{\alpha}^{\dagger} - \{ L_{\alpha}^{\dagger} L_{\alpha}, \rho \}/2 \right)
$$

 \rightarrow Embedding for physical non-Markovian dynamics (pseudomodes)

 \rightarrow Non-Hermitian state ρ

Setting

- OQS described by master equation
- Discuss quantum jump trajectories

What master equation?

- Lindblad
- Non-Markovian Lindblad (negative rates)
- Non-Physical Lindblad (complex rates, non-Hermitian H)
- Generic time-local master equation:

$$
\partial_t \rho = A\rho + \rho B^{\dagger} + \sum_{\alpha} C_{\alpha} \rho D_{\alpha}^{\dagger}
$$

- \rightarrow Most general mathematical form
- \rightarrow Feedback, counting fields

Setting

- OQS described by master equation
- Discuss quantum jump trajectories

What master equation?

- Lindblad
- Non-Markovian Lindblad (negative rates)
- Non-Physical Lindblad (complex rates, non-Hermitian H)
- Generic time-local master equation

Lindblad equation:

$$
\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} \left(L_{\alpha} \rho L_{\alpha}^{\dagger} - \{ L_{\alpha}^{\dagger} L_{\alpha}, \rho \} / 2 \right)
$$

Lindblad equation: $\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} (L_{\alpha} \rho L_{\alpha}^{\dagger} - \{L_{\alpha}^{\dagger} L_{\alpha}, \rho\}/2)$ Jump Trajectories:

• Stochastic evolution of pure state $|\psi\rangle$ such that $\rho = \mathbb{E}\{|\psi\rangle\!\langle \psi|\}$

$$
\cdot \partial_t |\psi\rangle = \sum_{\alpha} \left[\frac{1}{\langle L_{\alpha}^{\dagger} L_{\alpha} \rangle^{1/2}} L_{\alpha} |\psi\rangle - |\psi\rangle \right] dN_{\alpha} + \left[-iH - \sum_{\alpha} \gamma_{\alpha} (L_{\alpha}^{\dagger} L_{\alpha} - \langle L_{\alpha}^{\dagger} L_{\alpha} \rangle) \right] |\psi\rangle dt
$$

 $\cdot \; \, \mathrm{d} N_\alpha$ are Poisson increments, $\mathbb{E}\{\mathrm{d} N_\alpha\} = \gamma_\alpha \langle L_\alpha^\dagger L_\alpha \rangle \, \mathrm{d} t$ \rightarrow only works for positive rates

Lindblad equation: $\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} (L_{\alpha} \rho L_{\alpha}^{\dagger} - \{L_{\alpha}^{\dagger} L_{\alpha}, \rho\}/2)$ Jump Trajectories:

• Stochastic evolution of pure state $|\psi\rangle$ such that $\rho = \mathbb{E}\{|\psi\rangle\!\langle \psi|\}$

$$
\cdot \partial_t |\psi\rangle = \sum_{\alpha} \left[\frac{1}{\langle L_{\alpha}^{\dagger} L_{\alpha} \rangle^{1/2}} L_{\alpha} |\psi\rangle - |\psi\rangle \right] dN_{\alpha} + \left[-iH - \sum_{\alpha} \gamma_{\alpha} (L_{\alpha}^{\dagger} L_{\alpha} - \langle L_{\alpha}^{\dagger} L_{\alpha} \rangle) \right] |\psi\rangle dt
$$

 $\cdot \; \, \mathrm{d} N_\alpha$ are Poisson increments, $\mathbb{E}\{\mathrm{d} N_\alpha\} = \gamma_\alpha \langle L_\alpha^\dagger L_\alpha \rangle \, \mathrm{d} t$ \rightarrow only works for positive rates

Focus on quantum jump unravellings (Poisson noise) Quantum diffusion (Gaussian noise) → Landi *et al.*, PRXQ (2024)

Lindblad equation

Advantages:

- Monte-Carlo simulations: $\mathcal{O}(N^2) \rightarrow \mathcal{O}(N)$ in parallel
- Theoretical access to fluctuations

Lindblad equation

Advantages:

- Monte-Carlo simulations: $\mathcal{O}(N^2) \rightarrow \mathcal{O}(N)$ in parallel
- Theoretical access to fluctuations

Small advertisement:

- In cyclic operation, $\Delta S \geq 2A\lambda_O$ artanh λ_O λ_{Ω} characterizes energy frequency dist.
- Leads to power-efficiency trade-off etc.

PM, C. Flindt, and K. Brandner, PRR (2020)

Negative rates (at some or all times): $\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} (L_{\alpha} \rho L_{\alpha}^{\dagger} - \{L_{\alpha}^{\dagger} L_{\alpha}, \rho\}/2)$

- \rightarrow Time-convolutionless (TCL) master equation
- \rightarrow Redfield equation
- \rightarrow Classical noise models

Negative rates (at some or all times): $\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} (L_{\alpha} \rho L_{\alpha}^{\dagger} - \{L_{\alpha}^{\dagger} L_{\alpha}, \rho\}/2)$

- \rightarrow Time-convolutionless (TCL) master equation
- \rightarrow Redfield equation
- \rightarrow Classical noise models

Approach 1: "backward jumps"

J. Piilo *et al.*, PRL (2008)

Negative rates (at some or all times): $\partial_t \rho = -i[H, \rho] + \sum_{\alpha} \gamma_{\alpha} (L_{\alpha} \rho L_{\alpha}^{\dagger} - \{L_{\alpha}^{\dagger} L_{\alpha}, \rho\}/2)$

- \rightarrow Time-convolutionless (TCL) master equation
- \rightarrow Redfield equation
- \rightarrow Classical noise models

Approach 1: "backward jumps"

J. Piilo *et al.*, PRL (2008)

- Only works for completely positive dynamics
- Evolution of different trajectories is coupled

Approach 2: "influence martingale"

- Introduce scalar μ with $\rho = \mathbb{E}\{\mu|\psi \rangle \langle \psi|\}$
- \cdot $|\psi\rangle$ and μ satisfy coupled stochastic differential equations
- Method is part of QuTiP v5 as nm_mcsolve

Approach 2: "influence martingale"

- Introduce scalar μ with $\rho = \mathbb{E}\{\mu|\psi \rangle \langle \psi|\}$
- \cdot $|\psi\rangle$ and μ satisfy coupled stochastic differential equations
- Method is part of QuTiP v5 as nm_mcsolve

B. Donvil *et al.*, Nat Commun (2022) 5/10

-
- Example: Redfield equation for two qubits coupled to same reservoir (10k trajectories)
- Instability at longer times $(\mu$ grows exponentially)

Generic time-local master equation:

$$
\partial_t \rho = A\rho + \rho B^{\dagger} + \sum_{\alpha} C_{\alpha} \rho D_{\alpha}^{\dagger}
$$

Hermiticity not preserved, $\rho = \mathbb{E}\{|\psi \rangle \langle \psi| \}$ clearly impossible

- Trajectories in double Hilbert space: $\rho = \mathbb{E}(|\psi_1 \rangle \langle \psi_2|)$ \rightarrow coupled SDEs for $|\psi_1\rangle$ and $|\psi_2\rangle$ \rightarrow same instability at longer times Breuer *et al.*, PRA (1999)
- Embedded in Lindblad equation for $\bar{\rho}$ on double space: $\rho = e^{\int_0^t d\tau \alpha(\tau)} \operatorname{tr}_a \left[X_a \bar{\rho} \right]$ \rightarrow same instability: $\alpha(\tau) \geq 0$ (zero iff Lindblad) Hush *et al.*, PRA (2015)

Complex rates and non-Hermitian Hamiltonian: $\partial_t \rho = -i[H,\rho] + \sum_\alpha \gamma_\alpha \big(L_\alpha \rho L_\alpha^\dagger - \{L_\alpha^\dagger L_\alpha,\rho\}/2\big)$

Complex rates and non-Hermitian Hamiltonian: $\partial_t \rho = -i[H,\rho] + \sum_\alpha \gamma_\alpha \big(L_\alpha \rho L_\alpha^\dagger - \{L_\alpha^\dagger L_\alpha,\rho\}/2\big)$

Why?

Pseudomode framework provides embedding of non-Markovian dynamics (Gaussian bath) in such equation: $\rho_{\rm sys} = \text{tr}_{\text{nm}} \rho$ exactly equals correct system state

PM, K. Funo, M. Cirio, N. Lambert, and F. Nori, arXiv:2401.11830

Trajectories in double Hilbert space: $\rho = \mathbb{E}(|\psi_1\rangle \langle \psi_2|)$

$$
d|\psi_1\rangle = \left[-iH - \frac{1}{2}\sum_{\alpha} (\gamma_{\alpha} L_{\alpha}^{\dagger} L_{\alpha} - r_{\alpha})\right] |\psi_1\rangle dt
$$

$$
+ \sum_{\alpha} \left[\sqrt{\frac{\gamma_{\alpha}}{r_{\alpha}}} L_{\alpha} |\psi_1\rangle - |\psi_1\rangle\right] dN_{\alpha},
$$

$$
d|\psi_2\rangle = \left[-iH^{\dagger} - \frac{1}{2}\sum_{\alpha} (\gamma_{\alpha}^* L_{\alpha}^{\dagger} L_{\alpha} - r_{\alpha})\right] |\psi_2\rangle dt
$$

$$
+ \sum_{\alpha} \left[\sqrt{\frac{\gamma_{\alpha}}{r_{\alpha}}}^{\dagger} L_{\alpha} |\psi_2\rangle - |\psi_2\rangle\right] dN_{\alpha}
$$

 \rightarrow jump rates $r_{\alpha} > 0$ can be chosen freely

- \rightarrow choose them to minimize fluctuations of $|\langle \psi_2 | \psi_1 \rangle|$
- \rightarrow exponential growth of fluctuations unavoidable

PM, K. Funo, M. Cirio, N. Lambert, and F. Nori, arXiv:2401.11830

Final Example

- Spin-Boson Model: $H_s=\frac{\Delta}{2}$ $rac{\Delta}{2}\sigma_x$, coupling $Q = \sigma_z$
- Underdamped bath, finite temperature, neglect Matsubara
- Exponential growth of required trajectories
- Other stochastic methods have similar problems
	- \rightarrow Stockburger, EPL (2016)
	- \rightarrow Luo *et al.*, PRXO (2023)

PM, K. Funo, M. Cirio, N. Lambert, and F. Nori, arXiv:2401.11830

SUMMARY

- Quantum jump trajectories are a useful tool.
- For general master equations, one can do jump unravelings in the double Hilbert space.
- They appear to be unavoidably unstable at long times.
- We determined the optimal rates to minimize instability.
- Outlook:
	- Can we use unravelings like this to study fluctuations of physical quantities? (If not, why not?)
	- Is there a similar issue in classical stochastic dynamics?
	- Can the instability be used to characterize completely positive maps?
	- Does it tell us anything about Markovian embeddings?

Jump Trajectories for General Quantum Master Equations

Paul Menczel, Theoretical Physics Laboratory, RIKEN 12 July 2024

Frontiers in Non-Equilibrium Physics 2024