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Introduction

Current picture:

Falasco, Esposito, 
Macroscopic Stochastic Thermodynamics, 

arXiv:2307.12406

We can use it to study the Thermodynamics of Nonequilibrium Phase Transitions:
    - Energetics of synchronization and minimum EP principle in nonequilibrium Potts model
    - Energetics of dissipative structures in non-ideal reaction diffusion
    - Finite-time dynamical phase transition after quenches in Ising model



  

Stochastic thermodynamics



  

Thermodynamic consistency is introduced via the local detailed balance condition:

Rao, Esposito, NJP 20, 023007 (2018)Free energy of the state Nonconservative 
work

For simplicity: isothermal, autonomous

In general see:

Stochastic thermodynamics 

Reservoirs causing the transitions are at equilibrium



  

1st Law: 2nd Law:

Entropy production

System entropy
 Shannon 

Detailed balance dynamics,                      , minimizes free energy

Kullback-Leibler divergence(              ) Free energy 

Heat

Work



   

Fluctuation theorem

  

Kullback-Leibler divergence(              )

Entropy production along a stochastic trajectory

statistical measure 
of time-reversal breaking

Coarse graining underestimates entropy production

Rao, Esposito, Entropy 20, 635 (2018)Overview:

Verified in many setups

Thermodynamic uncertainty relation



  

Macroscopic limit



  

Macroscopic dynamics

 Scale parameter 

Density                    remains finite

Free energies are extensive:

 Transition rates scale linearly with    :

Chemical Reaction Networks Electronic Circuits

ao, Esposito, 
J. Chem. Phys. 149, 245101 (2018)

1 2

Freitas, Delvenne, Esposito, 
Phys. Rev. X 11, 031064 (2021)

Herpich, Cossetto, Falasco, Esposito, 
New J. Phys. 22, 063005 (2020)

Potts models



   

Macroscopic Fluctuations

Deterministic dynamics (minimum of              ) 

Macroscopic Fluctuations

Macroscopic dynamics

Fixed points 

Kubo 1973

Freitas, Esposito, Nat Com 13, 5084 (2022) Falasco, Esposito, arXiv:2307.12406



  

Shannon entropy:

1st law

2nd law

Macroscopic nonequilibrium thermodynamics

Freitas, Esposito, Nat Com 13, 5084 (2022) Falasco, Esposito, arXiv:2307.12406



  

Nonequilibrium Potts Model:
Synchronization 

& Minimum dissipation principle



  

Local detailed balance

Master equation

Noninteracting Potts Model

Fourier 
modes

Decoherent 
fixed point



  Herpich, Esposito, PRX 8, 031056 (2018); PRE 99, 022135 (2019)
Meibohm, Esposito, arXiv:2401.14980, arXiv:2401.14982

local detailed balance

Macro limit

Arrhenius rates

Interacting Potts Model



  

High dimensional Hopf bifurcation

and

Alternating 
stationary pattern

High dimensional Hopf bifurcation

Oscillations

When the 
decoherent 

phase 
becomes 
unstable:

Meibohm, Esposito, arXiv:2401.14980, arXiv:2401.14982



  

Nonlinear transformation Normal form

Number of unit states

Number of active 
Fourier modes

Characterizes 
the rates Glauber rates

Arrhenius rates

Meibohm, Esposito, arXiv:2401.14980, arXiv:2401.14982



  

Meibohm, Esposito, arXiv:2401.14980, arXiv:2401.14982

Arrhenius rates



  

Phase space contraction rate

Close to the bifurcation:
Free unit

Meibohm, Esposito, arXiv:2401.14980, arXiv:2401.14982

Stability-dissipation relation

Synchronization decreases dissipation and increases phase space contraction rate



Meibohm, Esposito, arXiv:2401.14980, arXiv:2401.14982

N=105

q=7
1 stable
   states




Minimum entropy production principle 

Meibohm, Esposito, arXiv:2401.14980, arXiv:2401.14982

For large, but not infinite systems, the state selected in the long time limit is the 
one with minimum dissipation (maximum phase space contraction) is selected

N=105

q=17
3 stable
   states





  

Energetics of Dissipative Structures
in Nonideal Reaction-Diffusion



  

Active Phase Separation is important in biology. 
We need tools to study dynamics and thermodynamics of APS  

Dynamics of phase separation (Cahn-Hilliard and Flory-Huggins theories) 
Intermolecular interaction but no reactions: dynamics goes to equilibrium

Dynamics of Turing patterns 
Reactions but no interactions: dynamics remains out-of-equilibrium 

Thermodynamics of 
- Ideal reaction-diffusion (Turing Patterns Falasco, Rao, Esposito, PRL 121, 108301 (2018); 
                                          & Chemical Waves Avanzini, Falasco, Esposito, J. Chem. Phys. 151, 234103 (2019))
- Non-ideal reactions Avanzini, Penocchio, Falasco, Esposito, JCP 154, 094114 (2021)

Many studies are not thermodynamically consistent or focus on linear reactions

We need to bring together: 

Motivation



Nonideal Reaction-Diffusion

X: internal species    Y: chemostatted species 

reactionsdiffusion

Dynamics:

chemostats

Free energy:

Diffusion: Reactions:

Avanzini, Aslyamov, Fodor, Esposito, arXiv:2407.09128



  

Entropy Production

Dissipation due to diffusion: Dissipation due to reactions: 

Avanzini, Aslyamov, Fodor, Esposito, arXiv:2407.09128



  

Cahn-Hilliard-like

Arrhenius-like

Model

X: internal species diffuse, interact and react
Y: chemostatted species react but are homogeneous & ideal 

No cross-diffusion

interface cost



  

Evolution of a small perturbation 
around the NESS in Fourier space 

Stability of the Homogeneous Solution 

Unstable if an eigenvalue becomes positive

interactions

reactions
Independent of reactions

We look for

R-type instability E-type instability

Aslyamov, Avanzini, Fodor, Esposito, PRL 131, 138301 (2023) 



  

Impossible in pseudo-unimolecular 
and certain multimolecular CRNs

Caused by intermolecular interactions

Caused by multimolecular reactions but 
controlled by intermolecular interactions

Aslyamov, Avanzini, Fodor, Esposito, PRL 131, 138301 (2023) 

R-type instability E-type instability

Pure 
diffusion



  

Space-Resolved Entropy Production

Avanzini, Aslyamov, Fodor, Esposito, arXiv:2407.09128

Brusselator:



  

Pseudo Detailed Balanced & Complex Balanced CRNs 

Reactions dissipate but diffusion equilibrates
Arrhenius fluxesAny flux

Avanzini, Aslyamov, Fodor, Esposito, arXiv:2407.09128



  

Finite-time dynamical phase transitions



  

Finite time dynamical phase transitions 

 Meibohm & Esposito, PRL, 128 110603 (2022)

Temperature quench 

 Meibohm & Esposito, NJP 25 023034 (2023)

appearance of a kink at a critical time

Magnetization Heat



  

Dynamics of Curie-Weiss Model

Internal entropy

magnetic field



  

Review of the equilibrium phase transition



  

Equation of state 

We will quench:



  

Dynamics in the macroscopic limit

 Meibohm & Esposito, PRL, 128 110603 (2022)



  

Dynamical phase transition

 Meibohm & Esposito, PRL, 128 110603 (2022)



  

Dynamical phase diagram
Critical time:

Dynamical equation of state:

Equilibrium       dynamical phase transition mapping:

Continuous phase transition:

 Meibohm & Esposito, PRL, 128 110603 (2022)



  

Conclusions
We now have tools to study the nonequilibrium thermodynamics of macroscopic nonlinear 

phenomena (provided we know the underlying stochastic thermodynamics description of it) 
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