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Plan

1.   Adiabatic transformations in quantum and classical systems. 

2. Beyond Born-Oppenheimer Approximation. Non-Markovian equilibrium in a moving frame:  

A path forward when stochastic thermodynamics does not apply. 

3. Integrability, chaos and ergodicity through adiabatic transformations and low frequency 

noise: 

Universality of emergent chaos and break down of local thermalization close to 

integrability. 

4. Integrable (non-dissipative) regimes as natural attractors of adiabatic flows and 

macroscopic dynamics.
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Eigenstate adiabatic deformations in quantum systems

H(λ) |ψn(λ)⟩ = En(λ) |ψn(λ)⟩

[Gλ, H] = 0, Gλ = ∂λH +
i
ℏ

[𝒜λ, H]

AGP is the “Hamiltonian” generating adiabatic transformations, in particular the Schrieffer-Wolff transformations. 
Adiabatic transformations are associated with emergent conservation laws and hence integrability. Extension of the 
Noether theorem.

Classical systems: AGP is the generator of trajectory-preserving canonical transformations: 

, find canonical transformations : such that H → H + ∂λH δλ x(λ), p(λ),
∂x
∂λ

= −
∂𝒜λ

∂pλ
,

∂p
∂λ

=
∂𝒜λ

∂qλ

Define adiabatic gauge potential (AGP) - generator of these transformations

iℏ∂λ |ψn(λ)⟩ ≡ 𝒜λ |ψn(λ)⟩ ↔ ⟨n |𝒜λ |m⟩ = iℏ
⟨n |∂λH |m⟩

Em − En
, En ≠ Em

|ψn(λ)⟩ = U |ψn(0)⟩ → 𝒜λ = iℏ(∂λU)U†
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Example: Translations (Galilean transformation)

x0

λ
x(λ) = x0 − λ

x(λ) = x0 − λ, p(λ) = p0

∂x
∂λ

= − 1 = −
∂𝒜λ

∂p
,

∂p
∂λ

= 0 =
∂𝒜λ

∂x
⇒ 𝒜λ = p

Quantum systems:

ψn(x; λ) = ψn(x − λ) → iℏ∂λψn(x − λ) = − iℏ∂xψn(x − λ) = ̂pψn(x; λ) → 𝒜̂λ = ̂p

Motion in a moving frame: expand the state  in the instantaneous basis: 
 

|ψ(t)⟩

|ψ(t)⟩ = ∑
n

an(t) |ϕn(λ)⟩, H(λ) |ϕn(λ)⟩ = En(λ) |ϕn(λ)⟩

iℏ∂t |ψ⟩ = H(λ(t)) |ψ⟩ ↔ iℏ∑
n

·an |ϕn⟩ + iℏ∑
n

an
·λ∂λ |ϕn⟩ = ∑

n

anEn |ϕn⟩

Interpret the first term as a moving derivative: 
.  Translations: recover Galilean transformation.iℏ∂(m)

t |ψ⟩ = (H − ·λ𝒜λ) |ψ⟩
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Moving frame: non-Markovian forces like inertia lead to equilibration of fast particles in a moving 
frame.

iℏ∂(m)
t |ψ⟩ = (H − ·λ𝒜λ) |ψ⟩

• Locality of AGP implies modified moving frame equilibrium,  no entropy production, non-Markovianity, 
modified equations of motion. 

• Nonlocal AGP usually implies dissipation and Markoviantiy to some degree. 
• AGP is usually local at low temperatures, close to integrability, in the presence of symmetries.
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Adiabatic transformations and (beyond) the Born-Oppenheimer Approximation (BOA)

Old problem. How does 
this system equilibrate? 

How can we describe 
dynamics of the piston?

Ĥ =
̂P2

2M
+ ∑

j∈left

̂p2
j

2m
+ V(xj, X) + ∑

j∈right

̂p2
j

2m
+ V(xj, L − X)

X L − X

Standard approach to such problems BOA (does not lead to equilibration):  
1)  Treat  classically.  
2) Find adiabatic equilibrium, e.g. the ground state, of fast particles at fixed :  

3)  Treat the energy  as a classical Hamiltonian for . 

4) Solve equations of motion for .

X, P
X |ψ(xj, X)⟩

Hcl(X, P) = ⟨ψ(xj, X) | Ĥ |ψ(xj, X)⟩ X, P
X(t), P(t)

M
m

m

Beyond BOA: typically add stochastic noise. Fails quantitatively in this system.
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Formal approach to BOA 

1. Find unitary diagonalizing the Hamiltonian:  

2. Neglect transitions between levels and treat  as the BO potential.

U†(X)ĤU(X) = diag(E1(X), E2(X), …)

En(X)

Note  is the generator of adiabatic unitary transformations, i.e. it is the AGP.𝒜X = iℏ(∂XU)U†

Issues with BOA:  

• Usually hard to go beyond systematically; 
• Classical degrees of freedom become operators due to mixing with quantum. 
• Technical problem: semiclassics comes from the saddle point approximation: 

                                  

Need to deal with overlaps of non-orthogonal states.

∑
n

|ψn(Xj)⟩⟨ψn(Xj) |e
i
ℏ Ĥδt ∑

m

|ψm(Xj+1)⟩⟨ψm(Xj+1) |e
i
ℏ Ĥδt…
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Beyond BOA 
                                                               

• Define the unitary operator diagonalizing full Hamiltonian:  

• .  Nothing depends on time!Ĥ′￼= Û†(X̂)ĤÛ(X̂) = diag(En)

Bernardo  
Barrera: 

• Perform the Wigner-Weyl transform for  only:  
 

X̂ Ĥ′￼(X, P) = Û†(X) * Ĥ(X, P) * Û(X)

̂A * B̂ = ̂A(X, P)e iℏ
2 ΛB̂(X, P), Λ =

∂
∂X

∂
∂P

−
∂

∂P
∂

∂X
• Expand in . Leading order: BOA approximation 
• Next leading order (similar to Schrieffer-Wolff but integrate out slow variables):  

 

• Planck’s constant magically disappeared. Got moving (Galilean) term + interactions 
without writing any equations of motion!

ℏ

Ĥeff =
P2

2M
−

1
M

P𝒜̂X +
1

2M
𝒜̂2

X + ∑
j∈ left

̂p2
j

2m
+ V(xj, X) + ∑

j∈ right

̂p2
j

2m
+ V(xj, L − X)
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X L − X

𝒜X = 𝒟̂L − 𝒟̂R

𝒟̂L = ∑
j∈ left

̂xj ̂pj + ̂pj ̂xj

2X

Ĥeff =
P2

2M
−

1
M

P(𝒟̂L − 𝒟̂R) +
1

2M
(𝒟̂L − 𝒟̂R)2 + ∑

j∈ left

̂p2
j

2m
+ V(xj, X) + ∑

j∈ right

̂p2
j

2m
+ V(xj, L − X)

• Automatically get moving frame (Galilean) transformations (second term) 
• Got “electron-phonon” and mediated electron-electron interactions. 
• Well defined classical limit (perform a sophisticated canonical transformation classically) 
• Can adiabatically (self-consistently) follow the effective Hamiltonian. E.g. for the ground state 

Hcl(X, P) = ⟨ψ0(xj, X, P) | Ĥeff |ψ0(xj, X, P)⟩,
dX
dt

=
∂Hcl(X, P)

∂P
,

dP
dt

= −
∂Hcl(X, P)

∂X
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Work still in progress: emergent momentum correlations beyond BOA

Interesting direction (in progress): moving frame equilibrium:   

                   

Motion on a constant entropy curve implies Hamiltonian dynamics for X,P: minimum action principle 
follows from the maximum entropy principle.

Z(X, P) = exp[−βĤeff(X, P)] Ĥeff =
P2

2M
−

1
M

P𝒜̂X +
1

2M
𝒜̂2

X + Ĥint
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⟨n |𝒜λ |m⟩ = i
⟨n |∂λH |m⟩

ωnm
→ i

⟨n |∂λH |m⟩ωnm

ω2
nm + μ2

ℏ2χλ = ∑
m≠n

ρn
ω2

nm

(ω2
nm + μ2)2

|⟨n |∂λH |m⟩ |2 = ∫
∞

−∞
dω

ω2Φλ(ω)
(ω2 + μ2)2

Φλ(ω) =
1

4π ∑
n

ρn ∫ dteiωt⟨n |∂λH(t)∂λH(0) + ∂λH(0)∂λH(t) |n⟩c ∝ ϵ′￼′￼(ω) ∼ ΓFGR(ω)

 is determined by the low-frequency noise of /dissipation for modulation of .χ ∂λH(t) λ(t)

AGP and long time response

ℏ2χλ = ℏ2 ∑
n

ρn⟨n |∂λ∂λ |n⟩c ≡ ∑
n

ρn⟨n |𝒜2
λ |n⟩c ↔ ∫ D ⃗xD ⃗p ρ(E)𝒜2

λ( ⃗x, ⃗p)

Natural measure of complexity of adiabatic transformations: fidelity susceptibility, “quantum” 
Fisher information, “quantum” geometric tensor. 

𝒜λ =
1
2 ∫ dt sgn(t)e−μ|t|∂λH(t), ∂λH(t) ≡ e

i
ℏ Ht∂λHe− i

ℏ Ht C. Jarzynski  (1995)



Chaos through adiabatic transformations 

Standard approach to quantum chaos. Berry conjecture 1977: Wigner function 
for quantum eigenstates in the classical limit approaches, the microcanonical 
distribution. Eigenstates are random superpositions of plain waves with the 
same energy. 

Spatial probability distribution in a high (6000th) energy eigenstate of a cardioid billiard vs. 
random superposition of plane waves.



Non-chaotic “generic systems” (energy is some of contributions from extensive number of 
symmetry sectors: expect Poisson statistics (Berry-Tabor conjecture, 1977)

Two powerful conjectures about energy levels in single-particle systems 

(Bohigas, Giannoni, Schmit) BGS conjecture (1984), must be attributed to M. Berry as well!: random 
matrix statistics (GOE) or (GUE) in chaotic generic  systems

Sinai Billiard. O. Bohigas et. al. 1984

Examples

Z. Rudnik, 2008

Incommensurat
e  

Another chaotic 
billiard by Sinai.  
Z. Rudnik, 2008



Eigenstate Thermalization Hypothesis - extension of Berry’s conjecture

J. Deutsch (1992), M. Srednicki (1994, 1996), M. Rigol, V. Dun’ko, M. Olshanii (2008)

M. Srednicki

Expectation values of observables

General ETH ansatz (direct generalization of the RMT). Explains 
emergence of thermodynamics.

| f 2(E, ω) | = cosh
βω
2

Φ+(ω) − sinh
βω
2

Φ−(ω), Φ±(ω) =
1

4π

∞

∫
−∞

dt eiωt (O(t)O(0) ± O(0)O(t))

  — is the micro canonical average, O(E) ≡ O

From the ETH ansatz can recover all thermodynamic relations: fluctuation-dissipation, detailed 
balance, Onsager, Maxwell, … (L. D’Alessio, Y. Kafri, A.P., M. Rigol, ETH review 2016)

Omn = O(E)δmn + f(E, ω)e−S(E)/2σnm, E =
En + Em

2
, ω = En − Em



Level statistics is a measure of ergodicity, not chaos. 
 
RMT, ETH imply stationary states (long time average) are thermal (J. 
Deutsch 1992; M. Srednicki 1994; M. Rigol, V. Dunjko, M. Olshanii 2008).

Chaotic, non-ergodic.  
Mixed level statistics

TD limit: usually chaos implies ergodicity, so the measure is fine. However, we need to distinguish the 
two notions. Many chaotic but non-ergodic models (KAM).

Chaotic ergodic.  
GOE level statistics

Smooth chaotic potentials: 
No signatures of RMT even 
after removing symmetries.



Everyday experience: maximal chaos is not fastest scrambling or fastest thermalization  

Turbulent flows are more 
chaotic than laminar and it takes 
more time to thermalize. 

Weakly nonintegrable, 
nonthermalizing systems are 
usually more chaotic (less 
predictable).
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Integrability, Chaos and Thermalization through adiabatic 
transformations/quantum Fisher information (2020).

 Classical systems (standard approach):  
very fragile trajectories

|δ ⃗x(t) | ∼ |δ ⃗x0 |exp[λt]

Quantum systems: very fragile eigenstates (large AGP)

χλ = ∑
n

ρn⟨n |∂λ∂λ |n⟩c ≡ ∑
n

ρn⟨n |𝒜2
λ |n⟩c
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Adiabatic complexity and chaos. Intuitive picture. Classical models.

Large nonlinearity (chaotic): 
trajectories are very different. 

Chaos as complexity of mapping two 
trajectories onto each other = 
complexity of mapping of eigenstates.

ϵ = 1.53H =
p2

1

2
+

p2
2

2
+

ω2
1 x2

1

2
+

ω2
2 x2

2

2
+

ϵ
4

x2
1 y2

1

ϵ = 1
n1 =

p2
1

2ω1
+

ω1x2
1

2

Compare two nearby trajectories: same initial 
conditions, slightly different Hamiltonians. 

Compare long time trajectories at 
 

Small nonlinearity (integrable): trajectories 
are very similar: must be easy to map them to 
each other.

ω1 = ω2 = 1, ω1 = 1.001, ω2 = 1

χλ = ∑
n

ρn⟨n |𝒜2
λ |n⟩c ↔ ∫ D ⃗xD ⃗p ρ(E)𝒜2

λ( ⃗x, ⃗p)



ℏ2χλ = ∫
∞

−∞
dω

ω2Φλ(ω)
(ω2 + μ2)2

∼
Φ(μ)

μ

More chaotic systems must have longer relaxation times and larger noise at low frequencies. 

Integrability is then associated with emergence of spectral gaps. 

Chaos defined through adiabatic complexity is tied to dissipation/entropy production (larger 
 means more chaos).ϵ′￼′￼(ω → 0)

Fidelity susceptibility = complexity of adiabatic transformations is defined by the low frequency noise!
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Ergodic/ETH systems

Extended systems: constant spectral function is expected from diffusion (more generally kinetic-
type, Markovian approaches predicting exponential relaxation).

∂tn = D
d2n
dx2

⇒ n(x, t) = ∑
k

nk(t)eikx, nk(t) = e−Dk2t

Smallest  then for k ∼ 1/L t > tTh n(t) ∝ e−t/tTh, tTh = c
L2

D
→ Φλ(ω) ∼ C

ωTh

(ω2
Th + ω2)

→
C

ωTh
, ω → 0

Alternative explanation from RMT: |En − Em | ≤ ℏωTh

ETH: |⟨n |∂λH |m⟩ |2 ∼ C′￼e−S ⇒ Φλ(ω) ≈ |⟨n |∂λH |m⟩ |2 Ω(E) ≈ C′￼, C′￼=
C

ωTh

χλ(μ) =
Φλ(μ)

μ
∼

C
μ ωTh



χ λ
/L

Numerical results

Ergodic model  agrees with ETH; free (TFI) model  is a local operator (A. del Campo, Ma M. Rams, 
and W. H. Zurek, 2012); XXZ chain -  is a quasi-local operator (has some long range tails).

χλ 𝒜𝜆
𝒜λ

Nonintegrable Ising 
XXZ 
Transverse field Ising

PRX, 2020



Generic Integrable systems: expect finite ,    χ Φ(ω) → 0, ω → 0 → χ(μ) = const(μ)

• Integrable motion is a superposition of 1D motions 
along the Tori.  

• Each frequency is generally finite unless we fine-tune 
to a special saddle point like a separatrix.  

• Very small spectral weight at low frequencies.

XXZ integrable quantum spin chain
Two-spin integrable classical model: 
 H = − Jxsx

1sx
2 − Jys

y
1sy

2 − Jzsz
1sz

2



How do chaos and ergodicity emerge at weak integrability breaking?

HXXZ =
L�1X

i=1

(�x
i+1�

x
i + �

y
i+1�

y
i ) +�

L�1X

i=1

�
z
i+1�

z
i

<latexit sha1_base64="0JXOMVW91ppLXIQgQg1x0oRzLo0="></latexit>
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χ Δ
/L

H → H + ϵV

V = �z
[L+1]/2, V =

X

j

�z
j�

z
j+2

<latexit sha1_base64="4SUJPClCdYx4mEvxLpUHxBpLHhg=">AAACJnicbVDLSgMxFM3UV62vqks3wSIIlTozCropFN24cFHBPqAdh0yatmmTmTHJCHWYr3Hjr7hxURFx56eYPpBaPRA4nHMuN/d4IaNSmeankVpYXFpeSa9m1tY3Nrey2ztVGUQCkwoOWCDqHpKEUZ9UFFWM1ENBEPcYqXn9y5FfeyBC0sC/VYOQOBx1fNqmGCktudlitdiUtMPR3aMbN67zlnNsJ0fN+wi14MiKuNuDP4kZGvfyduJmc2bBHAP+JdaU5MAUZTc7bLYCHHHiK8yQlA3LDJUTI6EoZiTJNCNJQoT7qEMamvqIE+nE4zMTeKCVFmwHQj9fwbE6OxEjLuWAezrJkerKeW8k/uc1ItU+d2Lqh5EiPp4sakcMqgCOOoMtKghWbKAJwoLqv0LcRQJhpZvN6BKs+ZP/kqpdsE4K9s1prnQxrSMN9sA+OAQWOAMlcAXKoAIweAIvYAjejGfj1Xg3PibRlDGd2QW/YHx9A0fipRI=</latexit>

Results: 

• Very sharp transition from integrable to 
chaotic behavior. 

•  is a very sensitive probe of chaos. 

• Need exponentially (within numerics) small in 
 perturbation to break integrability 

• Instead of expected  scaling obtained 

 scaling, saturating the upper bound: 

χ

L

χ ∝ eS

χ ∝ e2S

|⟨n |∂λH |n + 1⟩ | ∼ 1 ≫ exp[−S/2]
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Physical reason for large susceptibility: slow dynamics/prethermalization 

Central Spin Model: 

H = δ∑
j

hjsz
j + ∑

j

(1 + γgj)(sx
0sx

j + sy
0sy

j + αsz
0sz

j ), hj, gj ∈ [−1,1]

Classical

Glass

α = 1, γ = 0.75, δ = 0.025

Quantum

Universal long-time response near integrability. Emerges both in classical and quantum systems. Can have various 
power laws. More in poster by H. Kim



Emergence of chaos/mixing in many different models

KAM regime: universal (slow) 
relaxation of observables in time. 

Maximal chaos should be 
distinguished from fastest 
thermalization (T. Prosen et. al. 
circuits), SYK, black holes (J. 
Maldacena, A. Kitaev,…). 

Everyday experience, weakly 
nonintegrable systems are very 
unstable and are hardest to 
predict, e.g. turbulence, weather, 
…

Have least predictive power 
about the system even after 
long times.

System size, log(1/μ)

In
te

gr
ab

ili
ty

 b
re

ak
in

g 
st

re
ng

th
Adiabatic complexity chaos diagram

KAM,

Ergodic, mixing, thermalizing 

Determinism, GHD, infinite time memory



Take ergodic system, go closer to the (integrable) ground state: finite spectral gap, finite AGP, 
quasiparticles.

Φ
Δ

(ω
)

∂ ω
(ω

Φ
Δ

(ω
))

H = (J/2)∑
i

(S+
i S−

i+1 + h . c.) + ΔSz
i Sz

i+1 + Δ′￼Sz
i Sz

i+2 J = 2, Δ = ( 5 + 1)/4, Δ′￼= 1

KAM chaotic buffer region precedes integrable quasiparticle phase. Now study transport, connect to chaos.



Driven Floquet System

 — local  
 — Infinite heating 

 — no Floquet Hamiltonian — 
KAM regime, strong chaos, no infinite heating.

T < T1 HF
T > T2
T1 < T < T2

UF = e−iHB
T
2 e−iHA

T
2 Short period driving:  UF ≈ e−iHFT, HF ≈

HA + HB

2
Long period driving - expect energy drift, infinite heating, FGR

Disordered systems — same story chaos and thermalization are not equivalent.  Failure to realize that 
 conceptual mistakes in canonical “MBL” story: RG, LIOMs, Avalanche mechanism, the role of QM…  →

T2T1

Time period T
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Universal adiabatic flows towards integrability (integrability is attractive)

More in poster by H. Kim Fast relaxation along the flows: good for adiabatic state 
preparation, CD driving, SW transformations, …



Summary

•Emergent non-Markovian dynamics beyond BOA. 

•Classical and quantum chaos/ergodicity can be understood through complexity of 
trajectory/state preserving adiabatic transformations. 

•Glassy KAM regime (maximally sensitive/maximally chaotic ) generically separates 
integrable and ergodic phases. Transient in TD limit, stable at all times in small classical 
systems. Possibly equivalent to Hilbert space fragmentation. 

•Universal dynamics near integrability. Temperature plays a similar role in dynamics as 
integrability breaking parameter. 

•Integrable points are generic attractors of adiabatic flows and possibly time evolution in 
autonomous systems.



Chaos (breakdown of LIOMs) and operator spreading.

H = VS0
z + ϵHint + Hbath

Idea: find recursively LIOM:  

Use perturbation theory (Birkhoff normal form). First order in  and all orders in Work in the TD 
limit. Make no assumptions about eigenstates, gaps,…

[Q, H ] = 0

ϵ 1/V .

Q = S0
z +

1
V

q1(ϵ) +
1

V2
q2(ϵ) + …, Q ≡ GV = SZ + i[𝒜V, H]

Can solve analytically in the linear order in ϵ

Q = Sz
0 +

ϵ
V

Hint +
ϵ

V2
σz

0[Hbath, Hint] +
ϵ

V3
[Hbath, [Hbath, Hint]] + …

This is an expansion of the conserved charge (and the AGP) in the Krylov space. 

V
ϵ

Probe spin

First order [q1, S0
z ] + [S0

z , ϵHint] = 0, → q1 = ϵHint



Γ2
2N = ∥i[Q2N, H ]∥2 ≈ ϵ2 ∥ℒ2N+1Hint∥2

V4N+2

This is a convergent procedure (at large ) 
for any finite-dimensional matrices, free 
models, Cayley trees,..

V

[Q2N, H ] =
ϵ

V 2N+1
ℒ2N+1Hint

Stop at N-th order: QN = S0
z + ϵ

N

∑
n=0

(σ0
z )n

Vn
ℒnHint

Generic chaotic models (no selection rules): D. E. Parker et. al. 2019; A. Avdoshkin, A. Dymarsky 2020; X. Cao 
2021, … Disorder plays no role! 

∥ℒkO∥2 ≈ ( 2k
eτ )

2k

, ⇒ bk ∼ k

In interacting systems 
perturbation theory/SW 
transformation is 
intrinsically unstable due 
to virtual UV processes! 

LIOM correlation length 
flows with the distance, 
no exponential tails!

Operator growth (short 
time expansion) sets long 
time decay rate.  

Combine with avalanche 
instability argument by W. 
De Roeck and F. Huveneers  
(2017) - localization is 
unstable in all dimensions. 

Finite systems. MBL - 
chaotic (glassy) but non-
ergodic (non-mixing) 
phase. 



Earlier studies showing exponential L-bits

L

lo
g(

Ω m
in
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Digitized data with subtracted slope. Strong drift of slope. MBL is 
unstable using arguments by W. De Roeck, F. Huveneers (2015)

N. Pancotti, M. Knap, D. A. Huse, I. Cirac, and M. Banuls, 
PRB 2018. “For strong disorder, the decay of λM is 
compatible with an exponential form, e−M/ξ  ”
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h = 3.0

h = 4.0

h = 5.0

h = 7.0

h = 9.0

“Exponential scaling” of the slowest operator in the MBL phase 
(T O'Brien, D Abanin, G. Vidal, and Z. Papic, PRB, 2016)

The digitized data for  with a subtracted mean 
slope. True statement: “For strong disorder, the decay 
of λM is incompatible with an exponential form, e−M/ξ. ” 

h = 9



W = 8 − 20

A. Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz, and D. A. Huse, 2021,D. Sels 2021, 
no signatures of localization for .W ≲ 20

Disorder only changes the mean slope (bare ) but not the shape. .ξ tTh > exp[70]

∥[O, σα
0 ]2∥

∥O2∥
= min, O ∼ τz

L



Conclusions. Outlook.

• Can define chaos in quantum/classical Hamiltonian systems via adiabatic complexity. 

• No direct transition from Integrability to ergodicity in generic systems. Intermediate (maximally chaotic) 
KAM phase in all cases. KAM regime is usually transient (prethermalization) in extended systems but 
parametrically long in time close to integrability in the TD limit. 

• Three distinct regimes for time evolution (at weak integrability): integrable, chaotic/glassy/KAM, local 
equilibrium. Generally a similar situation if weakly break symmetries instead of integrability (Floquet). 

• Universal dynamics in the KAM regime. RG possible? Integrable regions are like critical points. Glassy 
dynamics are like critical slowing down. 

• Emergence of  spectral function ( -noise) close to integrability in many cases;  relaxation in 
time in many systems: quantum and classical, few-body and many-body.  

• Disordered systems are not special. “MBL” looks like a transient (in local models) glassy KAM regime: 
exists in quantum and classical systems, 1D, 2D interacting models share similar universal properties. 

• Chaos is possibly delocalization in the Krylov space. Ergodicity - delocalization in phase space (Fock 
space).

1/ω 1/f log(t)



Disordered Interacting Fermions 

 H = −
J
2 ∑

⟨ij⟩

(c†
i cj + c†

j ci) + Vninj + ∑
j

ϵjnj, V = 0.5, J = 1

Disordered quantum XXZ chain “MBL”(P. Sierant, and J. 
Zakrzewski, 2021)

Poster: by Lucasz Iwanek



ξW = exp[bWc]

Universal glassy dynamics in 1D and 2D. Similar observation (PhD. Thesis of J. Wurtz, 2020) 



MBL: localization in disordered systems are stable to short range interactions.D. Basko, I. Aleiner, B. 
Altshuler 2006, I. Gornyi, A. Mirlin, D. Polyakov, 2005; V. Oganesyan, D. Huse, 2007, … Onsager prize 2022.

Loosely speaking MBL=Fock space localization.  
Sites are 1001010110, 0101010110,…

Competition between growing density of states and matrix elements. Claim: at strong disorder 
matrix elements decay faster than density of states grows. 

Image taken from Z. Papic talk



Standard Model for MBL amenable to numerics: disordered Heisenberg (XXZ) chain: 
H = ∑ SjSj+1 − hjSz

j , hj ∈ [−W, W ]

Many other papers “confirming” MBL transition near .  
Analytic proof? of stability of MBL phase by J. Imbrie with few extra assumptions for stability of MBL phase (2016). 
Experiments by I. Bloch’s group  (2015). RG (Vosk, Altman, Huse). Avalanche instability (W. De Roeck, F. Huveneers 
2015),….

Wc ≈ 3.6

A different measure similar 
to  χ :

G = log (
|Vn,n+1 |

En+1 − En )

M. Serbyn, Z. Papic, and D. Abanin, PRX 2015. Transition at 
Wc ≈ 3.6

D. J. Luitz, N, Laflorencie, and F. Alet, PRB 2015. 
Critical disorder  from level statisticsWc ≈ 3.72

Disorder W



Standard phenomenology of MBL: existence of local integrals of motion (LIOMs, 
Lbits). M. Serbyn, Z. Papi ć, D. A. Abanin (2013); V. Oganesyan and D. Huse (2013)

Exponential scaling of the slowest operator with the 
system size (vs. expected diffusive in ergodic systems)

“Exponential scaling” of the slowest operator in the MBL phase (T O'Brien, D Abanin, 
G. Vidal, and Z. Papic, PRB, 2016)

Image from D. Abanin talk



Beautiful experimental confirmation in cold atoms: interacting fermions with quasi-
periodic incommensurate potential

M.Schreiber, … I. Bloch, Science 2015 

Several more experiments by different 
groups including in 2D.



D. J. Luitz, N, Laflorencie, and F. Alet, PRB 2015. Critical disorder  from level 
statistics. True transition at ?

Wc ≈ 3.72
Wc > 20

Disorder W

0 5 10 15



Numerical progress in MBL disorder/time scales

2008 2018

Wc ≈ 3.6

tTh ≈ 3 105 2019

Wc ≥ 5.3

tTh ≥ 108

2020 2021

Wc ≥ 10

tTh ≥ 1015

Wc ≥ 20

tTh ≥ 1030

Age of the universe 

Wc ≥ 100

2022
tTh ≥ 10152

Can easily reach 
same astronomical 
times in classical 
systems  (M. 
Onorato, L. Vozella, 
D. Proment, and Y. V. 
Lvov, PNAS 2015). 

Glassy systems, 
classical disordered 
models, Floquet 
systems, …

Energy density

FPU chain



Can do the variational minimization in the Krylov space instead of perturbative approach

The variational 
approach agrees 
with perturbative at 
small  and then 
crossovers to a very 
slow asymptotic 
regime. 

Many nearly 
degenerate solutions 
in the slow regime.

N
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LIOM is 
stable

LIOM decays 

De
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y 
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te

Order of expansion

Qvar = Sz
0 + α0Hint + α1σz

0[Hbath, Hint] + α2[Hbath, [Hbath, Hint]] + …, ∥[Qvar, H ]∥ = min



Rotating frame (interaction picture) with respect to   (low-high frequency correspondence)VSz
0

Hrot = Hbath + ϵ(Sx
0Sx

1 + Sy
0Sy

1)cos(Vt) + ϵ(Sx
0Sy

1 − Sy
0Sx

1)sin(Vt)

H = Hbath + VSz
0 + ϵ(Sx

0Sx
1 + Sy

0Sy
1)

Long times: expect FGR decay of the 
magnetization: 

 

From the universal operator spreading: 

 

dSz
0

dt
≈ − Γ(V )(Sz

0 − 1/2)

1D : Γ(V ) ∼ ϵ2 exp[−τV log τV ]
2D + : Γ(V ) ∼ ϵ2 exp[−τV ]
D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, and E. 
Altman, PRX, 2019,  C. Murthy, M. Srednicki, PRL 
2019, A. Avdoshkin and A. Dymarsky, PRR 2020 

Non-perturbative in 1/V decay rate!

V
ϵ

Finite systems: 
localization transition: Γ(Vc) ≈ exp[−S(L)] = 2−L → Vc ≈

L log(2)
τ log L

Matches the LIOM 
decay rate.



Multiple impurities do SW transformation on all but one. Restrict Hilbert space.

FGR rate additionally suppressed 
by weak links   

Same functional form as for a 
single impurity:  

 

Disorder renormalizes  by at 
most factor of 2.  

 

No special features in TD limit at 
any finite .

Jeff = J2/V

τ → τ(1 + 1/ℓ)

Γ ≈ ϵ2 exp[−τ(1 + 1/ℓ)V log(V )]

τ

Vc ≥
L log(2)

2τ(1 + 1/ℓ)log(L)

V

Very small finite size effects in the spectral function 
and the FGR rate. Reach same conclusion from 
nested commutator norms:  contain 
some fraction of weak links.

ℒ2N+1Hint
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Disordered systems: expect same universal operator growth, which does not depend on 
assumptions about eigenstates (X. Cao, 2020). 

Krylov complexity growth: bn ∼
n

log n

Disordered XXZ chain,  is the disorder strength. F. B. Trigueros and C.-J. Lin, arXiv 2021h

At high orders disorder is irrelevant for the Lanczos coefficients. Have self averaging. 
Conclusion MBL is a glass: hard to distinguish from true localized phase, but there is no 
transition. Quantum Mechanics is not important: MBL is like a highly off-resonant 
transmission line.



Berry’s, BGS conjectures, ETH,  RMT are measures of ergodicity (thermalization/mixing), 
not chaos! These conjectures are inconsistent with KAM regime (chaos without ergodicity).

No traces of RMT even if we break all 
the symmetries (also Remy 
Dubertrand, private communication). 

Mixing chaos and ergodicity lead to 
many confusions in theory works. 

Everyday experience: chaos and 
thermalization are not the same.

Thermalizing (ergodic, mixing), RMT, 
ETH, large Lyapunov exponents, …. 

Non-thermalizing (cascades), no RMT, 
no ETH, small Lyapunov exponents, …. 

Image: Will Woodward, “Airway Resistance”, 
teachmephysiology.com

M. Berry, private communication: “I hope you don't quote me as defining quantum chaos. I never did. Instead (responding to the 
'no quantum chaos' people), I defined Quantum Chaology (see my papers “Quantum chaology’” 1987, “‘Quantum chaology, not 
quantum chaos”, 1989), in terms of semiclassical quantum phenomena associated with classical chaos. Such phenomena (RMT is 
an example) occur because the classical limit is singular (see ”‘Singular Limits”, 2002).”


