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ηc = max
W

Qh

= 1−
Tc

Th

§ For any heat engine, the exact
Carnot efficiency is achieved at
the quasi-static limit (𝜏!"!#$ →
∞)

§ The power at quasi-static limit
is 0.

§ What’s the efficiency at finite
power?

Quasi-static limit ó zero power
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§ The intrinsic time-scale leads to
inevitable dissipation at finite
time operation

§ The deviation from Carnot
efficiency is due to irreversible
dissipation

Why finite-time engine cannot
achieve Carnot efficiency?
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∆Sirr =
Qh

Th
−

Qc

Tc
= (ηc − η

︸ ︷︷ ︸

∆η

)
Qh

Tc

⇒ ∆η =
∆Sirr

Qh/Tc



Efficiency at maximum power 
(EMP)
§ An model specific relation[1]:

𝜂%& = 1 − '!
'"
= 1 − 1 − 𝜂!

• Proved by C. Van den Broeck using linear irreversible thermodynamics[2]

§ But how about further away from equilibrium?

• The difficulty: optimization of nonlinear functions

[1] Curzon & Ahlborn, AJP (1975)
[2] Van den Broeck, PRL (2005)
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§ Low-dissipation heat engine
has the lower and upper bound
of EMP

§ A power-efficiency trade-off
curve of low-dissipation heat
engine

Low-dissipation Heat
Engine
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Esposito et al. PRL (2010) Yu-Han Ma et al. PRE (2018)

∆Sirr ∝

1

τ



§ For finite-size heat engines, there is a universal power-efficiency
trade-off

Universal power-efficiency
trade-off (2016)

H
ea

t E
ng

in
e

P ≤ Θ̄βcη(ηC − η)

Shiraishi et al. PRL (2016) Figure from Shiraishi, Springer (2023)



§ Critical heat engines can 
approach Carnot efficiency at 
finite power.

Attainability of Carnot efficiency
with finite power (2016)
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Collective advantage (2023)
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W = ∆F +Wdiss

Wdiss ∝ N
x

W ∝ N



Collective advantage from
energy level perspective
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§ Many-body interaction
generates sets of energy levels

§ We can directly optimize over
energy level configurations



Two-(coarse-grained)-state
system as a heat engine
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The power-efficiency trade-off and EMP
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Increase degeneracy, EMP shift to 𝜂!

§ Two-state heat engine



§ Master equation

§ NESS flux

§ Thermodynamic efficiency

2-state heat engine
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Qh −Qc

Qh

=
∆µ

ϵh
Qc = ϵc, Qh = ϵh

W = Qh −Qc = ϵh − ϵc = ∆µ

d

dt
pu = (kh− + kc−)pv − (kh+ + kc+)pu,

d

dt
pv = (kh+ + kc+)pu − (kh− + kc−)pv.

J
ss
=

1

τh + τc

(

1

1 + eβhϵh−s
−

1

1 + eβcϵc−s

)



§ An analytic expression of the 
power can be obtained

• Where

How to find the EMP
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P =
1

τ

(

1

1 + eβhϵh−s
−

1

1 + eβcϵc−s

)

(ϵh − ϵc)

P = J ss(ϵh − ϵc) =
(πh

v − πc
v)∆µ

τh + τc
.

τh/c = (k+h/c + k
−

h/c)
−1

Thermodynamic part



Thermal cycle and bi-
partite system
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P =
1

τ

(

1

1 + eβhϵh−s
−

1

1 + eβcϵc−s

)

(ϵh − ϵc)



§ The equilibrium curves

§ The power

Optimization:
Phase-space representation
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πv =
1

1 + exp[s(ϵ̄/T − 1)]

P =
s

τ

(

1

1 + e
s(

ϵ̄h
Th

−1)
−

1

1 + e
s( ϵ̄c

Tc
−1)

︸ ︷︷ ︸

πh
v
−πc

v

)

(ϵ̄h − ϵ̄c)

ϵ̄ ≡ ϵ/swhere



Optimization:
Otto cycle to Carnot cycle

H
ea

t E
ng

in
e

dπh/c
v (ϵ̄)

dϵ̄

∣

∣

∣

∣

∣

ϵ̄=Th/c

= −

s

4Th/c

§ In the thermodynamic limit (𝑠 → ∞)
• The sensitivity of equilibrium response

curves diverges

• The Otto cycle approaches the Carnot
cycle in large-s limit



Optimization:
Optimal parameters and phase transition
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§ In the thermodynamic limit (𝑠 → ∞)
• Maximum power output is achieved at 

the phase transition point:
• EMP can approach Carnot efficiency

η̃MP ≃ 1−
4(1− ηC)

sηC
,

ϵ
∗
− sT = 0
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§ In the thermodynamic limit (𝑠 → ∞)
• The power-efficiency tradeoff becomes a

right triangle
• The maximum power scales with
𝑠 𝜂! ~ 𝑁 Δ𝑇 ⇒ power per unit ~ Δ𝑇

Optimization:
Power-efficiency tradeoff

n ≃ 2
N

∝ e
N

s = lnnu/ns ∼ N



§ With divergent quantities, the universal trade-off does not prohibit
Carnot efficiency at maximum power

Universal trade-off
with divergent quantities
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P ≤ Θ̄βcη(ηC − η)

Shiraishi et al. PRL (2016)

n ≃ 2
N

∝ e
N

s = lnnu/ns ∼ N

⎧

⎪

⎨

⎪

⎩

limη̃→0 P ≃ (s− ln s)ηC η̃,

limη̃→1 P ≃
s2η2

C

4(1−ηC) (1− η̃).

⇒

⎧

⎪

⎨

⎪

⎩

Θ0 ≡ limη̃→0 Θ ≃
(s−ln s)
ηCβc

Θ1 ≡ limη̃→1 Θ ≃
s2

4(1−ηC)βc

⇒
Θ1

Θ0
∼ s ∼ N



§ The universality of efficiency at 
maximum power

§ Is small 𝜂! a sufficient condition
for linear response approximation?

Close-to-equilibrium
condition?
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ηMP =
1

2
ηc +

1

8
η
2

c
+O(η2

c
)

linear
response

left-right
symmetry

Esposito et al. PRL 2009

η̃MP ≡ ηMP/ηc

{

limηC→0 lims→∞ ηMP = ηC/2

lims→∞ limηC→0 ηMP = ηC .



§ The phase transition point

§ Linear expansion around 𝑇∗

§ Linear-response regime:

On close-to-equilibrium
condition
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ϵ/T ∗
− s = 0 ⇒ T ∗

= ϵ/s

dπv

d(T/T ∗)

∣

∣

∣

T=T∗

=
s

4

πv(T ) = πv(T
∗) +

s

4

T − T ∗

T ∗
+O

2(
T − T ∗

T ∗
)

πv =
1

1 + exp[ϵ/T − s]

sηc ≪ 1

n ≃ 2
N

∝ e
N

s = lnnu/ns ∼ N



§ The phase transition point

§ Linear expansion around 𝑇∗

§ Linear-response regime:

On close-to-equilibrium
condition

H
ea

t E
ng

in
e

ϵ/T ∗
− s = 0 ⇒ T ∗

= ϵ/s

dπv

d(T/T ∗)

∣

∣

∣

T=T∗

=
s

4

πv(T ) = πv(T
∗) +

s

4

T − T ∗

T ∗
+O

2(
T − T ∗

T ∗
)

sηc ≪ 1

n ≃ 2
N

∝ e
N

s = lnnu/ns ∼ N

η̃MP ≡ ηMP/ηc



§ An energy-level-optimized heat engine can achieve
Carnot efficiency at maximum power.

§ There may exists a universal power-efficiency-size
tradeoff.

§ A criterion for linear-response approximation for heat
engines:

Conclusion
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S. Liang, Y.-H. Ma, D. M. Busiello, and P. De Los Rios. 
(2023). A Minimal Model for Carnot Efficiency at 
Maximum Power. arXiv preprint arXiv:2312.02323.

sηC ≪ 1 (NηC ≪ 1)

https://arxiv.org/abs/2312.02323
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