

Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

A Minimal Model for Carnot Efficiency at **Maximum Power**

Shiling Liang

2024.07.17

Frontiers in Non -Equilibrium Physics 2024

EPFL Quasi-static limit \Leftrightarrow zero power

- For any heat engine, the exact Carnot efficiency is achieved at the **quasi-static limit** ($\tau_{cycle} \rightarrow$ ∞)
- The power at quasi-static limit is 0.
- § What's the **efficiency at finite power**?

EPFL Why finite-time engine cannot achieve Carnot efficiency?

• The intrinsic time-scale leads to inevitable dissipation at **finite time operation**

• The deviation from Carnot efficiency is due to **irreversible dissipation**

$$
\Delta S_{\rm irr} = \frac{Q_h}{T_h} - \frac{Q_c}{T_c} = (\underbrace{\eta_c - \eta}_{\Delta \eta}) \frac{Q_h}{T_c}
$$

$$
\Rightarrow \boxed{\Delta \eta = \frac{\Delta S_{\rm irr}}{Q_h/T_c}}
$$

EPFL Efficiency at maximum power (EMP)

• An model specific relation^[1]:

$$
\eta_{CA} = 1 - \sqrt{\frac{T_c}{T_h}} = 1 - \sqrt{1 - \eta_c}
$$

- Proved by C. Van den Broeck using **linear irreversible thermodynamics**[2]
- § But how about **further away from equilibrium?**
	- The difficulty: **optimization of nonlinear functions**

EPFL Low-dissipation Heat **Engine**

• Low-dissipation heat engine has the lower and upper bound of EMP

• A power-efficiency trade-off curve of low-dissipation heat engine

Esposito et al. PRL (2010) Yu-Han Ma et al. PRE (2018)

EPFL Universal power-efficiency trade-off(2016)

§ For **finite-size** heat engines, there is a **universal power-efficiency trade-off**

EPFL Attainability of Carnot efficiency with finite power (2016)

Open Access | Published: 20 June 2016 The power of a critical heat engine

Michele Campisi ⊠ & Rosario Fazio

Nature Communications 7, Article number: 11895 (2016) Cite this article 7591 Accesses | 167 Citations | 8 Altmetric | Metrics

§ Critical heat engines can **approach Carnot efficiency at finite power**.

Campisi & Fazio, Nat. Commun (2016)

EPFL Collective advantage (2023)

 $W = \Delta F + W_{\text{diss}}$

 $W_{\text{diss}} \propto N^x$

 $W \propto N$

EPFL Collective advantage from energylevel perspective

Heat Engine Heat Engine \blacksquare

EPFL Two-(coarse-grained)-state system as a heat engine

EPFL The power-efficiency trade-off and EMP

• Two-state heat engine

Increase degeneracy, EMP shift to η_c

EPFL 2-state heat engine

$$
Q_c = \epsilon_c, \quad Q_h = \epsilon_h
$$

\n
$$
W = Q_h - Q_c = \epsilon_h - \epsilon_c = \Delta \mu
$$

• Master equation

$$
\frac{d}{dt}p_u = (k_{h-} + k_{c-})p_v - (k_{h+} + k_{c+})p_u,
$$

$$
\frac{d}{dt}p_v = (k_{h+} + k_{c+})p_u - (k_{h-} + k_{c-})p_v.
$$

§ NESS flux

$$
J^{\rm ss} = \frac{1}{\tau_h + \tau_c} \left(\frac{1}{1 + e^{\beta_h \epsilon_h - s}} - \frac{1}{1 + e^{\beta_c \epsilon_c - s}} \right)
$$

• Thermodynamic efficiency

$$
\eta \equiv \frac{Q_h - Q_c}{Q_h} = \frac{\Delta \mu}{\epsilon_h}
$$

EPFL How to find the EMP

• An analytic expression of the **power** can be obtained

$$
P = J^{\rm ss}(\epsilon_h - \epsilon_c) = \frac{(\pi_v^h - \pi_v^c)\Delta\mu}{\tau_h + \tau_c}.
$$

• Where
$$
\tau_{h/c} = (k_{h/c}^+ + k_{h/c}^-)^{-1}
$$

$$
P = \frac{1}{\tau} \left(\frac{1}{1 + e^{\beta_h \epsilon_h - s}} - \frac{1}{1 + e^{\beta_c \epsilon_c - s}} \right) (\epsilon_h - \epsilon_c)
$$

Thermodynamic part

 \blacksquare

EPFL Optimization: Otto cycle to Carnot cycle

- In the thermodynamic limit $(s \rightarrow \infty)$
	- The sensitivity of equilibrium response curves diverges

$$
\left. \frac{\mathrm{d} \pi_v^{h/c}(\bar{\epsilon})}{\mathrm{d} \bar{\epsilon}} \right|_{\bar{\epsilon} = T_{h/c}} = -\frac{s}{4T_{h/c}}
$$

• The Otto cycle approaches the Carnot cycle in large-s limit

EPFL Optimization: Optimal parameters and phase transition

- In the thermodynamic limit $(s \rightarrow \infty)$
	- Maximum power output is achieved at the phase transition point $sT = 0$
	- EMP can approach Carnot efficiency

$$
\tilde{\eta}_{\mathrm{MP}} \simeq 1 - \frac{4(1 - \eta_C)}{s\eta_C},
$$

Heat Engine Heat Engine $\overline{}$

EPFL Optimization: Power-efficiency tradeoff

$$
\text{with the } n \simeq 2^N \propto e^N
$$

$$
s = \ln n_u/n_s \sim N
$$

EPFL Universal trade-off with divergent quantities

 $n \simeq 2^N \propto e^N$ $s = \ln n_u/n_s \sim N$

• With divergent quantities, the universal trade-off does not prohibit Carnot efficiency at maximum power

Heat Engine Heat Engine

EPFL Close-to-equilibrium condition?

• The universality of efficiency at maximum power

$$
\eta_{\rm MP}=\frac{1}{2}\eta_c+\frac{1}{8}\eta_c^2+\mathcal{O}(\eta_c^2)
$$

linear response left-right symmetry

Esposito et al. PRL 2009

 \blacksquare Is small η_c a sufficient condition for linear response approximation?

 $\int \lim_{\eta_C \to 0} \lim_{s \to \infty} \eta_{\text{MP}} = \eta_C/2$ $\lim_{s\to\infty} \lim_{\eta_C\to 0} \eta_{\text{MP}} = \eta_C.$

EPFL On close-to-equilibrium condition

• The phase transition point

$$
\epsilon/T^*-s=0\Rightarrow T^*=\epsilon/s
$$

• Linear expansion around T^*

$$
\frac{d\pi_v}{d(T/T^*)}\Big|_{T=T^*} = \frac{s}{4}
$$

$$
\pi_v(T) = \pi_v(T^*) + \frac{s}{4} \frac{T - T^*}{T^*} + O^2(\frac{T - T^*}{T^*})
$$

• Linear-response regime: $s\eta_c \ll 1$

$$
\bigcup_{s=1}^{n} \bigcup_{n=1}^{n} \bigcup_{s=1}^{n} \bigcup_{n}^{n} \bigcup_{s=1}^{n} \bigcup_{n}^{n} \bigcap_{s}^{n} \bigcap_{s}^{n} \bigcap_{s}^{n}
$$

EPFL On close-to-equilibrium condition

- The phase transition point $\epsilon/T^* - s = 0 \Rightarrow T^* = \epsilon/s$
- **Linear expansion around** T^*

$$
\frac{d\pi_v}{d(T/T^*)}\Big|_{T=T^*} = \frac{s}{4}
$$

$$
\pi_v(T) = \pi_v(T^*) + \frac{s}{4} \frac{T - T^*}{T^*} + O^2(\frac{T - T^*}{T^*})
$$

• Linear-response regime: $s\eta_c \ll 1$

$$
\bigcup_{s=1}^{n} \bigcup_{n=1}^{n} \bigcup_{s=1}^{n} \bigcup_{n=1}^{n} \
$$

EPFL Conclusion

S. Liang, Y.-H. Ma, D. M. Busiello, and P. De Los Rios. (2023). **A Minimal Model for Carnot Efficiency at Maximum Power**. *arXiv prepri[nt arXiv:2312.02323](https://arxiv.org/abs/2312.02323).*

An energy-level-optimized heat engine can achieve **Carnot efficiency at maximum power.**

- § There may exists a **universal power-efficiency-size tradeoff.**
- § A **criterion for linear-response approximation** for heat engines: $s\eta_C\ll 1\quad (N\eta_C\ll 1)$

EPFL

Yu-Han Ma

Daniel Maria Busiello

A Minimal Model for Carnot Efficiency at **Maximum Power**

Shiling Liang, Yu-Han Ma, Daniel Maria Busiello, Paolo De Los Rios

Carnot efficiency sets a fundamental upper bound on the heat engine efficiency, attainable in the quasi-static limit, albeit at the cost of completely sacrificing power output. In this Letter, we present a minimal heat engine model that can attain Carnot efficiency while achieving maximum power output. We unveil the potential of intrinsic divergent physical quantities within the working substance, such as degeneracy, as promising thermodynamic resources to break through the universal power-efficiency trade-off imposed by nonequilibrium thermodynamics for conventional heat engines. Our findings provide novel insights into the collective advantage in harnessing energy of many-body interacting systems.

Comments: 6+6 pages, 4 figures Statistical Mechanics (cond-mat.stat-mech) Subjects: Cite as: arXiv:2312.02323 [cond-mat.stat-mech] (or arXiv:2312.02323v2 [cond-mat.stat-mech] for this version) https://doi.org/10.48550/arXiv.2312.02323

Heat Engine

Heat Engine

 $\overline{}$

Paolo De Los Rios

24