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Universality: Any unitary transformation on a composite system can be realized exactly by a finite sequence of 2-local 
unitaries on the subsystems.

Universality with 3-qubit gates (Deutsch 1985)
Universality with 2-qubits gates (DiVincenzo 1995),  Almost all 2-qubits gates are universal (Lloyd 1995, Deutsch-Barenco-Ekert 1995)

What is the minimum energy that should be dissipated to the environment to calculate a Boolean function?

Classically, universality can be achieved with 3-bit reversible gates.  



Universality as a statement about time evolution under general local Hamiltonians 

However, after a sufficiently long time, closed systems with local Hamiltonians can experience any 
arbitrary time evolution.  

Locality of Hamiltonian puts various constraints on the 
short-term dynamics, e.g. finite speed of propagation of 
information, as highlighted by the Lieb-Robinson bound. 
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free, that is, they can be implemented with negligible ther-
modynamic costs. This assumption is made even for com-
posite systems with arbitrarily large number of constituents.
However, our no-go theorem implies that general energy-
conserving unitaries on a composite system cannot be im-
plemented by applying local energy-conserving unitaries on
the constituents. Note that energy-conserving unitaries are
those that are invariant under the time-translation symmetry
{e≠iH0t : t œ R} generated by the intrinsic system Hamil-
tonian H0; a continuous symmetry which is isomorphic with
the group U(1), in the case of periodic systems. Therefore,
our no-go theorem suggests that there could be some hid-
den thermodynamic costs for implementing general energy-
conserving unitaries, using local energy-conserving unitaries,
and in principle, this additional cost can increase with the sys-
tem size.

However, we show that in the case of the group U(1), this
no-go theorem can be circumvented using ancillary qubits,
i.e., auxiliary systems initially prepared in a fixed state which
returns to their initial states at the end of the process. In
the context of quantum thermodynamics, such ancillary
systems can be interpreted as catalysts. In particular, we
show that using 2-local Hamiltonian XX + Y Y and local
Pauli Z, which are both invariant under rotations around z,
it is possible to implement all uniatiries that are invariant
under this symmetry, provided that one can employ one
ancillary qubit. Similarly, any energy-conserving unitary on
a composite system can be implemented in a similar fashion,
using a single ancillary qubit (See Theorem 1 for the precise
statement).

I. PRELIMENARIES

A. Local Symmetric Quantum Circuits (LSQC)

Consider an arbitrary composite system formed from local
subsystems or sites (e.g., qubits or spins). In this paper we
focuse on systems with finite-dimensional Hilbert spaces. An
operator is called k-local if it acts non-trivially on the Hilbert
spaces of, at most, k sites. For systems with a given ge-
ometry, such as lattice systems, we also consider a stronger
notion of locality, namely geometric locality, where the op-
erator acts non-trivially only on a local neighborhood of the
system, e.g., a pair of nearest-neighbor sites. Consider a sym-
metry described a general group G. To simplify the follow-
ing discussion, unless otherwise stated, we assume all sites in
the system have identical Hilbert spaces and carry the same
unitary representation of group G (in the Appendix, we con-
sider the general case). In particular, on a system with n

sites, assume each group element g œ G is represented by
unitary U(g) = u(g)¢n. An operator A acting on the to-
tal system is called G-invariant, or symmetric, if satisfies
U(g)AU†(g) = A, for any group element g œ G. The set
of symmetric unitaries itself forms a group, denoted by

VG © {V : V V † = I, [V,U(g)] = 0,’g œ G} , (1)

where I is the identity operator. In this paper, we mostly focus
on the case finite and compact Lie groups.

As an example, we consider a system with n qubits and
the U(1) symmetry corresponding to global rotations around
the z axis, i.e., those satisfying (e≠i◊Z)¢nA(ei◊Z)¢n = A,
for ◊ œ [0, 2fi), or, equivalently, operators commuting withq

n

j=1 Zj , where Xj , Yj , Zj denote Pauli operators on qubit j
tensor product with the identity operators on the rest of qubits.
Depending on the context, this symmetry can have different
physical interpretations. For instance, if each qubit has Hamil-
tonian �E

2 Z, then �E

2
q

n

j=1 Zj is the total Hamiltonian of
the system. Then, unitaries which satisfy this symmetry are
energy-conserving unitaries, which play an important role in
the resource theory of quantum thermodynamics.

We define VG
k

to be the set of all unitary transformations
that can be implemented with Local Symmetric Quantum Cir-
cuit (LSQC) with k-local unitaries. More formally, VG

k
is the

set of unitaries V which can be generated as V =
r

m

i=1 Vi for
a finite integer m, where each Vi is a symmetric k-local uni-
tary (See Fig.1). It can be easily seen that VG

k
is a subgroup of

VG = VG
n

, the group of all symmetric unitaries. In fact, more
generally, for k < l, VG

k
™ VG

l
, and therefore we obtain a

hierarchy of subgroups of VG. We are interested to character-
ize each subgroup VG

k
and, in particular, to determine if there

exists k < n, such that k-local symmetric unitaries become
universal, that is VG

k
= VG. As we discussed before, in the

absence of symmetries, i.e., when G is the trivial group, this
already happens for k = 2.

It is worth noting that for any symmetry G, the unitary
transformations that exchange the state of two subsystems,
i.e., the swap unitaries, are 2-local and symmetric. This im-
plies that if in the above definition of the group VG

k
, we add the

stronger constraint of geometric locality to the definition, the
group will remain unchanged, provided that the subsystems
lie on a connected graph, e.g., on a chain.

B. Time evolution under local symmetric Hamiltonians

The time evolution of composite systems with local sym-
metric Hamiltonians can be modeled by LSQC. A generic lo-
cal Hamiltonian H(t) acts non-trivially on all subsystems in
the system, but, has a decomposition as H(t) =

q
r
hr(t),

where each term hr(t) is k-local for a fixed k, which is often
much smaller than the total number of subsystems in the sys-
tem. The unitary evolution generated by this Hamiltonian is
determined by the Schrödinger equation

dV (t)
dt

= ≠iH(t)V (t) = ≠i
#ÿ

r

hr(t)
$
V (t) , (2)

with the initial condition V (0) = I . Suppose, in addition
to the above locality constraint, the Hamiltonian H(t) also
respects the symmetry described by the group G, such that
[U(g), H(t)] = 0, for all g œ G, and all t Ø 0. Then, it
can be shown that the family of unitaries {V (t) : t Ø 0}
generated by any such Hamiltonian belongs to VG

k
, i.e., the

group of unitaries which can be implemented by k-local sym-
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Does the universality of 2-local (k-local) unitaries remain valid in the presence 
of symmetries and conservation laws?

Do local symmetric Hamiltonians generate all symmetric unitaries?

Questions



The framework of Local Symmetric Quantum Circuits has become a standard tool in theoretical physics.
We need to understand them better!

Motivations

• Classification of symmetry-protected topological phases
Chen-Gu-Wen,  Classification of gapped symmetric phases in one-dimensional spin systems (2011) 
Chen-Gu-Liu-Wen, Symmetry protected topological orders and the group cohomology of their symmetry group (2013)

• Quantum chaos with conserved charges
Khemani-Vishwanath-Huse  (2018)

Implications and Applications

1) Finding new conservation laws and constraints imposed on the dynamics of quantum systems by the presence 
of both symmetry and locality.  

2) Symmetric unitaries are essential in Quantum Thermodynamics (athermality), Quantum Reference Frames, 
Resource Theory of Asymmetry, and Covariant Error-Correcting Codes.  How can we implement them?

  
Sys 1 Sys 2 Sys 3

E0=0

E1=∆E

E2=2∆E

E3=3∆E

E4=4∆E

Locality and Conservation Laws:

How, in the presence of symmetry, locality restricts realizable unitaries

Iman Marvian1
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According to an elementary result in quantum computing, any unitary transformation on a composite system
can be generated using 2-local unitaries, i.e., those which act only on two subsystems. Beside its fundamental
importance in quantum computing, this result can also be regarded as a statement about the dynamics of sys-
tems with local Hamiltonians: although locality puts various constraints on the short-term dynamics, it does not
restrict the possible unitary evolutions that a composite system with a general local Hamiltonian can experience
after a sufficiently long time. We ask if such universality remains valid in the presence of conservation laws
and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all sym-
metric unitaries on that system? Interestingly, it turns out that the answer is negative in the case of continuous
symmetries, such as U(1) and SO(3): unless there are interactions which act non-trivially on every subsystem in
the system, some symmetric unitaries cannot be implemented using symmetric Hamiltonians. In fact, the dif-
ference between the dimensions of the Lie algebra of all symmetric Hamiltonians and its subalgebra generated
by k-local symmetric Hamiltonians with a fixed k, constantly increases with the system size (i.e., the number
of subsystems). On the other hand, in the case of group U(1), we find that this no-go theorem can be circum-
vented if one is allowed to use a pair of ancillary qubits. In particular, any unitary which is invariant under
rotations around z, can be implemented using Hamiltonians XX + Y Y and local Z on qubits. We discuss
some implications of these results in the context of quantum thermodynamics and quantum computing.

Htot = H1 + H2 + H3

[V, Htot] = 0

k Æ l Æ n

H(t) =
nÿ

j=1
aj(t)[XjXj+1 + YjYj+1] + bj(t) ZjZj+1 + cj(t)Zj .

{u(g)¢k : g œ G}

{V : V V
† = I, [V, u(g)¢n] = 0 : ’g œ G}

e
≠i◊

q
j

Zj
H(t) e

i◊

q
j

Zj = H(t) ’◊ œ [0, 2fi)

’t :
#
H(t),

ÿ

j

Zj

$
= 0

{U(t) : t Ø 0}

• Is there any hidden thermodynamic cost for implementing a general 
energy-conserving unitary, using local energy-conserving unitaries?  

3) Synthesizing noise-resilient quantum circuits



Example:

7

X1 ¢ X2 + Y1 ¢ Y2

X1 ¢ Y2 ≠ Y1 ¢ X2

where nx ”= 0 or nx ”= 0 is not in z

{e
i◊Z : ◊ œ [0, 2fi)}

e
i◊mZ · · · · · · e

i„3(nxX+nzZ)
e

i◊3Z
e

i„2(nxX+nzZ)
e

i◊2Z
e

i„1(nxX+nzZ)
e

i◊1Z

V
! nÿ

j=1
Zj

"
V

† =
nÿ

j=1
Zj

c1iZ + c2(nxiX + nziZ) + c3[iZ, (nxiX + nziZ)] = c1iZ + c2(nxiX + nziZ) + 2c3nxiY

Span

c1, c2, c3 œ R

and

{e
i„(nxX+nzZ) : „ œ [0, 2fi)}

)
i[Kj , Kl]

*

If nx ”= 0, then the Lie algebra generated by iZ and i(nxX + nzZ) is the space of all anti-Hermitian operators.

{e
≠iHt : t œ R} µ

Therefore, we can implement any arbitrary unitary, up to a global phase.

where [A, B] © AB ≠ BA.

Rk+1

[H, (ei◊Z)¢n] = 0 : ◊ œ [0, 2fi)

[H,

nÿ

j=1
Zj ] = 0

n=1
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and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all sym-
metric unitaries on that system? Interestingly, it turns out that the answer is negative in the case of continuous
symmetries, such as U(1) and SO(3): unless there are interactions which act non-trivially on every subsystem
in the system, some symmetric unitaries cannot be implemented using symmetric Hamiltonians. In fact, the
difference between the dimensions of the Lie algebra of all symmetric Hamiltonians and its subalgebra gen-
erated by k-local symmetric Hamiltonians with a fixed k, constantly increases with the system size (i.e., the
number of subsystems). On the other hand, in the case of group U(1), we find that this no-go theorem can be
circumvented if one is allowed to use a single ancillary qubit. In particular, any unitary which is invariant under
rotations around z, can be implemented using Hamiltonian XX + Y Y together with a local Z Hamiltonian on
the ancillary qubit. We discuss some implications of these results in the context of quantum thermodynamics
and quantum computing.

’◊ œ [0, 2fi) : U(ei◊Z)¢n = (ei◊Z)¢nU

e
i◊Z

U(
nÿ

j=1
Zj)U† =

nÿ

j=1
Zj

3
e
i„0

e
i„1

4

Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.

The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-
metric Hamiltonians constantly grows with the system size.
As an example, we consider a composite system formed from
qubits, with the symmetry group U(1), corresponding to rota-
tions around z axis, and show that these constraints uniquely
characterize the class of all diagonal Hamiltonians which can
be generated using U(1)-invariant k-local Hamiltonians.

The case of U(1) symmetry is specially relevant in the con-
texts of quantum computing and quantum thermodynamics.
For systems with periodic time evolution, the time transla-
tions {e≠iH0t} generated by the system intrinsic Hamiltonian
H0, form a group isomorphic to U(1). Energy-conserving
unitaries, i.e., those which commute with H0, respect this
U(1) symmetry. In the context of quantum computing, such
phase-insensitive unitaries are of special interest, because they
are less sensitive to fluctuations and instability of the master
clock which determines the timing of the control pulses. Fur-
thermore, in the resource theory of quantum thermodynamics,
energy conserving unitaries play a distinct role: they are as-
sumed to be free, i.e., realizable with negligible costs [? ? ?
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Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-
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the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
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quantum computing, any unitary transformation on a compos-
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The question is if all symmetric unitaries on a composite sys-
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system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
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A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
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imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric

Locality and Conservation Laws:
How, in the presence of symmetry, locality restricts realizable unitaries

Iman Marvian1

1Departments of Physics & Electrical and Computer Engineering,
Duke University, Durham, North Carolina 27708, USA

According to an elementary result in quantum computing, any unitary transformation on a composite system
can be generated using 2-local unitaries, i.e., those which act only on two subsystems. Beside its fundamental
importance in quantum computing, this result can also be regarded as a statement about the dynamics of sys-
tems with local Hamiltonians: although locality puts various constraints on the short-term dynamics, it does not
restrict the possible unitary evolutions that a composite system with a general local Hamiltonian can experience
after a sufficiently long time. We ask if such universality remains valid in the presence of conservation laws
and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all sym-
metric unitaries on that system? Interestingly, it turns out that the answer is negative in the case of continuous
symmetries, such as U(1) and SO(3): unless there are interactions which act non-trivially on every subsystem
in the system, some symmetric unitaries cannot be implemented using symmetric Hamiltonians. In fact, the
difference between the dimensions of the Lie algebra of all symmetric Hamiltonians and its subalgebra gen-
erated by k-local symmetric Hamiltonians with a fixed k, constantly increases with the system size (i.e., the
number of subsystems). On the other hand, in the case of group U(1), we find that this no-go theorem can be
circumvented if one is allowed to use a single ancillary qubit. In particular, any unitary which is invariant under
rotations around z, can be implemented using Hamiltonian XX + Y Y together with a local Z Hamiltonian on
the ancillary qubit. We discuss some implications of these results in the context of quantum thermodynamics
and quantum computing.

’◊ œ [0, 2fi) : U(ei◊Z)¢n = (ei◊Z)¢nU

e
i◊Z

U(
nÿ

j=1
Zj)U† =

nÿ

j=1
Zj

3
e
i„0

e
i„1

4

Q

cca

e
i„0

e
i„3

R

ddb

|000Í

|001Í

|010Í

|100Í

|10Í

|11Í

V1
Locality of interactions of a quantum many-body system

imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and

Locality and Conservation Laws:
How, in the presence of symmetry, locality restricts realizable unitaries

Iman Marvian1

1Departments of Physics & Electrical and Computer Engineering,
Duke University, Durham, North Carolina 27708, USA

According to an elementary result in quantum computing, any unitary transformation on a composite system
can be generated using 2-local unitaries, i.e., those which act only on two subsystems. Beside its fundamental
importance in quantum computing, this result can also be regarded as a statement about the dynamics of sys-
tems with local Hamiltonians: although locality puts various constraints on the short-term dynamics, it does not
restrict the possible unitary evolutions that a composite system with a general local Hamiltonian can experience
after a sufficiently long time. We ask if such universality remains valid in the presence of conservation laws
and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all sym-
metric unitaries on that system? Interestingly, it turns out that the answer is negative in the case of continuous
symmetries, such as U(1) and SO(3): unless there are interactions which act non-trivially on every subsystem
in the system, some symmetric unitaries cannot be implemented using symmetric Hamiltonians. In fact, the
difference between the dimensions of the Lie algebra of all symmetric Hamiltonians and its subalgebra gen-
erated by k-local symmetric Hamiltonians with a fixed k, constantly increases with the system size (i.e., the
number of subsystems). On the other hand, in the case of group U(1), we find that this no-go theorem can be
circumvented if one is allowed to use a single ancillary qubit. In particular, any unitary which is invariant under
rotations around z, can be implemented using Hamiltonian XX + Y Y together with a local Z Hamiltonian on
the ancillary qubit. We discuss some implications of these results in the context of quantum thermodynamics
and quantum computing.

’◊ œ [0, 2fi) : U(ei◊Z)¢n = (ei◊Z)¢nU

e
i◊Z

U(
nÿ

j=1
Zj)U† =

nÿ

j=1
Zj

3
e
i„0

e
i„1

4

Q

cca

e
i„0

e
i„3

R

ddb

|000Í

|001Í

|010Í

|100Í

|10Í

|11Í

V1
Locality of interactions of a quantum many-body system

imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
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Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family

of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-
metric Hamiltonians constantly grows with the system size.
As an example, we consider a composite system formed from
qubits, with the symmetry group U(1), corresponding to rota-
tions around z axis, and show that these constraints uniquely
characterize the class of all diagonal Hamiltonians which can
be generated using U(1)-invariant k-local Hamiltonians.

The case of U(1) symmetry is specially relevant in the con-
texts of quantum computing and quantum thermodynamics.
For systems with periodic time evolution, the time transla-
tions {e≠iH0t} generated by the system intrinsic Hamiltonian
H0, form a group isomorphic to U(1). Energy-conserving
unitaries, i.e., those which commute with H0, respect this
U(1) symmetry. In the context of quantum computing, such
phase-insensitive unitaries are of special interest, because they
are less sensitive to fluctuations and instability of the master
clock which determines the timing of the control pulses. Fur-
thermore, in the resource theory of quantum thermodynamics,
energy conserving unitaries play a distinct role: they are as-
sumed to be free, i.e., realizable with negligible costs [? ? ?
]. However, the above no-go theorem makes this assumption
questionable, because it suggests that it may not be possible
to implement all such unitaries with local energy-conserving
interactions.

Remarkably, we find that in the case of the group U(1),
this no-go theorem can be circumvented using an ancillary
qubit, i.e., an auxiliary system initially prepared in a fixed
state which returns to its initial state at the end of process. In
particular, we show that using 2-local Hamiltonian XX+Y Y
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and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all sym-
metric unitaries on that system? Interestingly, it turns out that the answer is negative in the case of continuous
symmetries, such as U(1) and SO(3): unless there are interactions which act non-trivially on every subsystem
in the system, some symmetric unitaries cannot be implemented using symmetric Hamiltonians. In fact, the
difference between the dimensions of the Lie algebra of all symmetric Hamiltonians and its subalgebra gen-
erated by k-local symmetric Hamiltonians with a fixed k, constantly increases with the system size (i.e., the
number of subsystems). On the other hand, in the case of group U(1), we find that this no-go theorem can be
circumvented if one is allowed to use a single ancillary qubit. In particular, any unitary which is invariant under
rotations around z, can be implemented using Hamiltonian XX + Y Y together with a local Z Hamiltonian on
the ancillary qubit. We discuss some implications of these results in the context of quantum thermodynamics
and quantum computing.

’◊ œ [0, 2fi) : U(ei◊Z)¢n = (ei◊Z)¢nU

e
i◊Z

Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family

of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-
metric Hamiltonians constantly grows with the system size.
As an example, we consider a composite system formed from
qubits, with the symmetry group U(1), corresponding to rota-
tions around z axis, and show that these constraints uniquely
characterize the class of all diagonal Hamiltonians which can
be generated using U(1)-invariant k-local Hamiltonians.

The case of U(1) symmetry is specially relevant in the con-
texts of quantum computing and quantum thermodynamics.
For systems with periodic time evolution, the time transla-
tions {e≠iH0t} generated by the system intrinsic Hamiltonian
H0, form a group isomorphic to U(1). Energy-conserving
unitaries, i.e., those which commute with H0, respect this
U(1) symmetry. In the context of quantum computing, such
phase-insensitive unitaries are of special interest, because they
are less sensitive to fluctuations and instability of the master
clock which determines the timing of the control pulses. Fur-
thermore, in the resource theory of quantum thermodynamics,
energy conserving unitaries play a distinct role: they are as-
sumed to be free, i.e., realizable with negligible costs [? ? ?
]. However, the above no-go theorem makes this assumption
questionable, because it suggests that it may not be possible
to implement all such unitaries with local energy-conserving
interactions.

Remarkably, we find that in the case of the group U(1),
this no-go theorem can be circumvented using an ancillary
qubit, i.e., an auxiliary system initially prepared in a fixed
state which returns to its initial state at the end of process. In
particular, we show that using 2-local Hamiltonian XX+Y Y
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<latexit sha1_base64="AqrWt6Kk4S03jkrCZwk5raGTUhw=">AAAB+nicbVBNS8NAEN34WetXqkcvi0VQkJKUih6LXjxWsB/QhLLZbtqlm03YnSgl9qd48aCIV3+JN/+N2zYHbX0w8Hhvhpl5QSK4Bsf5tlZW19Y3Ngtbxe2d3b19u3TQ0nGqKGvSWMSqExDNBJesCRwE6ySKkSgQrB2MbqZ++4EpzWN5D+OE+REZSB5ySsBIPbvkwZAB8bjsOudVL+FnPbvsVJwZ8DJxc1JGORo9+8vrxzSNmAQqiNZd10nAz4gCTgWbFL1Us4TQERmwrqGSREz72ez0CT4xSh+HsTIlAc/U3xMZibQeR4HpjAgM9aI3Ff/zuimEV37GZZICk3S+KEwFhhhPc8B9rhgFMTaEUMXNrZgOiSIUTFpFE4K7+PIyaVUrbq1ycVcr16/zOAroCB2jU+SiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7x1xcpnDtEfWJ8/J8eTSQ==</latexit>

7

X1 ¢ X2 + Y1 ¢ Y2

X1 ¢ Y2 ≠ Y1 ¢ X2

where nx ”= 0 or nx ”= 0 is not in z

{e
i◊Z : ◊ œ [0, 2fi)}

e
i◊mZ · · · · · · e

i„3(nxX+nzZ)
e

i◊3Z
e

i„2(nxX+nzZ)
e

i◊2Z
e

i„1(nxX+nzZ)
e

i◊1Z

◊ œ [0, 2fi) : V (ei◊Z)¢n = (ei◊Z)¢n
V

V
! nÿ

j=1
Zj

"
V

† =
nÿ

j=1
Zj

c1iZ + c2(nxiX + nziZ) + c3[iZ, (nxiX + nziZ)] = c1iZ + c2(nxiX + nziZ) + 2c3nxiY

Span

c1, c2, c3 œ R

and

{e
i„(nxX+nzZ) : „ œ [0, 2fi)}

)
i[Kj , Kl]

*

If nx ”= 0, then the Lie algebra generated by iZ and i(nxX + nzZ) is the space of all anti-Hermitian operators.

{e
≠iHt : t œ R} µ

Therefore, we can implement any arbitrary unitary, up to a global phase.

where [A, B] © AB ≠ BA.

Rk+1

[H, (ei◊Z)¢n] = 0 : ◊ œ [0, 2fi)

Equivalently: U(1)-invariant unitaries

H = ��E

2
Z
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The intrinsic Hamiltonian of a qubit: 

The unitary V on n qubits is energy-conserving if

Examples: Unitaries generated by XX+YY interaction, CCZ gate, and Fredkin (controlled-SWAP) gate

Question: Can we realize 3-qubit U(1)-invariant unitaries using 2-qubit U(1)-invariant unitaries?
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free, that is, they can be implemented with negligible ther-
modynamic costs. This assumption is made even for com-
posite systems with arbitrarily large number of constituents.
However, our no-go theorem implies that general energy-
conserving unitaries on a composite system cannot be im-
plemented by applying local energy-conserving unitaries on
the constituents. Note that energy-conserving unitaries are
those that are invariant under the time-translation symmetry
{e≠iH0t : t œ R} generated by the intrinsic system Hamil-
tonian H0; a continuous symmetry which is isomorphic with
the group U(1), in the case of periodic systems. Therefore,
our no-go theorem suggests that there could be some hid-
den thermodynamic costs for implementing general energy-
conserving unitaries, using local energy-conserving unitaries,
and in principle, this additional cost can increase with the sys-
tem size.

However, we show that in the case of the group U(1), this
no-go theorem can be circumvented using ancillary qubits,
i.e., auxiliary systems initially prepared in a fixed state which
returns to their initial states at the end of the process. In
the context of quantum thermodynamics, such ancillary
systems can be interpreted as catalysts. In particular, we
show that using 2-local Hamiltonian XX + Y Y and local
Pauli Z, which are both invariant under rotations around z,
it is possible to implement all uniatiries that are invariant
under this symmetry, provided that one can employ one
ancillary qubit. Similarly, any energy-conserving unitary on
a composite system can be implemented in a similar fashion,
using a single ancillary qubit (See Theorem 1 for the precise
statement).

I. PRELIMENARIES

A. Local Symmetric Quantum Circuits (LSQC)

Consider an arbitrary composite system formed from local
subsystems or sites (e.g., qubits or spins). In this paper we
focuse on systems with finite-dimensional Hilbert spaces. An
operator is called k-local if it acts non-trivially on the Hilbert
spaces of, at most, k sites. For systems with a given ge-
ometry, such as lattice systems, we also consider a stronger
notion of locality, namely geometric locality, where the op-
erator acts non-trivially only on a local neighborhood of the
system, e.g., a pair of nearest-neighbor sites. Consider a sym-
metry described a general group G. To simplify the follow-
ing discussion, unless otherwise stated, we assume all sites in
the system have identical Hilbert spaces and carry the same
unitary representation of group G (in the Appendix, we con-
sider the general case). In particular, on a system with n

sites, assume each group element g œ G is represented by
unitary U(g) = u(g)¢n. An operator A acting on the to-
tal system is called G-invariant, or symmetric, if satisfies
U(g)AU†(g) = A, for any group element g œ G. The set
of symmetric unitaries itself forms a group, denoted by

VG © {V : V V † = I, [V,U(g)] = 0,’g œ G} , (1)

where I is the identity operator. In this paper, we mostly focus
on the case finite and compact Lie groups.

As an example, we consider a system with n qubits and
the U(1) symmetry corresponding to global rotations around
the z axis, i.e., those satisfying (e≠i◊Z)¢nA(ei◊Z)¢n = A,
for ◊ œ [0, 2fi), or, equivalently, operators commuting withq

n

j=1 Zj , where Xj , Yj , Zj denote Pauli operators on qubit j
tensor product with the identity operators on the rest of qubits.
Depending on the context, this symmetry can have different
physical interpretations. For instance, if each qubit has Hamil-
tonian �E

2 Z, then �E

2
q

n

j=1 Zj is the total Hamiltonian of
the system. Then, unitaries which satisfy this symmetry are
energy-conserving unitaries, which play an important role in
the resource theory of quantum thermodynamics.

We define VG
k

to be the set of all unitary transformations
that can be implemented with Local Symmetric Quantum Cir-
cuit (LSQC) with k-local unitaries. More formally, VG

k
is the

set of unitaries V which can be generated as V =
r

m

i=1 Vi for
a finite integer m, where each Vi is a symmetric k-local uni-
tary (See Fig.1). It can be easily seen that VG

k
is a subgroup of

VG = VG
n

, the group of all symmetric unitaries. In fact, more
generally, for k < l, VG

k
™ VG

l
, and therefore we obtain a

hierarchy of subgroups of VG. We are interested to character-
ize each subgroup VG

k
and, in particular, to determine if there

exists k < n, such that k-local symmetric unitaries become
universal, that is VG

k
= VG. As we discussed before, in the

absence of symmetries, i.e., when G is the trivial group, this
already happens for k = 2.

It is worth noting that for any symmetry G, the unitary
transformations that exchange the state of two subsystems,
i.e., the swap unitaries, are 2-local and symmetric. This im-
plies that if in the above definition of the group VG

k
, we add the

stronger constraint of geometric locality to the definition, the
group will remain unchanged, provided that the subsystems
lie on a connected graph, e.g., on a chain.

B. Time evolution under local symmetric Hamiltonians

The time evolution of composite systems with local sym-
metric Hamiltonians can be modeled by LSQC. A generic lo-
cal Hamiltonian H(t) acts non-trivially on all subsystems in
the system, but, has a decomposition as H(t) =

q
r
hr(t),

where each term hr(t) is k-local for a fixed k, which is often
much smaller than the total number of subsystems in the sys-
tem. The unitary evolution generated by this Hamiltonian is
determined by the Schrödinger equation

dV (t)
dt

= ≠iH(t)V (t) = ≠i
#ÿ

r

hr(t)
$
V (t) , (2)

with the initial condition V (0) = I . Suppose, in addition
to the above locality constraint, the Hamiltonian H(t) also
respects the symmetry described by the group G, such that
[U(g), H(t)] = 0, for all g œ G, and all t Ø 0. Then, it
can be shown that the family of unitaries {V (t) : t Ø 0}
generated by any such Hamiltonian belongs to VG

k
, i.e., the

group of unitaries which can be implemented by k-local sym-

2

free, that is, they can be implemented with negligible ther-
modynamic costs. This assumption is made even for com-
posite systems with arbitrarily large number of constituents.
However, our no-go theorem implies that general energy-
conserving unitaries on a composite system cannot be im-
plemented by applying local energy-conserving unitaries on
the constituents. Note that energy-conserving unitaries are
those that are invariant under the time-translation symmetry
{e≠iH0t : t œ R} generated by the intrinsic system Hamil-
tonian H0; a continuous symmetry which is isomorphic with
the group U(1), in the case of periodic systems. Therefore,
our no-go theorem suggests that there could be some hid-
den thermodynamic costs for implementing general energy-
conserving unitaries, using local energy-conserving unitaries,
and in principle, this additional cost can increase with the sys-
tem size.

However, we show that in the case of the group U(1), this
no-go theorem can be circumvented using ancillary qubits,
i.e., auxiliary systems initially prepared in a fixed state which
returns to their initial states at the end of the process. In
the context of quantum thermodynamics, such ancillary
systems can be interpreted as catalysts. In particular, we
show that using 2-local Hamiltonian XX + Y Y and local
Pauli Z, which are both invariant under rotations around z,
it is possible to implement all uniatiries that are invariant
under this symmetry, provided that one can employ one
ancillary qubit. Similarly, any energy-conserving unitary on
a composite system can be implemented in a similar fashion,
using a single ancillary qubit (See Theorem 1 for the precise
statement).

I. PRELIMENARIES

A. Local Symmetric Quantum Circuits (LSQC)

Consider an arbitrary composite system formed from local
subsystems or sites (e.g., qubits or spins). In this paper we
focuse on systems with finite-dimensional Hilbert spaces. An
operator is called k-local if it acts non-trivially on the Hilbert
spaces of, at most, k sites. For systems with a given ge-
ometry, such as lattice systems, we also consider a stronger
notion of locality, namely geometric locality, where the op-
erator acts non-trivially only on a local neighborhood of the
system, e.g., a pair of nearest-neighbor sites. Consider a sym-
metry described a general group G. To simplify the follow-
ing discussion, unless otherwise stated, we assume all sites in
the system have identical Hilbert spaces and carry the same
unitary representation of group G (in the Appendix, we con-
sider the general case). In particular, on a system with n

sites, assume each group element g œ G is represented by
unitary U(g) = u(g)¢n. An operator A acting on the to-
tal system is called G-invariant, or symmetric, if satisfies
U(g)AU†(g) = A, for any group element g œ G. The set
of symmetric unitaries itself forms a group, denoted by

VG © {V : V V † = I, [V,U(g)] = 0,’g œ G} , (1)

where I is the identity operator. In this paper, we mostly focus
on the case finite and compact Lie groups.

As an example, we consider a system with n qubits and
the U(1) symmetry corresponding to global rotations around
the z axis, i.e., those satisfying (e≠i◊Z)¢nA(ei◊Z)¢n = A,
for ◊ œ [0, 2fi), or, equivalently, operators commuting withq

n

j=1 Zj , where Xj , Yj , Zj denote Pauli operators on qubit j
tensor product with the identity operators on the rest of qubits.
Depending on the context, this symmetry can have different
physical interpretations. For instance, if each qubit has Hamil-
tonian �E

2 Z, then �E

2
q

n

j=1 Zj is the total Hamiltonian of
the system. Then, unitaries which satisfy this symmetry are
energy-conserving unitaries, which play an important role in
the resource theory of quantum thermodynamics.

We define VG
k

to be the set of all unitary transformations
that can be implemented with Local Symmetric Quantum Cir-
cuit (LSQC) with k-local unitaries. More formally, VG

k
is the

set of unitaries V which can be generated as V =
r

m

i=1 Vi for
a finite integer m, where each Vi is a symmetric k-local uni-
tary (See Fig.1). It can be easily seen that VG

k
is a subgroup of

VG = VG
n

, the group of all symmetric unitaries. In fact, more
generally, for k < l, VG

k
™ VG

l
, and therefore we obtain a

hierarchy of subgroups of VG. We are interested to character-
ize each subgroup VG

k
and, in particular, to determine if there

exists k < n, such that k-local symmetric unitaries become
universal, that is VG

k
= VG. As we discussed before, in the

absence of symmetries, i.e., when G is the trivial group, this
already happens for k = 2.

It is worth noting that for any symmetry G, the unitary
transformations that exchange the state of two subsystems,
i.e., the swap unitaries, are 2-local and symmetric. This im-
plies that if in the above definition of the group VG

k
, we add the

stronger constraint of geometric locality to the definition, the
group will remain unchanged, provided that the subsystems
lie on a connected graph, e.g., on a chain.

B. Time evolution under local symmetric Hamiltonians

The time evolution of composite systems with local sym-
metric Hamiltonians can be modeled by LSQC. A generic lo-
cal Hamiltonian H(t) acts non-trivially on all subsystems in
the system, but, has a decomposition as H(t) =

q
r
hr(t),

where each term hr(t) is k-local for a fixed k, which is often
much smaller than the total number of subsystems in the sys-
tem. The unitary evolution generated by this Hamiltonian is
determined by the Schrödinger equation

dV (t)
dt

= ≠iH(t)V (t) = ≠i
#ÿ

r

hr(t)
$
V (t) , (2)

with the initial condition V (0) = I . Suppose, in addition
to the above locality constraint, the Hamiltonian H(t) also
respects the symmetry described by the group G, such that
[U(g), H(t)] = 0, for all g œ G, and all t Ø 0. Then, it
can be shown that the family of unitaries {V (t) : t Ø 0}
generated by any such Hamiltonian belongs to VG

k
, i.e., the

group of unitaries which can be implemented by k-local sym-
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According to an elementary result in quantum computing, any unitary transformation on a composite system
can be generated using 2-local unitaries, i.e., those which act only on two subsystems. Beside its fundamental
importance in quantum computing, this result can also be regarded as a statement about the dynamics of sys-
tems with local Hamiltonians: although locality puts various constraints on the short-term dynamics, it does not
restrict the possible unitary evolutions that a composite system with a general local Hamiltonian can experience
after a sufficiently long time. We ask if such universality remains valid in the presence of conservation laws
and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all sym-
metric unitaries on that system? Interestingly, it turns out that the answer is negative in the case of continuous
symmetries, such as U(1) and SO(3): unless there are interactions which act non-trivially on every subsystem in
the system, some symmetric unitaries cannot be implemented using symmetric Hamiltonians. In fact, the dif-
ference between the dimensions of the Lie algebra of all symmetric Hamiltonians and its subalgebra generated
by k-local symmetric Hamiltonians with a fixed k, constantly increases with the system size (i.e., the number
of subsystems). On the other hand, in the case of group U(1), we find that this no-go theorem can be circum-
vented if one is allowed to use a pair of ancillary qubits. In particular, any unitary which is invariant under
rotations around z, can be implemented using Hamiltonians XX + Y Y and local Z on qubits. We discuss
some implications of these results in the context of quantum thermodynamics and quantum computing.

H(t) =
nÿ

j=1
aj(t)[XjXj+1 + YjYj+1] + bj(t) ZjZj+1 + cj(t)Zj .

’t :
#
H(t),

ÿ

j

Zj

$
= 0

{U(t) : t Ø 0}

U(0) = I

U(t)

l > k

a

hn

dim(hn) ≠ dim(hk) Ø n ≠ k
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free, that is, they can be implemented with negligible ther-
modynamic costs. This assumption is made even for com-
posite systems with arbitrarily large number of constituents.
However, our no-go theorem implies that general energy-
conserving unitaries on a composite system cannot be im-
plemented by applying local energy-conserving unitaries on
the constituents. Note that energy-conserving unitaries are
those that are invariant under the time-translation symmetry
{e≠iH0t : t œ R} generated by the intrinsic system Hamil-
tonian H0; a continuous symmetry which is isomorphic with
the group U(1), in the case of periodic systems. Therefore,
our no-go theorem suggests that there could be some hid-
den thermodynamic costs for implementing general energy-
conserving unitaries, using local energy-conserving unitaries,
and in principle, this additional cost can increase with the sys-
tem size.

However, we show that in the case of the group U(1), this
no-go theorem can be circumvented using ancillary qubits,
i.e., auxiliary systems initially prepared in a fixed state which
returns to their initial states at the end of the process. In
the context of quantum thermodynamics, such ancillary
systems can be interpreted as catalysts. In particular, we
show that using 2-local Hamiltonian XX + Y Y and local
Pauli Z, which are both invariant under rotations around z,
it is possible to implement all uniatiries that are invariant
under this symmetry, provided that one can employ one
ancillary qubit. Similarly, any energy-conserving unitary on
a composite system can be implemented in a similar fashion,
using a single ancillary qubit (See Theorem 1 for the precise
statement).

I. PRELIMENARIES

A. Local Symmetric Quantum Circuits (LSQC)

Consider an arbitrary composite system formed from local
subsystems or sites (e.g., qubits or spins). In this paper we
focuse on systems with finite-dimensional Hilbert spaces. An
operator is called k-local if it acts non-trivially on the Hilbert
spaces of, at most, k sites. For systems with a given ge-
ometry, such as lattice systems, we also consider a stronger
notion of locality, namely geometric locality, where the op-
erator acts non-trivially only on a local neighborhood of the
system, e.g., a pair of nearest-neighbor sites. Consider a sym-
metry described a general group G. To simplify the follow-
ing discussion, unless otherwise stated, we assume all sites in
the system have identical Hilbert spaces and carry the same
unitary representation of group G (in the Appendix, we con-
sider the general case). In particular, on a system with n

sites, assume each group element g œ G is represented by
unitary U(g) = u(g)¢n. An operator A acting on the to-
tal system is called G-invariant, or symmetric, if satisfies
U(g)AU†(g) = A, for any group element g œ G. The set
of symmetric unitaries itself forms a group, denoted by

VG © {V : V V † = I, [V,U(g)] = 0,’g œ G} , (1)

where I is the identity operator. In this paper, we mostly focus
on the case finite and compact Lie groups.

As an example, we consider a system with n qubits and
the U(1) symmetry corresponding to global rotations around
the z axis, i.e., those satisfying (e≠i◊Z)¢nA(ei◊Z)¢n = A,
for ◊ œ [0, 2fi), or, equivalently, operators commuting withq

n

j=1 Zj , where Xj , Yj , Zj denote Pauli operators on qubit j
tensor product with the identity operators on the rest of qubits.
Depending on the context, this symmetry can have different
physical interpretations. For instance, if each qubit has Hamil-
tonian �E

2 Z, then �E

2
q

n

j=1 Zj is the total Hamiltonian of
the system. Then, unitaries which satisfy this symmetry are
energy-conserving unitaries, which play an important role in
the resource theory of quantum thermodynamics.

We define VG
k

to be the set of all unitary transformations
that can be implemented with Local Symmetric Quantum Cir-
cuit (LSQC) with k-local unitaries. More formally, VG

k
is the

set of unitaries V which can be generated as V =
r

m

i=1 Vi for
a finite integer m, where each Vi is a symmetric k-local uni-
tary (See Fig.1). It can be easily seen that VG

k
is a subgroup of

VG = VG
n

, the group of all symmetric unitaries. In fact, more
generally, for k < l, VG

k
™ VG

l
, and therefore we obtain a

hierarchy of subgroups of VG. We are interested to character-
ize each subgroup VG

k
and, in particular, to determine if there

exists k < n, such that k-local symmetric unitaries become
universal, that is VG

k
= VG. As we discussed before, in the

absence of symmetries, i.e., when G is the trivial group, this
already happens for k = 2.

It is worth noting that for any symmetry G, the unitary
transformations that exchange the state of two subsystems,
i.e., the swap unitaries, are 2-local and symmetric. This im-
plies that if in the above definition of the group VG

k
, we add the

stronger constraint of geometric locality to the definition, the
group will remain unchanged, provided that the subsystems
lie on a connected graph, e.g., on a chain.

B. Time evolution under local symmetric Hamiltonians

The time evolution of composite systems with local sym-
metric Hamiltonians can be modeled by LSQC. A generic lo-
cal Hamiltonian H(t) acts non-trivially on all subsystems in
the system, but, has a decomposition as H(t) =

q
r
hr(t),

where each term hr(t) is k-local for a fixed k, which is often
much smaller than the total number of subsystems in the sys-
tem. The unitary evolution generated by this Hamiltonian is
determined by the Schrödinger equation

dV (t)
dt

= ≠iH(t)V (t) = ≠i
#ÿ

r

hr(t)
$
V (t) , (2)

with the initial condition V (0) = I . Suppose, in addition
to the above locality constraint, the Hamiltonian H(t) also
respects the symmetry described by the group G, such that
[U(g), H(t)] = 0, for all g œ G, and all t Ø 0. Then, it
can be shown that the family of unitaries {V (t) : t Ø 0}
generated by any such Hamiltonian belongs to VG

k
, i.e., the

group of unitaries which can be implemented by k-local sym-

2

free, that is, they can be implemented with negligible ther-
modynamic costs. This assumption is made even for com-
posite systems with arbitrarily large number of constituents.
However, our no-go theorem implies that general energy-
conserving unitaries on a composite system cannot be im-
plemented by applying local energy-conserving unitaries on
the constituents. Note that energy-conserving unitaries are
those that are invariant under the time-translation symmetry
{e≠iH0t : t œ R} generated by the intrinsic system Hamil-
tonian H0; a continuous symmetry which is isomorphic with
the group U(1), in the case of periodic systems. Therefore,
our no-go theorem suggests that there could be some hid-
den thermodynamic costs for implementing general energy-
conserving unitaries, using local energy-conserving unitaries,
and in principle, this additional cost can increase with the sys-
tem size.

However, we show that in the case of the group U(1), this
no-go theorem can be circumvented using ancillary qubits,
i.e., auxiliary systems initially prepared in a fixed state which
returns to their initial states at the end of the process. In
the context of quantum thermodynamics, such ancillary
systems can be interpreted as catalysts. In particular, we
show that using 2-local Hamiltonian XX + Y Y and local
Pauli Z, which are both invariant under rotations around z,
it is possible to implement all uniatiries that are invariant
under this symmetry, provided that one can employ one
ancillary qubit. Similarly, any energy-conserving unitary on
a composite system can be implemented in a similar fashion,
using a single ancillary qubit (See Theorem 1 for the precise
statement).

I. PRELIMENARIES

A. Local Symmetric Quantum Circuits (LSQC)

Consider an arbitrary composite system formed from local
subsystems or sites (e.g., qubits or spins). In this paper we
focuse on systems with finite-dimensional Hilbert spaces. An
operator is called k-local if it acts non-trivially on the Hilbert
spaces of, at most, k sites. For systems with a given ge-
ometry, such as lattice systems, we also consider a stronger
notion of locality, namely geometric locality, where the op-
erator acts non-trivially only on a local neighborhood of the
system, e.g., a pair of nearest-neighbor sites. Consider a sym-
metry described a general group G. To simplify the follow-
ing discussion, unless otherwise stated, we assume all sites in
the system have identical Hilbert spaces and carry the same
unitary representation of group G (in the Appendix, we con-
sider the general case). In particular, on a system with n

sites, assume each group element g œ G is represented by
unitary U(g) = u(g)¢n. An operator A acting on the to-
tal system is called G-invariant, or symmetric, if satisfies
U(g)AU†(g) = A, for any group element g œ G. The set
of symmetric unitaries itself forms a group, denoted by

VG © {V : V V † = I, [V,U(g)] = 0,’g œ G} , (1)

where I is the identity operator. In this paper, we mostly focus
on the case finite and compact Lie groups.

As an example, we consider a system with n qubits and
the U(1) symmetry corresponding to global rotations around
the z axis, i.e., those satisfying (e≠i◊Z)¢nA(ei◊Z)¢n = A,
for ◊ œ [0, 2fi), or, equivalently, operators commuting withq

n

j=1 Zj , where Xj , Yj , Zj denote Pauli operators on qubit j
tensor product with the identity operators on the rest of qubits.
Depending on the context, this symmetry can have different
physical interpretations. For instance, if each qubit has Hamil-
tonian �E

2 Z, then �E

2
q

n

j=1 Zj is the total Hamiltonian of
the system. Then, unitaries which satisfy this symmetry are
energy-conserving unitaries, which play an important role in
the resource theory of quantum thermodynamics.

We define VG
k

to be the set of all unitary transformations
that can be implemented with Local Symmetric Quantum Cir-
cuit (LSQC) with k-local unitaries. More formally, VG

k
is the

set of unitaries V which can be generated as V =
r

m

i=1 Vi for
a finite integer m, where each Vi is a symmetric k-local uni-
tary (See Fig.1). It can be easily seen that VG

k
is a subgroup of

VG = VG
n

, the group of all symmetric unitaries. In fact, more
generally, for k < l, VG

k
™ VG

l
, and therefore we obtain a

hierarchy of subgroups of VG. We are interested to character-
ize each subgroup VG

k
and, in particular, to determine if there

exists k < n, such that k-local symmetric unitaries become
universal, that is VG

k
= VG. As we discussed before, in the

absence of symmetries, i.e., when G is the trivial group, this
already happens for k = 2.

It is worth noting that for any symmetry G, the unitary
transformations that exchange the state of two subsystems,
i.e., the swap unitaries, are 2-local and symmetric. This im-
plies that if in the above definition of the group VG

k
, we add the

stronger constraint of geometric locality to the definition, the
group will remain unchanged, provided that the subsystems
lie on a connected graph, e.g., on a chain.

B. Time evolution under local symmetric Hamiltonians

The time evolution of composite systems with local sym-
metric Hamiltonians can be modeled by LSQC. A generic lo-
cal Hamiltonian H(t) acts non-trivially on all subsystems in
the system, but, has a decomposition as H(t) =

q
r
hr(t),

where each term hr(t) is k-local for a fixed k, which is often
much smaller than the total number of subsystems in the sys-
tem. The unitary evolution generated by this Hamiltonian is
determined by the Schrödinger equation

dV (t)
dt

= ≠iH(t)V (t) = ≠i
#ÿ

r

hr(t)
$
V (t) , (2)

with the initial condition V (0) = I . Suppose, in addition
to the above locality constraint, the Hamiltonian H(t) also
respects the symmetry described by the group G, such that
[U(g), H(t)] = 0, for all g œ G, and all t Ø 0. Then, it
can be shown that the family of unitaries {V (t) : t Ø 0}
generated by any such Hamiltonian belongs to VG

k
, i.e., the

group of unitaries which can be implemented by k-local sym-

= Set of unitaries generated by symmetric 
Hamiltonians that can be written as the 

sum of k-local terms
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According to an elementary result in quantum computing, any unitary transformation on a composite system
can be generated using 2-local unitaries, i.e., those which act only on two subsystems. Beside its fundamental
importance in quantum computing, this result can also be regarded as a statement about the dynamics of sys-
tems with local Hamiltonians: although locality puts various constraints on the short-term dynamics, it does not
restrict the possible unitary evolutions that a composite system with a general local Hamiltonian can experience
after a sufficiently long time. We ask if such universality remains valid in the presence of conservation laws
and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all sym-
metric unitaries on that system? Interestingly, it turns out that the answer is negative in the case of continuous
symmetries, such as U(1) and SO(3): unless there are interactions which act non-trivially on every subsystem
in the system, some symmetric unitaries cannot be implemented using symmetric Hamiltonians. In fact, the
difference between the dimensions of the Lie algebra of all symmetric Hamiltonians and its subalgebra gen-
erated by k-local symmetric Hamiltonians with a fixed k, constantly increases with the system size (i.e., the
number of subsystems). On the other hand, in the case of group U(1), we find that this no-go theorem can be
circumvented if one is allowed to use a single ancillary qubit. In particular, any unitary which is invariant under
rotations around z, can be implemented using Hamiltonian XX + Y Y together with a local Z Hamiltonian on
the ancillary qubit. We discuss some implications of these results in the context of quantum thermodynamics
and quantum computing.
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According to an elementary result in quantum computing, any unitary transformation on a composite system
can be generated using 2-local unitaries, i.e., those which act only on two subsystems. Beside its fundamental
importance in quantum computing, this result can also be regarded as a statement about the dynamics of sys-
tems with local Hamiltonians: although locality puts various constraints on the short-term dynamics, it does not
restrict the possible unitary evolutions that a composite system with a general local Hamiltonian can experience
after a sufficiently long time. We ask if such universality remains valid in the presence of conservation laws
and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all sym-
metric unitaries on that system? Interestingly, it turns out that the answer is negative in the case of continuous
symmetries, such as U(1) and SO(3): unless there are interactions which act non-trivially on every subsystem in
the system, some symmetric unitaries cannot be implemented using symmetric Hamiltonians. In fact, the dif-
ference between the dimensions of the Lie algebra of all symmetric Hamiltonians and its subalgebra generated
by k-local symmetric Hamiltonians with a fixed k, constantly increases with the system size (i.e., the number
of subsystems). On the other hand, in the case of group U(1), we find that this no-go theorem can be circum-
vented if one is allowed to use a pair of ancillary qubits. In particular, any unitary which is invariant under
rotations around z, can be implemented using Hamiltonians XX + Y Y and local Z on qubits. We discuss
some implications of these results in the context of quantum thermodynamics and quantum computing.
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• A general no-go theorem

In the case of continuous symmetries, it is not possible to implement generic symmetric unitaries, even 
approximately, using 2-local (k-local) symmetric unitaries on the subsystems.  [IM, Nature Physics 2022].

• Studied examples 

• U(1) symmetry     [IM, Nature Physics 2022]

• SU(2) symmetry with qubits [IM, Hanqing Liu, Austin Hulse,  Phys Rev. Lett 2024]

• SU(d) symmetry with qudits [IM, Hanqing Liu, Austin Hulse, arXiv:2105.12877 (2021)]
New conservation laws for d>2

• Conclusion: The restrictions imposed by locality and symmetry vary significantly across different symmetry groups.

• Theory of Abelian Quantum Circuits [IM, arXiv:2302.12466 (2023), To appear in Phys Rev. Research]

• Synthesis of Energy-Conserving Quantum Circuits with XY interaction 
[Ge Bai, IM, arXiv:2309.11051 (2023), To appear in Q. Science and Technology]
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by k-local symmetric unitaries
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IV. 3-QUBIT ENERGY-CONSERVING UNITARIES

Next, we study 3-qubit energy-conserving unitaries and
show how they can be realized. These methods can then be
generalized to implement energy-conserving unitaries on ar-
bitrary number of qubits.

A. A useful 2-level unitary: Two controlled-Z gates

Using a simple Lie-algebraic argument one can show that
the 3-qubit Hamiltonian Z2(Z3 ≠ Z1) can be realized using
only XX + Y Y Hamiltonian, without any ancillary qubit [7].
However, from this argument, it is not clear how the unitaries
generated by this Hamiltonian can be realized with finite cir-
cuits. Our first step in constructing general 3-qubit energy-
conserving unitaries, is to find a circuit that realize a special
case of this family of unitaries. Namely, consider the first
identity

W13W
†
23W12W23 = exp(ifi4 Z2[Z3 ≠ Z1]) (29a)

W13W23W12W23 = ≠i exp(ifi4 Z2[Z1 + Z3]) , (29b)

where Wij denotes iSWAP gate on qubits i and j, defined
in Eq.(??). The second identity and similar other identities
can be obtained by replacing Wij with W

†
ij , or vice versa.

It is worth noting that the specific combination of unitaries
Wij appearing in these identities has a nice interpretation in
terms of the permutation group: In the computational basis
the action of Wij is equivalent to transposition of bits i and
j, up to a phase. Using the cycle notation for the permutation
group, this transposition is denoted as (ij). Then, the fact
that (13) = (23)(12)(23) implies that (13)(23)(12)(23) is
the trivial permutation. It follows that under the action of the
above combination of unitaries, elements of the computational
basis remain invariant, up to a phase, which is determined by
the right-hand side of Eq.(29).

The first identity implies that

W13W
†
23W12W23S

†
1S3 = exp(ifi4 [(Z3 ≠ Z1)(Z2 ≠ I)]

= |0ÍÈ0|2 ¢ I13 + |1ÍÈ1|2 ¢ Z1Z3 . (30)

The left-hand side corresponds to the circuit

iSWAP
iSWAP

S
†

iSWAP iSWAP†

S

and the right-hand side is equal to two controlled-Z gates as

•
• •

•

iSWAP iSWAP

Ô
X

iSWAPÔ
X

Ô
X

|0Í
iSWAP

iSWAP

|0Í

iSWAP
S

†

Z

|0Í
iSWAP

iSWAP

|0Í

iSWAP†
S

Z

FIG. 1. The top circuit is the standard way of realizing the swap
unitary with using 3 iSwaps. It requires 3 single-qubit

Ô
X , which

is not energy-conserving. The middle and bottom circuits also real-
ize swap unitary using 3 iSwaps and energy-conserving single-qubit
gates, namely S, S†, and Z, with the help of an ancillary qubit.

This unitary is diagonal in the computational basis and
is 2-level, i.e., it acts non-trivially only on states |011Í and
|110Í, namely it gives ≠1 sign to both of these states. Note
that using the second identity in Eq.(29) we can obtain a
similar construction of this unitary using 4 iSwap gates.

For future applications we also note that Eq.(29) implies
the following circuit identity.

iSWAP
iSWAP

• S
†

iSWAP
ú =

SWAP
• S

Z

1. Implementing controlled-Z and swap gates using a single
ancilla qubit

Eq.(30) immediately gives a method for realizing the
controlled-Z gate: Suppose we prepare the top qubit (qubit
1) in state |0Í. Then, the overall action of this circuit on qubits
2 and 3 will be CZ gate.

Another important gate that can be realized using a similar
technique is the swap gate. The middle and bottom circuits
in Fig.1 presents two realizations of the swap gates. The top
circuit in this figure presents the standard way of implement-
ing the swap gate with 3 iSwaps, which was presented in [17].
However, this circuit requires single-qubit unitaries that do not
conserve energy. As a side remark, it is worth noting that the
middle and bottom circuits have another advantage: by mea-
suring the ancilla qubit at the end of the process in the z basis,
it is possible to detect the presence of certain X errors in the
circuit.



Example: Energy-Conserving Unitaries  (i.e., U(1) Symmetry)

The group generated by k-local U(1)-invariant unitaries 

Group of all U(1)-invariant unitaries:  20 D
Subgroup generated by 2-local U(1)-invariant unitaries: 19 D

Example:  n=3 qubits The maximum charge in the system 
minus the maximum charge that can 
participate in an interaction.

Example: SU(2) Symmetry The group generated by k-local SU(2)-invariant unitaries 

Many useful energy-conserving unitaries are forbidden by these constraints (CCZ, Fredkin,..)
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We study quantum circuits constructed from
Ô

iSWAP gates and, more generally, from the entangling gates
that can be realized with the XX+YY interaction alone. Assuming that the intrinsic Hamiltonian of each qubit
in the system is the Pauli Z operator, such gates conserve the total energy of the system. Equivalently, they
respect a global U(1) symmetry. We develop efficient methods for synthesizing circuits realizing any desired
energy-conserving unitary using XX+YY interaction with or without single-qubit rotations around the z-axis.
Interestingly, implementing generic energy-conserving unitaries, such as CCZ and Fredkin gates, with 2-local
energy-conserving gates requires the use of ancilla qubits. When single-qubit rotations around the z-axis are
permitted, our scheme requires only a single ancilla qubit, whereas with the XX+YY interaction alone, it re-
quires 2 ancilla qubits. In addition to exact realizations, we also consider approximate realizations and show
how a general energy-conserving unitary can be synthesized using only a sequence of

Ô
iSWAP gates and 2 an-

cillary qubits, with arbitrarily small error, which can be bounded via the Solovay-Kitaev theorem. Our methods
are also applicable for synthesizing energy-conserving unitaries when, rather than the XX+YY interaction, one
has access to any other energy-conserving 2-body interaction that is not diagonal in the computational basis,
such as the Heisenberg exchange interaction. We briefly discuss the applications of these circuits in the context
of quantum computing, quantum thermodynamics, and quantum clocks.

I. INTRODUCTION

Theorem: For an Abelian group G, under the action of k-local G-invariant unitaries with k Ø 2, the total Hilbert space of n

qudits decomposes into orthogonal subspaces {Hµ,–} as

(Cd)¢n ≥=
n

µœIrrepsG(n)
Hµ =

n

µœIrrepsG(n)

n

–

Hµ,– , (1)

such that VG

n,k
is block-diagonal with respect to this decomposition and

n

µ,–

SU (Hµ,–) µ VG

n,k
™

n

µ,–

U (Hµ,–) . (2)

dim(VU(1)
n,n

) ≠ dim(VU(1)
n,k

) = n ≠ k

In the field of quantum computing and other related areas, such as quantum control and quantum thermodynamics, one is often
interested in implementing desired unitary transformations on a quantum system, e.g., on a finite number of qubits. Inspired
by the classical circuit model, researchers in this field have developed circuit synthesis techniques to implement any desired
unitary using elementary gate sets acting on a few qubits in the system [1–7]. For instance, it has been shown that any unitary
transformation on n qubits can be implemented exactly with O(4n) single-qubit unitaries and 2-qubit CNOT gates [8]. However,
these general circuit synthesis techniques do not take into account the specific properties of the desired unitaries, such as their
symmetries. Such considerations can significantly reduce the number of required gates and also enable circuit realizations that
are more noise-resilient. Additionally, the general circuit synthesis techniques do not distinguish between generic gates and the
gates that can be realized with native interactions on a particular platform—an important property that makes the gates easier to
implement and more robust against noise.

In this work, we study energy-conserving quantum circuits, which are circuits formed from single-qubit rotations around the
z-axis and 2-qubit unitary gates U that conserve the sum of Pauli Z operators, such that

[U, Z ¢ I + I ¢ Z] = 0 . (3)

Assuming the qubits have identical intrinsic Hamiltonian, with eigenstates |0Í and |1Í, such gates conserve the total intrinsic
energy of the system. Hence, in this paper, we refer to such unitary transformations as energy-conserving unitaries (See Sec. II
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We study quantum circuits constructed from
Ô

iSWAP gates and, more generally, from the entangling gates
that can be realized with the XX+YY interaction alone. Assuming that the intrinsic Hamiltonian of each qubit
in the system is the Pauli Z operator, such gates conserve the total energy of the system. Equivalently, they
respect a global U(1) symmetry. We develop efficient methods for synthesizing circuits realizing any desired
energy-conserving unitary using XX+YY interaction with or without single-qubit rotations around the z-axis.
Interestingly, implementing generic energy-conserving unitaries, such as CCZ and Fredkin gates, with 2-local
energy-conserving gates requires the use of ancilla qubits. When single-qubit rotations around the z-axis are
permitted, our scheme requires only a single ancilla qubit, whereas with the XX+YY interaction alone, it re-
quires 2 ancilla qubits. In addition to exact realizations, we also consider approximate realizations and show
how a general energy-conserving unitary can be synthesized using only a sequence of

Ô
iSWAP gates and 2 an-

cillary qubits, with arbitrarily small error, which can be bounded via the Solovay-Kitaev theorem. Our methods
are also applicable for synthesizing energy-conserving unitaries when, rather than the XX+YY interaction, one
has access to any other energy-conserving 2-body interaction that is not diagonal in the computational basis,
such as the Heisenberg exchange interaction. We briefly discuss the applications of these circuits in the context
of quantum computing, quantum thermodynamics, and quantum clocks.

I. INTRODUCTION

Theorem: For an Abelian group G, under the action of k-local G-invariant unitaries with k Ø 2, the total Hilbert space of n

qudits decomposes into orthogonal subspaces {Hµ,–} as
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In the field of quantum computing and other related areas, such as quantum control and quantum thermodynamics, one is often
interested in implementing desired unitary transformations on a quantum system, e.g., on a finite number of qubits. Inspired
by the classical circuit model, researchers in this field have developed circuit synthesis techniques to implement any desired
unitary using elementary gate sets acting on a few qubits in the system [1–7]. For instance, it has been shown that any unitary
transformation on n qubits can be implemented exactly with O(4n) single-qubit unitaries and 2-qubit CNOT gates [8]. However,
these general circuit synthesis techniques do not take into account the specific properties of the desired unitaries, such as their
symmetries. Such considerations can significantly reduce the number of required gates and also enable circuit realizations that
are more noise-resilient. Additionally, the general circuit synthesis techniques do not distinguish between generic gates and the
gates that can be realized with native interactions on a particular platform—an important property that makes the gates easier to
implement and more robust against noise.

In this work, we study energy-conserving quantum circuits, which are circuits formed from single-qubit rotations around the
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metric unitaries (See Appendix A). Conversely, any unitary
in this group is generated by a Hamiltonian H(t) satisfying
the above locality and symmetry constraints. Therefore, by
characterizing VG

k
and studying its relation with the group of

all symmetric unitaries VG, we can unveil possible constraints
on the time evolution of composite systems under local sym-
metric Hamiltonians, which are not captured by the standard
conservation laws.

As an example, consider a closed spin chain with n qubits
with Hamiltonian H(t) equal to

nÿ

j=1
aj(t)[XjXj+1 + YjYj+1] + bj(t) ZjZj+1 + cj(t)Zj .

Consider the family of all unitaries generated by this Hamil-
tonian for different choices of real functions aj(t), bj(t), and
cj(t). Since the Hamiltonian is 2-local and commutes withq

j
Zj , this family belongs to VU(1)

2 for the U(1) symmetry
corresponding to rotations around the z axis. We are inter-
ested to determine if this family includes all unitaries that re-
spect the symmetry, or, the fact that the Hamiltonian is 2-local
implies additional constrains on the unitary evolution of the
system.

C. Lie algebraic approach

To study these questions, we use the Lie algebraic meth-
ods of quantum control theory [26, 27], which have also been
used to prove the universality of 2-local gates in the absence of
symmetries [2, 3, 28], and universality under limited control
(See e.g. [28–31]). Here, we briefly mention the main rele-
vant result. The details and precise statements can be found in
Appendix A.

Suppose one can implement unitary time evolutions gener-
ated by Hamiltonians ±A and ±B for an arbitrary amount of
time t Ø 0; that is one can turn on and off these Hamiltonians
at will. Then, combining these time evolutions one can obtain
unitaries

e
≠ic2”tBe≠ic1”tA = e

≠i”t(c1A+c2B) +O(”t2) (3a)

e
≠i”tA

e
≠i”tB

e
i”tA

e
i”tB = e

≠”t
2[A,B] +O(”t3) , (3b)

for arbitrary coefficients c1, c2 œ R, and for sufficiently small
”t. This means that using Hamiltonians ±A and ±B, one
can approximately simulate the time evolutions generated by
any Hamiltonian in the linear span of A and B, as well as the
Hamiltonian obtained from their commutator, i[A,B]. Fur-
thermore, by repeating such combinations of unitaries, we can
obtain a larger class of unitaries. In fact, it can be shown [26]
that using finite sequences of unitaries generated by Hamil-
tonians ±A and ±B, one obtains all unitary transformations
{e≠iHt : t œ R} generated by any Hermitian operator H ,
if and only if, H belongs to the real Lie algebra generated
by A and B, i.e., it can be written as a linear combination
of A, B, and their (nested) commutators, i[A,B], [[A,B], A],
[[A,B], B], ..., with real coefficients [26]. As we explain more

FIG. 2: The schematic relation between the group of all symmetric
unitaries (the torus) and the subgroup generated by Local Symmetric
Quantum Circuits (the blue curve). They are both connected closed
Lie groups and hence closed manifolds. Unitary evolution under any
local symmetric Hamiltonian will be restricted to the sub-manifold
corresponding to LSQC.

in Appendix A, this result means that to characterize the group
VG

k
generated by k-local symmetric unitaries, it suffices to

characterize the Lie algebra generated by k-local symmetric
skew-Hermitian operators.

II. MAIN RESULTS

A. A no-go theorem: Lack of universality in the presence of
continuous symmetries

We prove that in the case of continuous symmetries such as
U(1) and SO(3), most symmetric unitaries cannot be imple-
mented, even approximately, using local symmetric unitaries.
In general, it turns out that for any group G, the set of sym-
metric unitaries VG = VG

n
and its subgroup VG

k
generated

by k-local symmetric unitaries, are both connected compact
Lie groups, and hence closed manifolds. Furthermore, if G is
a continuous symmetry, then the sub-manifold corresponding
to VG

k
has generally a lower dimension (See Fig.2). In fact,

we show that the difference between the dimensions of the
manifolds associated to VG

l
and VG

k
for any l > k, is lower

bounded by

dim(VG

l
)≠ dim(VG

k
) Ø |Irreps

G
(l)|≠ |Irreps

G
(k)| , (4)

where |Irreps
G

(l)| is the number of inequivalent irreducible
representations (irreps) of group G, appearing in {u(g)¢l :
g œ G}, i.e., in the representation of symmetry on l sub-
systems. Therefore, unless |Irreps

G
(l)| = |Irreps

G
(k)|, there

is a family of symmetric unitaris which can be implemented
with l-local symmetric unitaries but not with k-local symmet-
ric unitaries. Furthermore, Eq.(4) means that in the case of
continuous symmetries, such as U(1) and SO(3), the differ-
ence between the dimensions of VG = VG

n
and VG

k
, grows

unboundedly with the system size n. It is worth nothing that
if a unitary V is not in VG

k
, then there is a finite neighbor-

hood of symmetric unitaries around V , none of which can
be implemented using k-local symmetric unitaries. On the
other hand, if V belongs to VG

k
, then it can be implemented
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According to an elementary result in quantum computing, any unitary transformation on a composite system
can be generated using 2-local unitaries, i.e., those which act only on two subsystems. Beside its fundamental
importance in quantum computing, this result can also be regarded as a statement about the dynamics of sys-
tems with local Hamiltonians: although locality puts various constraints on the short-term dynamics, it does not
restrict the possible unitary evolutions that a composite system with a general local Hamiltonian can experience
after a sufficiently long time. We ask if such universality remains valid in the presence of conservation laws
and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all sym-
metric unitaries on that system? Interestingly, it turns out that the answer is negative in the case of continuous
symmetries, such as U(1) and SO(3): unless there are interactions which act non-trivially on every subsystem in
the system, some symmetric unitaries cannot be implemented using symmetric Hamiltonians. In fact, the dif-
ference between the dimensions of the Lie algebra of all symmetric Hamiltonians and its subalgebra generated
by k-local symmetric Hamiltonians with a fixed k, constantly increases with the system size (i.e., the number
of subsystems). On the other hand, in the case of group U(1), we find that this no-go theorem can be circum-
vented if one is allowed to use a pair of ancillary qubits. In particular, any unitary which is invariant under
rotations around z, can be implemented using Hamiltonians XX + Y Y and local Z on qubits. We discuss
some implications of these results in the context of quantum thermodynamics and quantum computing.
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metric unitaries (See Appendix A). Conversely, any unitary
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on the time evolution of composite systems under local sym-
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where Pab is the swap operator, also known as the transposi-
tion that exchanges the state of qudits a and b and leave the
rest of qudits unchanged, i.e., implements the transformation
Pab|ÂÍa|„Íb = |„Ía|ÂÍb for all qudit states |„Í, |„Í œ Cd

(We often drop tensor product with the identity on the rest of
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Clearly, any unitary generated by k-local rotationally-
invariant unitaries is itself rotationally-invariant. The question
is whether there are rotationally-invariant unitaries that cannot
be implemented using 2-local rotationally-invariant unitaries,
and if so, how they can be characterized. This question can
be equivalently stated in terms of Hamiltonians. Consider the
most general qudit Hamiltonian that has SU(d) symmetry and
can be written as the sum of 2-local terms. Any such Hamil-
tonian, up to a constant shift, can be written as

H(t) =
ÿ

a”=b

hab(t) Pab : t Ø 0 , (4)

where, in general, hab is a an arbitrary real function of time
t. Note that this Hamiltonians can include long-range interac-
tions between arbitrary far qudits. In the case of qubits, up to
a constant shift, Hamiltonian H(t) can be written as

H(t) = 1
2

ÿ

i<j

hij(t) ‡̨i · ‡̨j (5)

which describes an isotropic Heisenberg chain.
Consider the class of unitaries generated by these Hamilto-

nians under the Schrödinger equation dV (t)
dt

= ≠iH(t)V (t)
with the initial condition V (0) = I. It turns out that any such
unitary can be implemented, exactly, by a finite sequence
of 2-local unitary transformations in the form of Eq.(2).
Therefore, by studying the family of quantum circuits that
can be generated by 2-local unitaries, we can also characterize
general constraints on the time evaluations generated by any
Hamiltonian which can be written in the form of Eq.(4).

The case of d = 2— In the following, we present a full char-
acterization of the unitary transformations that can be im-
plemented using k-local rotationally invariant unitaries. Re-
call that the irreducible representations of SU(2) can be la-
beled by the total angular momentum j, where j(j + 1) is
an eigenvalue of the total square angular momentum operator
J

2 = J
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z

, also known as the Casimir operator. Then,
the Hilbert space of n qubits decomposes as
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2 ,
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2 , · · · ,
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2 for odd n. The dimen-
sion of the irrep with angular momentum j is 2j + 1 and its
multiplicity is m(n, j), which is larger than one for n Ø 3
qubits, except in the case of maximum angular momentum
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Clearly, any unitary generated by k-local rotationally-
invariant unitaries is itself rotationally-invariant. The question
is whether there are rotationally-invariant unitaries that cannot
be implemented using 2-local rotationally-invariant unitaries,
and if so, how they can be characterized. This question can
be equivalently stated in terms of Hamiltonians. Consider the
most general qudit Hamiltonian that has SU(d) symmetry and
can be written as the sum of 2-local terms. Any such Hamil-
tonian, up to a constant shift, can be written as

H(t) =
ÿ

a”=b

hab(t) Pab : t Ø 0 , (4)

where, in general, hab is a an arbitrary real function of time
t. Note that this Hamiltonians can include long-range interac-
tions between arbitrary far qudits. In the case of qubits, up to
a constant shift, Hamiltonian H(t) can be written as

H(t) = 1
2

ÿ

i<j

hij(t) ‡̨i · ‡̨j (5)

which describes an isotropic Heisenberg chain.
Consider the class of unitaries generated by these Hamilto-

nians under the Schrödinger equation dV (t)
dt

= ≠iH(t)V (t)
with the initial condition V (0) = I. It turns out that any such
unitary can be implemented, exactly, by a finite sequence
of 2-local unitary transformations in the form of Eq.(2).
Therefore, by studying the family of quantum circuits that
can be generated by 2-local unitaries, we can also characterize
general constraints on the time evaluations generated by any
Hamiltonian which can be written in the form of Eq.(4).

The case of d = 2— In the following, we present a full char-
acterization of the unitary transformations that can be im-
plemented using k-local rotationally invariant unitaries. Re-
call that the irreducible representations of SU(2) can be la-
beled by the total angular momentum j, where j(j + 1) is
an eigenvalue of the total square angular momentum operator
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2 for odd n. The dimen-
sion of the irrep with angular momentum j is 2j + 1 and its
multiplicity is m(n, j), which is larger than one for n Ø 3
qubits, except in the case of maximum angular momentum
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Grows unboundedly for continuous symmetries 

A rough Interpretation (For Abelian groups): 
The maximum charge in the system minus the maximum charge that can 
participate in an interaction.



Consider a unitary time evolution under an unknown 
Hamiltonian. 

Question: By probing the outputs of this unitary evolution for 
different inputs, is it possible to detect the presence of 3-body 
(k-body) interactions in this unknown Hamiltonian? 

No! 2-qubit gates are universal (DiVincenzo 1994)

However, this becomes possible in the presence of symmetries! 

Application: Sensing the locality of interactions in nature

L. Zhukas, Q. Wang, IM, C. Monroe, Observation of the symmetry-protected 
signature of 3-body interactions, under preparation.

IM, Nature Physics 2022
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Instructor: Iman Marvian

Due date: Thursday, March 25, 2021

Posted on March 15, 2021

1. In the following quantum circuit, the first qubit is in an arbitrary state | i, and the second qubit

is in state |0i. The final measurement is in the computational basis. (a) Find the probability of

each outcome, and show that in both cases the state of the second qubit can be written as a unitary

transformation applied to state | i.

| i • H

|0i ?

(b) Consider the following generalization of the above circuit, where after C-Not, the unitary e
i✓Z

is

applied, for ✓ 2 (0, 2⇡]. Find the probability of different outcomes and show that, for both outcomes,

the final state of the second qubit can be written as a unitary transformation applied to | i.

| i • e
i✓Z H

|0i ?

2. In the following quantum circuit, the first qubit is initially in state |+i = (|0i + |1i)/
p
2 and the

second qubit is in arbitrary state | i. The single-qubit unitary is e
i✓X

. The final measurement is in the

computational basis. Find the probability of each outcome, and in each case determine how the final

state of the second qubit is related to state | i.

|+i • e
i✓X •

| i ?

3. (a) Recall the definition of the single-qubit gate Rn̂ = e
�i✓(~�·n̂)/2

. Show that E(Rn̂(✓), Rn̂(✓+�✓)) 
|�✓|/2 and

E(Rn̂(✓), Rm̂(✓)) = kn̂� m̂k ⇥
�� sin ✓

2

��  kn̂� m̂k ⇥ |✓|
2
, (1)

where kn̂� m̂k =
p

(nx �mx)2 + (ny �my)2 + (nz �mz)2 is the Euclidean norm of vector n̂� m̂

(Hint: you can use the fact that |1� e
i↵|  |↵|). (b) Consider the two qubit gate e

i✓ZAZB on a pair of
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The curious case of SWAP
For qubit circuits with U(1) and SU(2) symmetry, the locality of gates only 
restricts the relative phases between sectors with inequivalent irreducible 
representations of symmetry, e.g., different Hamming weights (energies) in the 
case of U(1) symmetry.

What are the constraints?
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According to an elementary result in quantum computing, any unitary transformation on a composite system
can be generated using 2-local unitaries, i.e., those which act only on two subsystems. Beside its fundamental
importance in quantum computing, this result can also be regarded as a statement about the dynamics of sys-
tems with local Hamiltonians: although locality puts various constraints on the short-term dynamics, it does not
restrict the possible unitary evolutions that a composite system with a general local Hamiltonian can experience
after a sufficiently long time. We ask if such universality remains valid in the presence of conservation laws
and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all sym-
metric unitaries on that system? Interestingly, it turns out that the answer is negative in the case of continuous
symmetries, such as U(1) and SO(3): unless there are interactions which act non-trivially on every subsystem
in the system, some symmetric unitaries cannot be implemented using symmetric Hamiltonians. In fact, the
difference between the dimensions of the Lie algebra of all symmetric Hamiltonians and its subalgebra gen-
erated by k-local symmetric Hamiltonians with a fixed k, constantly increases with the system size (i.e., the
number of subsystems). On the other hand, in the case of group U(1), we find that this no-go theorem can be
circumvented if one is allowed to use a single ancillary qubit. In particular, any unitary which is invariant under
rotations around z, can be implemented using Hamiltonian XX + Y Y together with a local Z Hamiltonian on
the ancillary qubit. We discuss some implications of these results in the context of quantum thermodynamics
and quantum computing.
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Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary

transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-
metric Hamiltonians constantly grows with the system size.
As an example, we consider a composite system formed from
qubits, with the symmetry group U(1), corresponding to rota-
tions around z axis, and show that these constraints uniquely
characterize the class of all diagonal Hamiltonians which can
be generated using U(1)-invariant k-local Hamiltonians.

The case of U(1) symmetry is specially relevant in the con-
texts of quantum computing and quantum thermodynamics.
For systems with periodic time evolution, the time transla-
tions {e≠iH0t} generated by the system intrinsic Hamiltonian
H0, form a group isomorphic to U(1). Energy-conserving
unitaries, i.e., those which commute with H0, respect this
U(1) symmetry. In the context of quantum computing, such
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Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-
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Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-
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Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-
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Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-
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V1
Locality of interactions of a quantum many-body system

imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
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Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-
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A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
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that

dim(VU(1)
n ) ≠ dim(GXX+Y Y ) = n ≠ 1 . (11)

Ref. [7] also shows that using a single ancilla qubit, it is pos-
sible to circumvent these constraints. That is

Corollary 5. [7] Any energy-conserving unitary can be re-
alized with a single ancillary qubit, and gates exp(i„Z) and
2-local gates exp(i„[XX + Y Y ]).

C. Elementary gates

We study quantum circuits that are formed from two types
of gates. First, single-qubit rotations around z, i.e., unitaries

Rz(„) = exp(i„2 Z) =
A

e
i „

2

e
≠i „

2

B
: „ œ (≠fi, fi] .

(12)
Two important specific cases are

T = e
ifi
4 Rz(≠ ifi

4 ) =
3

1
e

fi
4

4
= 4Ô

Z (13)

and

S = iRz(≠fi

2 ) =
3

1
i

4
=

Ô
Z = T

2
. (14)

The second type of gates used in our circuits are in the form
[Fix the intervals]

exp(i–[X ¢ X + Y ¢ Y ]) : – œ [0, fi) . (15)

Two important special cases are

Ô
iSWAP = exp(ifi8 [X¢X+Y ¢Y ]) =

Q
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ddb ,

(16)
and

W = iSWAP = exp(ifi4 [X ¢X +Y ¢Y ]) =

Q

ca

1
i

i
1

R

db ,

(17)
where the matrices are written in the computational basis
{|00Í, |01Í, |10Í, |11Í}. Note that

Ô
iSWAP

† = (
Ô

iSWAP)7.
See, e.g., [16, 17] for further discussions about properties and
applications and of

Ô
iSWAP and iSWAP gates for circuit syn-

thesis.

We also consider the two-qubit gate controlled-Z,

CZ = |0ÍÈ0| ¢ I + |1ÍÈ1| ¢ Z =

Q

ca
1

1
1

≠1

R

db = •

•

and the swap gate

SWAP =

Q

ca
1

1
1

1

R

db= ◊

◊

(18)

D. Circuits with iSwap and single-qubit z rotations

In this paper, we show how a general energy-conserving
unitary can be realized with

Ô
iSWAP and single-qubit rota-

tions around z. However, it is useful to first consider a more
restricted family of circuits generated by the single-qubit ro-
tations around z together with iSWAP gate. While iSWAP is
an entangling gate, it can be easily seen that a general energy-
conserving unitary cannot be realized using such circuits (In
particular, note that such circuits map any element of the com-
putational basis to an element of the computational basis, up
to a global phase). To analyze such circuits, we consider the
useful circuit identity

iSWAP =
◊ • S

◊ • S

Then, using this identity it can be easily seen that

Proposition 6. Suppose unitary V is realized by a circuit
formed from iSWAP gates. Then, V has a decomposition as
V = V3V2V1, where V1 is a permutation, i.e., is a composition
of Swap gates, V2 is a composition of controlled-Z gates, and
V3 is a composition of single-qubit S gates. Furthermore, if in
addition to iSWAP, the circuit also contains the single-qubit
rotations around z, denoted by Rz(„) : „ œ (≠fi, fi], then the
realized unitary V has a similar decomposition where V3 is
now a product of arbitrary single-qubit rotations around z.

4

B. Example: U(1) symmetry for systems of qubits

Recall the example of the U(1) symmetry for a system of n qubits. In this case, the representation of symmetry on n sites is
(ei◊Z)¢n = exp(i◊[nI ≠ 2N ]) for ◊ œ [0, 2fi), where N =

q
j
(I ≠ Zj)/2 determines the total charge (or, excitations) in the

system. It follows that the irreps of U(1) can be labeled by distinct eigenvalues of N , which take integer values m = 0, · · · , n.
Then, Eq.(3) implies that for a system with n qubits the difference between the dimensions of the manifold of all symmetric
unitaries and those generated by k-local symmetric unitaries is, at least, n ≠ k. Remarkably, it turns out that in this case this
bound holds as equality. In Methods we present a full characterization of Hamiltonians that can be generated using k-local
U(1)-invariant Hamiltonians. This result, for instance, implies that even if one can implement all U(1)-invariant unitaries that
act on n≠ 1 qubits, still the unitary exp(i„Z¢n) cannot be implemented for generic values of „.

It is useful to express the constraints imposed by the locality of interactions in terms of experimentally observable quantities.
Consider a general U(1)-invariant unitary V on n qubits. For instance, V can be the unitary generated by U(1)-invariant Hamil-
tonian H(t), from time t = 0 to T under the Schrödinger equation. Any such unitary has a decomposition as V =

m
n

m=0 Vm,
where Vm is the component of V in the charge sector m, i.e., the eigen-subspace of operator N =

q
j
(I≠Zj)/2 with eigenvalue

m. For any integer l = 0, · · · , n, define the l-body phase �l œ (≠fi,fi] of V as

�l ©

nÿ

m=0
cl(m)◊m = ≠

⁄
T

0
dt

ÿ

b:w(b)=l

Tr(H(t)Zb) : mod 2fi , (4)

where ◊m = arg(det(Vm)) œ (≠fi,fi] is the phase of the determinant of Vm, cl(m) =
q

m

s=0(≠1)s
!
m

s

"!
n≠m
l≠s
"

is an integer
coefficient, and we use the convention that for integers a and b, the binomial coefficient

!
a

b

"
= 0 if b > a. In the second equality

the summation is over all bit strings b = b1 · · · bn œ {0, 1}n with Hamming weight w(b) ©
q

n

j=1 bj equal to l, and we have
defined Zb

© Z
b1
1 · · ·Z

bn
n

. Note that this equality is satisfied for any U(1)-invariant Hamiltonian H(t) that realizes unitary V .
Using this equality, for instance, we can see that for unitary V = exp(i„Zb), all l-body phases vanish, except for l = w(b),
where �w(b) = 2n„: mod 2fi. In Supplementary Note 3 we prove Eq.(4) and present coefficients cl(m) for a system with n = 5
qubits.

The notion of l-body phases provides a useful characterization of the constraints imposed by the locality of interactions. In
Supplementary Note 3 we show that: (i) for l Ø 1, the l-body phases {�l} of a U(1)-invariant unitary time evolution can
be measured experimentally. On the other hand, the phases {◊m} are not physically observable, because they transform non-
trivially under the global phase transformation V æ e

i–
V . Similarly, �0 =

q
m
◊m = arg(det(V )) is not observable. (ii) If

a unitary is realizable by k-local U(1)-invariant unitaries, then its l-body phases are zero for l > k, which can be seen using
the second equality in Eq.(4). This, for instance, implies that unless „ is an integer multiple of fi/2n≠1, unitary exp(i„Zb)
cannot be implemented using k-local U(1)-invariant unitaries with k < w(b). (iii) Conversely, for a general U(1)-invariant
unitary V , if all l-body phases vanish for l > k, then V is realizable using k-local U(1)-invariant unitaries, up to a unitary in
a fixed finite subgroup of U(1)-invariant unitaries. Finally, it is worth mentioning that from a geometrical point of view, the
transformation {◊m} æ {�l} in Eq.(4) describes a change of the coordinate system on the (n + 1)-torus corresponding to
phases ◊m = arg(det(Vm)), for charges m = 0, · · · , n. For instance, when the system evolves under the Hamiltonian H = “Zb,
its trajectory on this torus is a helix, described by equation �l(t) = ≠2n“t◊ ”l,w(b), where ” denotes the Kronecker delta (See
Fig.2).

In Sec.II F, we discuss an application of this framework for synthesizing phase-insensitive quantum circuits. But, first we start
with a rather surprising implication of these ideas.

C. Application: Probing the locality of interactions in nature

Our no-go theorem leads us to a new method for experimentally probing the locality of interactions: According to this
theorem, in the presence of symmetries, interactions that couple more subsystems can imprint certain observable effects on the
time evolution of the system that cannot be reproduced by those that act on smaller number of subsystems. Therefore, by probing
these effects, we can directly obtain information about the locality of the underlying interactions that govern the process. This
is analogous to the fact that in the presence of symmetries we can detect a hypothetical symmetry-breaking interaction, just by
observing the violation of Noether’s conservation law for the input and output of the process, without knowing the details of
the underlying interactions (In our case, the hypothetical term is not symmetry-breaking; rather it couples multiple subsystems
together).

As a simple example, consider a system of n qubits evolving for the total time T under an unknown Hamiltonian H(t) that
preserves

q
j
Zj . To have a concrete example, one can assume H(t) models the interactions in a complex scattering process with

n particles, and states {|0Í, |1Í} of each qubit corresponds to an internal degree of freedom of a particle, e.g., its electric charge,

V =
nM

m=0

Vm
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metric unitaries (See Appendix A). Conversely, any unitary
in this group is generated by a Hamiltonian H(t) satisfying
the above locality and symmetry constraints. Therefore, by
characterizing VG

k
and studying its relation with the group of

all symmetric unitaries VG, we can unveil possible constraints
on the time evolution of composite systems under local sym-
metric Hamiltonians, which are not captured by the standard
conservation laws.

As an example, consider a closed spin chain with n qubits
with Hamiltonian H(t) equal to

nÿ

j=1
aj(t)[XjXj+1 + YjYj+1] + bj(t) ZjZj+1 + cj(t)Zj .

Consider the family of all unitaries generated by this Hamil-
tonian for different choices of real functions aj(t), bj(t), and
cj(t). Since the Hamiltonian is 2-local and commutes withq

j
Zj , this family belongs to VU(1)

2 for the U(1) symmetry
corresponding to rotations around the z axis. We are inter-
ested to determine if this family includes all unitaries that re-
spect the symmetry, or, the fact that the Hamiltonian is 2-local
implies additional constrains on the unitary evolution of the
system.

C. Lie algebraic approach

To study these questions, we use the Lie algebraic meth-
ods of quantum control theory [26, 27], which have also been
used to prove the universality of 2-local gates in the absence of
symmetries [2, 3, 28], and universality under limited control
(See e.g. [28–31]). Here, we briefly mention the main rele-
vant result. The details and precise statements can be found in
Appendix A.

Suppose one can implement unitary time evolutions gener-
ated by Hamiltonians ±A and ±B for an arbitrary amount of
time t Ø 0; that is one can turn on and off these Hamiltonians
at will. Then, combining these time evolutions one can obtain
unitaries

e
≠ic2”tBe≠ic1”tA = e

≠i”t(c1A+c2B) +O(”t2) (3a)

e
≠i”tA

e
≠i”tB

e
i”tA

e
i”tB = e

≠”t
2[A,B] +O(”t3) , (3b)

for arbitrary coefficients c1, c2 œ R, and for sufficiently small
”t. This means that using Hamiltonians ±A and ±B, one
can approximately simulate the time evolutions generated by
any Hamiltonian in the linear span of A and B, as well as the
Hamiltonian obtained from their commutator, i[A,B]. Fur-
thermore, by repeating such combinations of unitaries, we can
obtain a larger class of unitaries. In fact, it can be shown [26]
that using finite sequences of unitaries generated by Hamil-
tonians ±A and ±B, one obtains all unitary transformations
{e≠iHt : t œ R} generated by any Hermitian operator H ,
if and only if, H belongs to the real Lie algebra generated
by A and B, i.e., it can be written as a linear combination
of A, B, and their (nested) commutators, i[A,B], [[A,B], A],
[[A,B], B], ..., with real coefficients [26]. As we explain more

FIG. 2: The schematic relation between the group of all symmetric
unitaries (the torus) and the subgroup generated by Local Symmetric
Quantum Circuits (the blue curve). They are both connected closed
Lie groups and hence closed manifolds. Unitary evolution under any
local symmetric Hamiltonian will be restricted to the sub-manifold
corresponding to LSQC.

in Appendix A, this result means that to characterize the group
VG

k
generated by k-local symmetric unitaries, it suffices to

characterize the Lie algebra generated by k-local symmetric
skew-Hermitian operators.

II. MAIN RESULTS

A. A no-go theorem: Lack of universality in the presence of
continuous symmetries

We prove that in the case of continuous symmetries such as
U(1) and SO(3), most symmetric unitaries cannot be imple-
mented, even approximately, using local symmetric unitaries.
In general, it turns out that for any group G, the set of sym-
metric unitaries VG = VG

n
and its subgroup VG

k
generated

by k-local symmetric unitaries, are both connected compact
Lie groups, and hence closed manifolds. Furthermore, if G is
a continuous symmetry, then the sub-manifold corresponding
to VG

k
has generally a lower dimension (See Fig.2). In fact,

we show that the difference between the dimensions of the
manifolds associated to VG

l
and VG

k
for any l > k, is lower

bounded by

dim(VG

l
)≠ dim(VG

k
) Ø |Irreps

G
(l)|≠ |Irreps

G
(k)| , (4)

where |Irreps
G

(l)| is the number of inequivalent irreducible
representations (irreps) of group G, appearing in {u(g)¢l :
g œ G}, i.e., in the representation of symmetry on l sub-
systems. Therefore, unless |Irreps

G
(l)| = |Irreps

G
(k)|, there

is a family of symmetric unitaris which can be implemented
with l-local symmetric unitaries but not with k-local symmet-
ric unitaries. Furthermore, Eq.(4) means that in the case of
continuous symmetries, such as U(1) and SO(3), the differ-
ence between the dimensions of VG = VG

n
and VG

k
, grows

unboundedly with the system size n. It is worth nothing that
if a unitary V is not in VG

k
, then there is a finite neighbor-

hood of symmetric unitaries around V , none of which can
be implemented using k-local symmetric unitaries. On the
other hand, if V belongs to VG

k
, then it can be implemented
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© Z
b1
1 · · ·Z

bn
n

. Note that this equality is satisfied for any U(1)-invariant Hamiltonian H(t) that realizes unitary V .
Using this equality, for instance, we can see that for unitary V = exp(i„Zb), all l-body phases vanish, except for l = w(b),
where �w(b) = 2n„: mod 2fi. In Supplementary Note 3 we prove Eq.(4) and present coefficients cl(m) for a system with n = 5
qubits.

The notion of l-body phases provides a useful characterization of the constraints imposed by the locality of interactions. In
Supplementary Note 3 we show that: (i) for l Ø 1, the l-body phases {�l} of a U(1)-invariant unitary time evolution can
be measured experimentally. On the other hand, the phases {◊m} are not physically observable, because they transform non-
trivially under the global phase transformation V æ e

i–
V . Similarly, �0 =

q
m
◊m = arg(det(V )) is not observable. (ii) If

a unitary is realizable by k-local U(1)-invariant unitaries, then its l-body phases are zero for l > k, which can be seen using
the second equality in Eq.(4). This, for instance, implies that unless „ is an integer multiple of fi/2n≠1, unitary exp(i„Zb)
cannot be implemented using k-local U(1)-invariant unitaries with k < w(b). (iii) Conversely, for a general U(1)-invariant
unitary V , if all l-body phases vanish for l > k, then V is realizable using k-local U(1)-invariant unitaries, up to a unitary in
a fixed finite subgroup of U(1)-invariant unitaries. Finally, it is worth mentioning that from a geometrical point of view, the
transformation {◊m} æ {�l} in Eq.(4) describes a change of the coordinate system on the (n + 1)-torus corresponding to
phases ◊m = arg(det(Vm)), for charges m = 0, · · · , n. For instance, when the system evolves under the Hamiltonian H = “Zb,
its trajectory on this torus is a helix, described by equation �l(t) = ≠2n“t◊ ”l,w(b), where ” denotes the Kronecker delta (See
Fig.2).

In Sec.II F, we discuss an application of this framework for synthesizing phase-insensitive quantum circuits. But, first we start
with a rather surprising implication of these ideas.

C. Application: Probing the locality of interactions in nature

Our no-go theorem leads us to a new method for experimentally probing the locality of interactions: According to this
theorem, in the presence of symmetries, interactions that couple more subsystems can imprint certain observable effects on the
time evolution of the system that cannot be reproduced by those that act on smaller number of subsystems. Therefore, by probing
these effects, we can directly obtain information about the locality of the underlying interactions that govern the process. This
is analogous to the fact that in the presence of symmetries we can detect a hypothetical symmetry-breaking interaction, just by
observing the violation of Noether’s conservation law for the input and output of the process, without knowing the details of
the underlying interactions (In our case, the hypothetical term is not symmetry-breaking; rather it couples multiple subsystems
together).

As a simple example, consider a system of n qubits evolving for the total time T under an unknown Hamiltonian H(t) that
preserves

q
j
Zj . To have a concrete example, one can assume H(t) models the interactions in a complex scattering process with

n particles, and states {|0Í, |1Í} of each qubit corresponds to an internal degree of freedom of a particle, e.g., its electric charge,

3

where ql = Tr(HCl)/ Tr(C2
l
), and the summation is over even integers. The right-hand side is a polynomial of degree Âk/2Ê

of j(j + 1), and it can be an arbitrary function of j = jmin, · · · , n/2 if, and only if, Âk/2Ê = Ân/2Ê. For instance, for k = 2,
Ej = q0 + q2[2j(j + 1) ≠ 3n/2]. Therefore, in general (regardless of symmetry) the locality of interactions imposes strong
constraints on the form of dependence of the average energies {Ej} to the angular momentum j (it should be quadratic in this
example). Now, in the presence of rotational symmetry, due to the conservation of angular momentum, these constraints leave an
observable effect on the realized unitaries (see the next section). Furthermore, the constraints hold more generally, including
for non-local Hamiltonians that can be realized by local ones: for Hamiltonian H , if for all t œ R, exp(≠iHt) œ Vk (which
means it can be implemented by k-local symmetric unitaries) then the average energies {Ej} satisfy Eq.(3) for some {ql œ R}.
Incidentally, the fact that the average energies in Eq. (3), and the constraints in Eq. (2), depend only on the l-body properties of H

for even l can be understood in terms of the time-reversal symmetry of the squared angular momentum J
2.

l-body phases– In [18] one of us introduced the idea of l-body phases for U(1)-invariant unitaries, which express the constraints
imposed by locality in terms of experimentally observable quantities. Using the properties of operators {Cl}, this idea can be
extended to SU(2). Consider an n-qubit symmetric unitary V , which can be the unitary generated by a symmetric Hamiltonian
H(t), from time t = 0 to T under the Schrödinger equation. Any such unitary decomposes as V =

m
j

Vj , where Vj is the
component of V inside Hj , the subspace with angular momentum j. For even integers l = 0, · · · , 2Ân/2Ê, define the l-body
phase �l œ (≠fi, fi] of V as

�l ©

jmaxÿ

j=jmin

cl(j) ◊j = ≠

⁄
T

0
dt Tr(H(t)Cl) : mod 2fi , (4)

�l ©

nÿ

m=0
cl(m) ◊ arg(det(Vm)) = ≠

⁄
T

0
dt Tr(H(t)Cl) : mod 2fi , (5)

where ◊j = arg(det(Vj)) is the phase of the determinant of Vj . Note that while ◊j is only defined modulo 2fi, because
coefficients cl(j) are integer, �l œ (≠fi, fi] is well-defined. Note that the second equality is satisfied for any symmetric
Hamiltonian H(t) that realizes unitary V . The notion of l-body phases provides a useful characterization of the constraints
imposed by the locality of interactions: (i) for l Ø 2, all l-body phases {�l} can be measured experimentally, whereas the
phases {◊j} are not observable, because they transform non-trivially under V æ e

i–
V . Similarly, �0 =

q
j

◊j = arg(det(V ))
is not observable. (ii) If V is realizable by k-local symmetric unitaries then �l = 0 for l > k. (iii) Conversely, for a general
symmetric unitary V , if all l-body phases vanish for l > k, then V is realizable using k-local symmetric unitaries, up to a
unitary in a fixed finite subgroup of symmetric unitaries. Finally, as mentioned in [18], from a geometrical point of view, the
transformation {◊j} æ {�l} in Eq.(4) describes a change of the coordinate system on the (Ân/2Ê + 1)-torus corresponding to
phases ◊j = arg(det(Vj)), for j = jmin, · · · , jmax.

The fact that l-body phases �l are physically observable for l Ø 2, hints to an interesting implication of our results: by
measuring these phases it is possible to detect the locality of interactions; �l ”= 0 indicates the presence an interaction that
couples, at least, l spin-half systems together.

Universality with ancilla qubits– In the paper we show how the constraints imposed by locality can be circumvented without
breaking the symmetry. In particular, we show that for rotationally-invariant Hamiltonian H on n qubits, there is a rotationally-
invariant Hamiltonian ÂH acting on n + 2 qubits, including a pair of ancilla qubits a and b, such that (i) and ÂHcan be realized
using the exchange interaction, and (ii) For any n-qubit state |ÂÍ(C2)¢n of the main system, and any time t œ R. it satisfies

e≠i ÂHt(|ÂÍ ¢ |00Íab) =
!
e

≠i–t
e

≠iHt
|ÂÍ

"
¢ |00Íab , (6)

where e
≠i–t is a global phase. This means that after applying the unitary e≠i ÂHt, which can be realized using the exchange

interaction. Rotational symmetry implies that, rather than state |00Í, ancillae can be prepared in any state with support restricted
to the triplet subspace, such as the maximally-mixed state over this subspace. Also, a slightly different scheme can be realized
using ancillae prepared in the singlet (|01Í ≠ |01Í)/

Ô
2. Therefore, to circumvent the constraints imposed by locality the state of

ancilla qubits does not need to break the symmetry. It is worth noting that this technique can be generalized beyond SU(2), to
achieve universality anytime the restrictions on realizable symmetric unitaries are limited to constraints on the relative phases
between sectors with inequivalent irreps of symmetry.

For general class of rotationally-invariant Hamiltonians, including the multi-qubit swap Hamiltonian, we explicitly construct
the corresponding Hamiltonian ÂH that couples the system to ancillae, in terms of exchange interactions {Rrs} and their nested
commutators. Finally, using the notion of l-body phases, we prove that universality cannot be achieved with a single ancilla qubit.

10

Tr([Aj1 , Aj2 ]�µ) = Tr(Aj1 [Aj2 ,�µ]) = 0, where the first
equality follows from the cyclic property of trace and the
second equality follows from the assumption that Aj2 is G-
invariant, and therefore commutes with �µ. It follows that
the commutator [Aj1 , Aj2 ] and other nested commutators do
not contribute in |‰HÍ. This implies that Sk is spanned by
the charge vectors of k-local G-invariant Hermitian operators,
i.e., Sk is equal to

SpanR
)
|‰AÍ : A = A

†
, A is k-local, [A,U(g)] = 0 : ’g œ G

*
.

(11)

Next, note that for any k-local operator A, by applying
a properly chosen permutation operator S which changes
the order of sites, we can obtain an operator in the form
SAS

† = Ã ¢ Irest with the property that Ã acts on a fixed
set of k sites (e.g., the first k sites according to a certain
ordering) and Irest is the identity operator on the remaining
n ≠ k sites. Since charge vectors remain invariant under
permutations, operators A and SAS

† = Ã ¢ Irest have the
same charge vectors. It follows that the subspace in Eq.(11) is
equal to the set of the charge vectors of G-invariant Hermitian
operators that act non-trivially only on a fixed set of k sites
(e.g., the first k sites). Therefore, as the number of total
sites n increases, dim(Sk) remains bounded by a number
independent of n. In other words, even though using k-local
G-invariant unitaries we can simulate Hamiltonians that are
not k-local, they can only have charge vectors which are
allowed for k-local G-invariant Hamiltonians. This explains
why the upper bound on dim(Sk) in Eq.(10) does not depend
on the system size.

Example-SU(2) symmetry with spin s systems: In the case
of SU(2) symmetry, consider n spin s systems, each with the
Hilbert space of dimension 2s+1. Recall that irreps of SU(2)
can be labeled by the eigenvalues of the squared angular mo-
mentum operator J2 = J

2
x

+ J
2
y

+ J
2
z

. The eigenvalues have
the form of j(j + 1), where j is half-integer which takes val-
ues j = 1/2, 3/2, · · · , ns if s is not integer and n is odd,
and values j = 0, 1, · · · , n, otherwise. In both cases the to-
tal number of distinct irreps is |IrrepsSU(2)(n)| = ÂnsÊ + 1.
Because SU(2) is a connected group, the bound in Eq.(10)
holds as equality, i.e., dim(Sk) = ÂksÊ + 1. Furthermore,
Eq.(3) implies that the difference between the dimensions of
the manifolds of all SU(2)-invariant unitaries and those real-
izable by k-local SU(2)-invariant unitaries is lower bounded
by

dim(VSU(2)
n )≠ dim(VSU(2)

k
) Ø ÂnsÊ ≠ ÂksÊ . (12)

For integer spin s, this means that for any k < n, there are
(k + 1)-local unitaries that cannot be realized using k-local
unitaries. Similarly, for non-integer s, there are (k + 2)-local

unitaries that cannot be realized using k-local unitaries.

C. Full characterization of realizable U(1)-invariant
Hamiltonians for qubits

In Supplementary Note 3, we study the example of U(1)
symmetry for qubit systems. Interestingly, it turns out that
in this example the constraints imposed by the charge vectors
fully characterize the set of realizable Hamiltonians. The the-
orem below states these conditions.

For a system with n qubits define Hermitian operators Cl :
l = 0, · · · , n as

Cl ©

ÿ

b:w(b)=l
Zb =

nÿ

m=0
cl(m) �m , (13)

where the first summation is over all bit strings b =
b1 · · · bn œ {0, 1}n with Hamming weight w(b) ©

q
n

j=1 bj

equal to l, and Zb = Z
b1
1 · · ·Z

bn
n

. In the second term, �m is
the projector to the eigen-subspace of N =

q
n

j=1(I ≠ Zj)/2
with eigenvalue m, and

cl(m) =
mÿ

s=0
(≠1)s

3
m

s

43
n≠m

l ≠ s

4
, (14)

is the eigenvalue of Cl in this subspace (recall that the
binomial coefficient

!
a

b

"
= 0 for b > a. See Supplementary

Note 3 for derivation of Eq.(14)). We prove

Theorem: For any U(1)-invariant Hamiltonian H on n qubits
the family of unitaries {e

≠itH : t œ R} can be implemented
using k-local U(1)-invariant unitaries for k Ø 2, if, and only
if

Tr(HCl) = 0 : l = k + 1, · · · , n . (15)

Note that using Eq.(13) these conditions can be rewritten
in terms of the charge vector |‰HÍ =

q
n

m=0 Tr(H�m)|mÍ of
HamiltonianH , where {|mÍ} is a basis for an abstract (n+1)-
dimensional vector space.

Eqs.(15) impose exactly n ≠ k independent constrains
on the set of realizable Hamiltonians. Hence, the differ-
ence between the dimension of realizable U(1)-invariant
Hamiltonians and all U(1)-invariant Hamiltonians is exactly
n ≠ k, which means that in this case the general bound
in Eq.(3) holds as equality. This theorem is proven in the
Supplementary Note 3.

Data Availability: Data sharing is not applicable to this
article, as no datasets were generated or analyzed during the
current study.

Integer-valued polynomial of degree l

V =
nM

m=0

Vm
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• If V is realizable with k-local U(1)-invariant 
gates, they vanish for k>l.

• They are physically observable for l>0. 

SU(2) Symmetry:
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where �̃j is the projector to the subspace with angular momentum j of 2r qubits. Putting this into Eq.(B19) we conclude that

Tr(�jQl) = Tr(�jR1,2 · · · Rl≠1,l) = 2≠l/2(2j + 1)
l/2ÿ

r=0

3
l/2
r

4
(≠4)r

◊ m(n ≠ 2r, j) . (B21)

Combining this with Eq.(B16) and Eq.(B15) we conclude that the integer cl(j) is equal to

cl(j) = Tr(�jCl)
m(n, j) ◊ (2j + 1) (B22a)

= 1
m(n, j) ◊ (2j + 1) ◊

1
(l/2)! ◊

n!
(n ≠ l)! Tr(�jR1,2 · · · Rl≠1,l) (B22b)

= n!
(n ≠ l)! ◊ 2l/2(l/2)!

l/2ÿ

r=0
(≠4)r

3
l/2
r

4
m(n ≠ 2r, j)

m(n, j) . (B22c)

Expanding the binomials we find the formula

cl(j) = l!
2l/2(l/2)!

3
n

l

4 l/2ÿ

r=0
(≠4)r

3
l/2
r

4
m(n ≠ 2r, j)

m(n, j) (B23)

= 1
2l/2(n ≠ l)!

l/2ÿ

r=0

(≠4)r
r!(n ≠ 2r)!

(l/2 ≠ r)!

3
n

2 + j

r

43
n

2 ≠ j

r

4
n

2 + j + 1
n

2 + j + 1 ≠ r
. (B24)

Eq.(B21) determines the inner product of Qs with �j . For completeness, here we also determine the inner product of Qs with Cl:

Tr(QsCl) = Tr(R12 · · · Rs≠1,sCl) = (n ≠ s)!
n!

ÿ

i1 ”=··· ”=is

Tr(Ri1i2 · · · Ris≠1isCl) (B25)

= (n ≠ s)!(s/2)!
n! Tr(CsCl) (B26)

= ”l,s

(n ≠ s)!(s/2)!
n! Tr(C2

l
) . (B27)

We conclude that Qs has a positive overlap with Cs, whereas its overlap with {Cl : l ”= s} is zero.

2. cl(j) is a polynomial of degree l/2 of j(j + 1)

In the following, we present a simple recursive relation for operator {Cl}. This relation, in particular, implies that Cl can be
expressed as a polynomial of degree l/2 of J

2. This, in turn, implies that cl(j) is a polynomial of degree l/2 of j(j + 1).
First, note that all operators {Cl} commute with each other and are linear combinations of {�j} operators. This means that

the product of any pair of operators in this set can be written as a linear combination of {�j} operators, and hence a linear
combination of {Cl}. In other words, operators {Cl} form a commutative algebra. This, in particular, implies that for any
l = 0, · · · , 2Ân/2Ê it holds that

C2Cl = ClC2 =
2Â n

2 Êÿ

l=0
–l Cl , (B28)

where –l are real coefficients. Since C2 and Cl are sums of 2-local and l-local terms respectively, C2Cl can be written as a sum of
(l + 2)-local operators. Furthermore, since Cl is orthogonal to all k-local operators with k < l, C2Cl is orthogonal to all k-local
operators with k < l ≠ 2. We conclude that for l in the interval 2, · · · , 2Ân/2Ê ≠ 2, it holds that

C2Cl = ClC2 = –l≠2 Cl≠2 + –l Cl + –l+2 Cl+2 (B29)

for real numbers –l≠2, –l, and –l+2, which can be determined via combinatorial arguments (See Sec.B 3). It can be easily seen
that for all l in the interval 2, · · · , 2Ân/2Ê ≠ 2, coefficient –l+2 is non-zero (and positive). Therefore, the above equation can be
rewritten as

Cl+2 = 1
–l+2

C2Cl ≠
–l≠2
–l+2

Cl≠2 ≠
–l

–l+2
Cl . (B30)

2

characterizing Vk also determines general constraints on the
time evolutions generated by such Hamiltonians. Special cases
of interest are Hamiltonians that can be realized by tunable
exchange interactions, i.e., H(t) =

q
r<s

hrs(t) Rrs, where
Rrs = (‡̨r · ‡̨s)/2 =

q
v=x,y,z

‡
(v)
r ‡

(v)
s /2 is the exchange

interaction between qubits r and s, and hrs is an arbitrary real
function of time. Any unitary generated by such Hamiltonians
is in V2. Conversely, since any rotationally-invariant operator
on a pair of qubits is a linear combination of the identity opera-
tor and ‡̨ · ‡̨, any unitary in V2 can be realized by the exchange
interaction, up to a global phase.

To study this problem we use a Lie-algebraic approach,
which has been previously used to study universality in the
absence of symmetries [2, 15, 16, 33–37]. Suppose one can
implement Hamiltonians

q
j

aj(t)Aj , where {aj} are arbi-
trary real functions of time and {Aj} are Hermitian operators.
Using this family of Hamiltonians one can implement unitaries
exp(≠iBt) for all time t, if and only if the skew-Hermitian
operator iB is in the real Lie algebra generated {iAj}, that is,
it can be written as a linear combination of {iAj} and their
(nested) commutators with real coefficients [38, 39].

Characterizing symmetric unitaries— Under the action of ro-
tations, the Hilbert space of n qubits decomposes to sectors
with different total angular momenta, which label inequiv-
alent irreducible representations (irreps) of SU(2). The to-
tal squared angular momentum J

2 = J
2
x

+ J
2
y

+ J
2
z

, also
known as the Casimir operator, has eigenvalues j(j + 1)
with j = jmin, jmin + 1, · · · , jmax, where jmax = n/2, and
jmin = 0, 1/2, for even and odd n, respectively. As reviewed
in Appendix A, angular momentum j corresponds to an irrep
with dimension 2j + 1, which appears with the multiplicity

m(n, j) =
3

n

n

2 ≠ j

4
◊

2j + 1
n

2 + j + 1 . (1)

Then, the total Hilbert space decomposes as (C2)¢n ≥=m
jmax
j=jmin

Hj
≥=

m
jmax
j=jmin

C2j+1
¢ Cm(n,j). Here, Hj is the

eigen-subspace of J
2 with eigenvalue j(j + 1), also known as

the subspace of states with angular momentum j, and Cm(n,j)

is the multiplicity subsystem, where SU(2) acts trivially
[11, 40]. Using this decomposition together with Schur’s
lemmas one can characterize rotationally-invariant unitaries
[11]: they are block-diagonal with respect to {Hj} and act
trivially on the irreps of SU(2). That is, unitary V œ Vn if, and
only if, it can be decomposed as V ≥=

m
j
(I2j+1 ¢ vj), where

I2j+1 is the identity operator on (2j + 1)-dimensional irrep of
SU(2), and vj is an arbitrary unitary on Cm(n,j).

Constraints imposed by locality— In the case of qubit sys-
tems with SU(2) symmetry the restrictions imposed by locality
are limited to constraints on the relative phases between the
subspaces with different irreps of symmetry (Interestingly, in
the case of qudits with SU(d) symmetry for d Ø 3, there are
stronger constraints [41]). In terms of realizable Hamiltonians,
as stated in theorem 1 below, this amounts to constraints on
the inner products of the Hamiltonian with the projectors to
subspaces {Hj}, denoted by {�j : j = jmin, · · · , jmax}. The

space spanned by these projectors, denoted by C, is the space
of operators that are invariant under all rotations and permu-
tations, which has dimension Ân/2Ê + 1 (See Appendix A).
To express the constraints imposed by locality it is useful to
introduce another basis for C, namely operators {Cl} labeled
by even integers l, where C0 is the identity operator and for
l = 2, 4, · · · , 2Ân/2Ê,

Cl ©
1

(l/2)!
ÿ

i1 ”=··· ”=il

Ri1,i2 · · · · Ril≠1,il =
jmaxÿ

j=jmin

cl(j) �j ,

(2)
where in the first summation i1, i2, · · · , il are l distinct integers
between 1 to n. In the second summation

cl(j) = l!
2l/2(l/2)!

3
n

l

4 l/2ÿ

r=0
(≠4)r

3
l/2
r

4
m(n ≠ 2r, j)

m(n, j) (3)

is the eigenvalue of Cl in the subspace Hj (we use the con-
vention m(a, b) = 0 for b > a/2). These Hermitian operators
satisfy the following crucial properties, which are shown in
Appendix B: First, although it is not clear from the above for-
mula, cl(j) is an integer-valued polynomial of degree l/2 of
j(j + 1). This property becomes relevant later in Eqs.(7,8).
For instance, for l = 2 we obtain c2(j) = 2j(j + 1) ≠ 3n/2
and C2 = 2

q
i1<i2

Ri1,i2 , which is the Hamiltonian with
equal exchange interactions between all pairs of qubits. Ta-
ble I shows integers {cl(j)} for n = 10 qubits. The sec-
ond property, which explains the labeling of these opera-
tors with integers l = 0, 2, · · · , is that Cl is a sum of l-
local operators and is orthogonal to k-local operators with
k < l. Indeed, Hermitian operators {Cl} form an orthogo-
nal basis for C, i.e., Tr(ClClÕ) = ”l,lÕ Tr(C2

l
), which meansq

j
Tr(�j)cl(j)clÕ(j) = ”l,lÕ Tr(C2

l
). Using this basis, the

restrictions imposed by locality find a simple form.

Theorem 1. For a system with n qubits, the family of unitary

evolutions exp(≠iHt) : t œ R generated by a rotationally-

invariant Hamiltonian H can be implemented using k-local

rotationally-invariant unitaries with k Ø 2, if, and only if, for

all even integers l = 2Âk/2Ê + 2, · · · , 2Ân/2Ê, it holds that

Tr(HCl) =
jmaxÿ

j=jmin

cl(j) Tr(H�j) = 0 . (4)

Hence, the constraints imposed by locality can be ex-
pressed in terms of the vector defined by Tr(H�j) : j =
jmin, · · · , jmax, which in [18] is called the charge vector of
H . This theorem in particular implies that unitaries gen-
erated by Hamiltonian H can be realized (up to a global
phase) via the exchange interaction if, and only if, Eq.(4)
holds for even integers l = 4, · · · , 2Ân/2Ê. For instance, for
a system with n = 4 qubits, this amounts to the condition
15 Tr(H�0) ≠ 5 Tr(H�1) + 3 Tr(H�2) = 0, which, in par-
ticular, excludes H = R12R34 (See Appendix B).

As we explain in Appendix C, the necessity of these con-
ditions follows from the fact that for the above values of l,
{Cl} are orthogonal to k-local operators and commute with

3

Angular Momentum
j = 0 j = 1 j = 2 j = 3 j = 4 j = 5

l = 0 body 1 1 1 1 1 1
l = 2 body -15 -11 -3 9 25 45
l = 4 body 150 70 -42 -90 70 630
l = 6 body -1050 -210 462 -90 -1050 3150
l = 8 body 4725 -315 -1323 2565 -3675 4725
l = 10 body -10395 3465 -2079 1485 -1155 945

TABLE I. Integers {cl(j)}, which are the eigenvalues of operators
{Cl}, for a system with n = 10 qubits. Up to a normalization, cl(j)
is the average energy of states with angular momentum j, under l-
body interactions (See Eq.7). cl(j) is an integer-valued polynomial
of degree l/2 of j(j + 1).

rotationally-invariant operators. To show the converse state-
ment, first note that any Hamiltonian H decomposes as

H = H0 +
ÿ

j

Tr(H�j)
Tr(�j) �j = H0 +

ÿ

l

Tr(HCl)
Tr(C2

l
) Cl , (5)

where H0 is orthogonal to C, i.e., Tr(H0�j) = Tr(H0Cl) = 0,
for all l = 0, 2, · · · , 2Ân/2Ê and all j = jmin, · · · , jmax. Using
rather elementary techniques, in Appendix C we show that any
Hamiltonian H0 satisfying these constraints can be realized us-
ing the exchange interaction, which is 2-local and rotationally-
invariant (We note that this can also be shown using more
advanced results in the mathematical literature, namely the
result of Marin that finds the decomposition into simple factors
of the Lie algebra generated by transpositions [42]). Further-
more, since for l Æ k operator Cl can be written as a sum of
k-local symmetric Hermitian operators, Hamiltonian Cl can
be realized by such Hamiltonians. Combining these facts we
find that any Hamiltonian satisfying the conditions in theorem
1 can be implemented using k-local symmetric Hamiltonians.
Note that this result implies that for any symmetric unitary V ,
there exists ◊j œ [≠fi, fi), such that the unitary V [

q
j

ei◊j �j ]
can be realized using the exchange interaction.

Eq.(4) imposes Ân/2Ê ≠ Âk/2Ê independent constraints on
the manifold of realizable Hamiltonians. It follows that the
difference between the dimensions of the group of all symmet-
ric unitaries and the subgroup generated by k-local symmetric
unitaries is Ân/2Ê ≠ Âk/2Ê, matching the general lower bound
in [18]. In fact, in Appendix D we show that for k Ø 2,

dim(Vk) = 1
n + 1

32n

n

4
≠ Â

n

2 Ê + Â
k

2 Ê , (6)

where 1
n+1

!2n

n

"
is the nth Catalan number. Thus, unless

Âk/2Ê = Ân/2Ê, k-local symmetric unitaries are not universal.
Interestingly, universality can be achieved with (n ≠ 1)-local
symmetric unitaries if n (the number of qubits) is odd, whereas
such unitaries are not universal for even n. In Appendix F we
discuss more about this even/odd effect and its connection
with the time-reversal symmetry. Finally, note that since Vk is
compact [18], if a symmetric unitary V does not belong to Vk,
then there is a neighborhood of unitaries around V , none of

which can be implemented using k-local symmetric unitaries.

In the rest of the paper we present three independent results
about the constraints in Eq.(4): First, we discuss a physical
interpretation of them, then we explain how their violations
can be experimentally observed, and finally we show how they
can be circumvented using ancillary qubits.

Average energy for a fixed angular momentum— To understand
the constraints in Eq.(4) better, we consider the average energy
of states with angular momentum j, i.e., the expectation value
of Hamiltonian for the maximally-mixed state over Hj . In
Appendix E we show that if a general (possibly symmetry-
breaking) Hamiltonian H can be written as a sum of k-local
terms then this average energy is

Ej ©
Tr(�jH)
Tr(�j) =

2Âk/2Êÿ

l=0
ql ◊ cl(j) , (7)

where ql = Tr(HCl)/ Tr(C2
l
), and the summation is over

even integers. The right-hand side is a polynomial of degree
Âk/2Ê of j(j + 1), and it can be an arbitrary function of
j = jmin, · · · , n/2 if, and only if, Âk/2Ê = Ân/2Ê. For
instance, for k = 2, Ej = q0 + q2[2j(j + 1) ≠ 3n/2].
Therefore, in general (regardless of symmetry) the locality
of interactions imposes strong constraints on the form of
dependence of the average energies {Ej} to the angular
momentum j (it should be quadratic in this example). Now, in
the presence of rotational symmetry, due to the conservation
of angular momentum, these constraints leave an observable
effect on the realized unitaries (see the next section). Fur-
thermore, the constraints hold more generally, including for
non-local Hamiltonians that can be realized by local ones: for
Hamiltonian H , if for all t œ R, exp(≠iHt) œ Vk (which
means it can be implemented by k-local symmetric unitaries)
then the average energies {Ej} satisfy Eq.(7) for some
{ql œ R}. This can be shown directly, using the properties of
operators {Cl}, or via Eq.(4) together with the orthogonality
relation

q
j

Tr(�j)cl(j)clÕ(j) = ”l,lÕ Tr(C2
l
). Conversely,

applying this relation together with Eq.(7) one obtains Eq.(4).
We present further details in Appendix E. Incidentally, the
fact that the average energies in Eq. (7), and the constraints in
Eq. (4), depend only on the l-body properties of H for even l

can be understood in terms of the time-reversal symmetry of
the squared angular momentum J

2 (see Appendix F).

l-body phases– In [18] one of us introduced the idea of l-
body phases for U(1)-invariant unitaries, which express the
constraints imposed by locality in terms of experimentally ob-
servable quantities. Using the properties of operators {Cl}, this
idea can be extended to SU(2). Consider an n-qubit symmetric
unitary V , which can be the unitary generated by a symmetric
Hamiltonian H(t), from time t = 0 to T under the Schrödinger
equation. Any such unitary decomposes as V =

m
j

Vj , where
Vj is the component of V inside Hj , the subspace with angular
momentum j. For even integers l = 0, · · · , 2Ân/2Ê, define the

n=10 qubits (spin half systems)Integer-valued polynomial of degree l/2 of j(j+1)

Characterizing the constraints on the relative phases

Locality and Conservation Laws:
How, in the presence of symmetry, locality restricts realizable unitaries

Iman Marvian1

1Departments of Physics & Electrical and Computer Engineering,
Duke University, Durham, North Carolina 27708, USA

According to an elementary result in quantum computing, any unitary transformation on a composite system
can be generated using 2-local unitaries, i.e., those which act only on two subsystems. Beside its fundamental
importance in quantum computing, this result can also be regarded as a statement about the dynamics of sys-
tems with local Hamiltonians: although locality puts various constraints on the short-term dynamics, it does not
restrict the possible unitary evolutions that a composite system with a general local Hamiltonian can experience
after a sufficiently long time. We ask if such universality remains valid in the presence of conservation laws
and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all sym-
metric unitaries on that system? Interestingly, it turns out that the answer is negative in the case of continuous
symmetries, such as U(1) and SO(3): unless there are interactions which act non-trivially on every subsystem
in the system, some symmetric unitaries cannot be implemented using symmetric Hamiltonians. In fact, the
difference between the dimensions of the Lie algebra of all symmetric Hamiltonians and its subalgebra gen-
erated by k-local symmetric Hamiltonians with a fixed k, constantly increases with the system size (i.e., the
number of subsystems). On the other hand, in the case of group U(1), we find that this no-go theorem can be
circumvented if one is allowed to use a single ancillary qubit. In particular, any unitary which is invariant under
rotations around z, can be implemented using Hamiltonian XX + Y Y together with a local Z Hamiltonian on
the ancillary qubit. We discuss some implications of these results in the context of quantum thermodynamics
and quantum computing.

’◊ œ [0, 2fi) : U(ei◊Z)¢n = (ei◊Z)¢nU

e
i◊Z

U(
nÿ

j=1
Zj)U† =

nÿ

j=1
Zj

3
e
i„0

e
i„1

4

Q

cca

e
i„0

e
i„2

R

ddb

Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary

transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-
metric Hamiltonians constantly grows with the system size.
As an example, we consider a composite system formed from
qubits, with the symmetry group U(1), corresponding to rota-
tions around z axis, and show that these constraints uniquely
characterize the class of all diagonal Hamiltonians which can
be generated using U(1)-invariant k-local Hamiltonians.

The case of U(1) symmetry is specially relevant in the con-
texts of quantum computing and quantum thermodynamics.
For systems with periodic time evolution, the time transla-
tions {e≠iH0t} generated by the system intrinsic Hamiltonian
H0, form a group isomorphic to U(1). Energy-conserving
unitaries, i.e., those which commute with H0, respect this
U(1) symmetry. In the context of quantum computing, such
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Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-

Locality and Conservation Laws:
How, in the presence of symmetry, locality restricts realizable unitaries

Iman Marvian1

1Departments of Physics & Electrical and Computer Engineering,
Duke University, Durham, North Carolina 27708, USA

According to an elementary result in quantum computing, any unitary transformation on a composite system
can be generated using 2-local unitaries, i.e., those which act only on two subsystems. Beside its fundamental
importance in quantum computing, this result can also be regarded as a statement about the dynamics of sys-
tems with local Hamiltonians: although locality puts various constraints on the short-term dynamics, it does not
restrict the possible unitary evolutions that a composite system with a general local Hamiltonian can experience
after a sufficiently long time. We ask if such universality remains valid in the presence of conservation laws
and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all sym-
metric unitaries on that system? Interestingly, it turns out that the answer is negative in the case of continuous
symmetries, such as U(1) and SO(3): unless there are interactions which act non-trivially on every subsystem
in the system, some symmetric unitaries cannot be implemented using symmetric Hamiltonians. In fact, the
difference between the dimensions of the Lie algebra of all symmetric Hamiltonians and its subalgebra gen-
erated by k-local symmetric Hamiltonians with a fixed k, constantly increases with the system size (i.e., the
number of subsystems). On the other hand, in the case of group U(1), we find that this no-go theorem can be
circumvented if one is allowed to use a single ancillary qubit. In particular, any unitary which is invariant under
rotations around z, can be implemented using Hamiltonian XX + Y Y together with a local Z Hamiltonian on
the ancillary qubit. We discuss some implications of these results in the context of quantum thermodynamics
and quantum computing.

’◊ œ [0, 2fi) : U(ei◊Z)¢n = (ei◊Z)¢nU

e
i◊Z

U(
nÿ

j=1
Zj)U† =

nÿ

j=1
Zj

3
e
i„0

e
i„1

4

Q

cca

e
i„0

e
i„2

R

ddb

|00Í

|01Í

|10Í

|11Í

Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-
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Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-
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Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-
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V1
Locality of interactions of a quantum many-body system

imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric

l-body phase of unitary V3

metric unitaries (See Appendix A). Conversely, any unitary
in this group is generated by a Hamiltonian H(t) satisfying
the above locality and symmetry constraints. Therefore, by
characterizing VG

k
and studying its relation with the group of

all symmetric unitaries VG, we can unveil possible constraints
on the time evolution of composite systems under local sym-
metric Hamiltonians, which are not captured by the standard
conservation laws.

As an example, consider a closed spin chain with n qubits
with Hamiltonian H(t) equal to

nÿ

j=1
aj(t)[XjXj+1 + YjYj+1] + bj(t) ZjZj+1 + cj(t)Zj .

Consider the family of all unitaries generated by this Hamil-
tonian for different choices of real functions aj(t), bj(t), and
cj(t). Since the Hamiltonian is 2-local and commutes withq

j
Zj , this family belongs to VU(1)

2 for the U(1) symmetry
corresponding to rotations around the z axis. We are inter-
ested to determine if this family includes all unitaries that re-
spect the symmetry, or, the fact that the Hamiltonian is 2-local
implies additional constrains on the unitary evolution of the
system.

C. Lie algebraic approach

To study these questions, we use the Lie algebraic meth-
ods of quantum control theory [26, 27], which have also been
used to prove the universality of 2-local gates in the absence of
symmetries [2, 3, 28], and universality under limited control
(See e.g. [28–31]). Here, we briefly mention the main rele-
vant result. The details and precise statements can be found in
Appendix A.

Suppose one can implement unitary time evolutions gener-
ated by Hamiltonians ±A and ±B for an arbitrary amount of
time t Ø 0; that is one can turn on and off these Hamiltonians
at will. Then, combining these time evolutions one can obtain
unitaries

e
≠ic2”tBe≠ic1”tA = e

≠i”t(c1A+c2B) +O(”t2) (3a)

e
≠i”tA

e
≠i”tB

e
i”tA

e
i”tB = e

≠”t
2[A,B] +O(”t3) , (3b)

for arbitrary coefficients c1, c2 œ R, and for sufficiently small
”t. This means that using Hamiltonians ±A and ±B, one
can approximately simulate the time evolutions generated by
any Hamiltonian in the linear span of A and B, as well as the
Hamiltonian obtained from their commutator, i[A,B]. Fur-
thermore, by repeating such combinations of unitaries, we can
obtain a larger class of unitaries. In fact, it can be shown [26]
that using finite sequences of unitaries generated by Hamil-
tonians ±A and ±B, one obtains all unitary transformations
{e≠iHt : t œ R} generated by any Hermitian operator H ,
if and only if, H belongs to the real Lie algebra generated
by A and B, i.e., it can be written as a linear combination
of A, B, and their (nested) commutators, i[A,B], [[A,B], A],
[[A,B], B], ..., with real coefficients [26]. As we explain more

FIG. 2: The schematic relation between the group of all symmetric
unitaries (the torus) and the subgroup generated by Local Symmetric
Quantum Circuits (the blue curve). They are both connected closed
Lie groups and hence closed manifolds. Unitary evolution under any
local symmetric Hamiltonian will be restricted to the sub-manifold
corresponding to LSQC.

in Appendix A, this result means that to characterize the group
VG

k
generated by k-local symmetric unitaries, it suffices to

characterize the Lie algebra generated by k-local symmetric
skew-Hermitian operators.

II. MAIN RESULTS

A. A no-go theorem: Lack of universality in the presence of
continuous symmetries

We prove that in the case of continuous symmetries such as
U(1) and SO(3), most symmetric unitaries cannot be imple-
mented, even approximately, using local symmetric unitaries.
In general, it turns out that for any group G, the set of sym-
metric unitaries VG = VG

n
and its subgroup VG

k
generated

by k-local symmetric unitaries, are both connected compact
Lie groups, and hence closed manifolds. Furthermore, if G is
a continuous symmetry, then the sub-manifold corresponding
to VG

k
has generally a lower dimension (See Fig.2). In fact,

we show that the difference between the dimensions of the
manifolds associated to VG

l
and VG

k
for any l > k, is lower

bounded by

dim(VG

l
)≠ dim(VG

k
) Ø |Irreps

G
(l)|≠ |Irreps

G
(k)| , (4)

where |Irreps
G

(l)| is the number of inequivalent irreducible
representations (irreps) of group G, appearing in {u(g)¢l :
g œ G}, i.e., in the representation of symmetry on l sub-
systems. Therefore, unless |Irreps

G
(l)| = |Irreps

G
(k)|, there

is a family of symmetric unitaris which can be implemented
with l-local symmetric unitaries but not with k-local symmet-
ric unitaries. Furthermore, Eq.(4) means that in the case of
continuous symmetries, such as U(1) and SO(3), the differ-
ence between the dimensions of VG = VG

n
and VG

k
, grows

unboundedly with the system size n. It is worth nothing that
if a unitary V is not in VG

k
, then there is a finite neighbor-

hood of symmetric unitaries around V , none of which can
be implemented using k-local symmetric unitaries. On the
other hand, if V belongs to VG

k
, then it can be implemented
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FIG. 1: Without ancillary qubits, the family of unitaries {ei◊Z¢m :
◊ œ [0, 2fi)}, for m > 2, cannot be implemented using 2-local U(1)-
invariant interactions (i.e. those which conserve

q
r

Zr). On the
other hand, if one is allowed to use a pair of ancillary qubits, then
any U(1)-invariant unitary can be implemented using local Z on one
ancillary qubit together with interactions XrXs + YrYs, which are
U(1)-invariant and 2-local. The ancillary qubits are initially prepared
in states |0Í and |1Í, and at the end of process they return to the same
states. The above figure demonstrates implementation of the family
{ei◊Z¢4

} using the nearest neighbor interactions XrXs +YrYs, and
local Z on one of the ancillary qubits.

To see how such ancillary qubits can be useful, note that ac-
cording to Eq.(15) and Eq.(16), using 2-local U(1)-invariant
Hamiltonians {Rrs : r, s œ {1, · · · , n} fi {a, a}} together
with local Za (or Za) one can implement the family of uni-
taries generated by the Hamiltonian Z

b
¢ (Za ≠ Za), for any

bit string b œ {0, 1}
n. Under this Hamiltonian, any arbitrary

initial state |ÂÍ of n qubits, evolves to

e
i◊Z

b¢(Za≠Za)
1

|ÂÍ|0Ía|1Ía

2
=

!
e

i2◊Z
b

|ÂÍ
"

|0Ía|1Ía . (18)

e
i◊Z

b(I¢Ia≠ZlZa) !
|ÂÍ|0Ía

"
=

!
e

i◊(Z
b≠Z

b
Zl)

|ÂÍ
"

|0Ía . (19)

Z
b
Zl≠ (20)

Z

Note that at the end of the process, the ancillary qubits go
back to their initial states. Therefore, combining these uni-
taries, one can generate all Hamiltonians {Z

b : b œ {0, 1}
n
},

and hence all diagonal unitaries on n qubits. Then, as we
show in the Supplementary Material, combining these Hamil-
tonians with Hamiltonians {Rrs : r, s œ {1, · · · n}}, one can
generate all U(1)-invariant Hamiltonians. To summarize

Theorem 3. Using a pair of ancillary qubits prepared in

states |0Í and |1Í, any unitary which is invariant under rota-

tions around z can be implemented using 2-local Hamiltoni-

ans {XrXs + YrYs}, together with the single-qubit Z Hamil-

tonian on one of the ancillary qubits.

Discussion— The long-term dynamics of quantum many-
body systems with generic local Hamiltonians are intractable.
In the absence of symmetries, there are no constraints on the

possible unitary evolution of the system. In many cases, the
conservation laws imposed by the symmetries of Hamiltonian
provide the only tractable constraints on the long-term be-
havior: For any time t, the unitary evolution U(t) of system
commutes with the generators of the symmetries. Our first re-
sult implies that locality and symmetry together yield stronger
constraints on the long-term dynamics. Such constraints could
be useful, for instance, for understanding scrambling in many-
body systems with conserved charges [? ]. It is worth noting
that these constraints hold, even if the interactions are long-
range, provided that each term in the Hamiltonian acts non-
trivially on a finite number of sites.

Our second result, implies that using ancillary qubits, one
can circumvent these constraints in the case of the group
U(1). This result justifies the framework of the resource
theory of quantum thermodynamics, which allows arbitrary
energy-conserving unitaries on a composite system. Our
technique for implementing arbitrary phase-insensitive uni-
taries using the phase-insensitive interaction XX + Y Y and
ancillary qubits, can have further applications in the context
of quantum computing.

Acknowledgements: I am grateful to Austin Hulse, David
Jennings, and Hadi Salmasian for reading the manuscript
carefully and providing many useful comments.
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with local Za (or Za) one can implement the family of uni-
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Note that at the end of the process, the ancillary qubits go
back to their initial states. Therefore, combining these uni-
taries, one can generate all Hamiltonians {Z

b : b œ {0, 1}
n
},

and hence all diagonal unitaries on n qubits. Then, as we
show in the Supplementary Material, combining these Hamil-
tonians with Hamiltonians {Rrs : r, s œ {1, · · · n}}, one can
generate all U(1)-invariant Hamiltonians. To summarize

Theorem 3. Using a pair of ancillary qubits prepared in

states |0Í and |1Í, any unitary which is invariant under rota-

tions around z can be implemented using 2-local Hamiltoni-

ans {XrXs + YrYs}, together with the single-qubit Z Hamil-

tonian on one of the ancillary qubits.

Discussion— The long-term dynamics of quantum many-
body systems with generic local Hamiltonians are intractable.
In the absence of symmetries, there are no constraints on the
possible unitary evolution of the system. In many cases, the
conservation laws imposed by the symmetries of Hamiltonian
provide the only tractable constraints on the long-term be-
havior: For any time t, the unitary evolution U(t) of system
commutes with the generators of the symmetries. Our first re-
sult implies that locality and symmetry together yield stronger
constraints on the long-term dynamics. Such constraints could
be useful, for instance, for understanding scrambling in many-
body systems with conserved charges [? ]. It is worth noting
that these constraints hold, even if the interactions are long-
range, provided that each term in the Hamiltonian acts non-
trivially on a finite number of sites.

Our second result, implies that using ancillary qubits, one
can circumvent these constraints in the case of the group
U(1). This result justifies the framework of the resource
theory of quantum thermodynamics, which allows arbitrary
energy-conserving unitaries on a composite system. Our
technique for implementing arbitrary phase-insensitive uni-
taries using the phase-insensitive interaction XX + Y Y and
ancillary qubits, can have further applications in the context
of quantum computing.
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other hand, if one is allowed to use a pair of ancillary qubits, then
any U(1)-invariant unitary can be implemented using local Z on one
ancillary qubit together with interactions XrXs + YrYs, which are
U(1)-invariant and 2-local. The ancillary qubits are initially prepared
in states |0Í and |1Í, and at the end of process they return to the same
states. The above figure demonstrates implementation of the family
{ei◊Z¢4

} using the nearest neighbor interactions XrXs +YrYs, and
local Z on one of the ancillary qubits.

To see how such ancillary qubits can be useful, note that ac-
cording to Eq.(15) and Eq.(16), using 2-local U(1)-invariant
Hamiltonians {Rrs : r, s œ {1, · · · , n} fi {a, a}} together
with local Za (or Za) one can implement the family of uni-
taries generated by the Hamiltonian Z
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Note that at the end of the process, the ancillary qubits go
back to their initial states. Therefore, combining these uni-
taries, one can generate all Hamiltonians {Z

b : b œ {0, 1}
n
},

and hence all diagonal unitaries on n qubits. Then, as we
show in the Supplementary Material, combining these Hamil-
tonians with Hamiltonians {Rrs : r, s œ {1, · · · n}}, one can
generate all U(1)-invariant Hamiltonians. To summarize

Theorem 3. Using a pair of ancillary qubits prepared in

states |0Í and |1Í, any unitary which is invariant under rota-

tions around z can be implemented using 2-local Hamiltoni-

ans {XrXs + YrYs}, together with the single-qubit Z Hamil-

tonian on one of the ancillary qubits.

Discussion— The long-term dynamics of quantum many-
body systems with generic local Hamiltonians are intractable.
In the absence of symmetries, there are no constraints on the
possible unitary evolution of the system. In many cases, the
conservation laws imposed by the symmetries of Hamiltonian
provide the only tractable constraints on the long-term be-
havior: For any time t, the unitary evolution U(t) of system
commutes with the generators of the symmetries. Our first re-
sult implies that locality and symmetry together yield stronger
constraints on the long-term dynamics. Such constraints could
be useful, for instance, for understanding scrambling in many-
body systems with conserved charges [? ]. It is worth noting
that these constraints hold, even if the interactions are long-
range, provided that each term in the Hamiltonian acts non-
trivially on a finite number of sites.

Our second result, implies that using ancillary qubits, one
can circumvent these constraints in the case of the group
U(1). This result justifies the framework of the resource
theory of quantum thermodynamics, which allows arbitrary
energy-conserving unitaries on a composite system. Our
technique for implementing arbitrary phase-insensitive uni-
taries using the phase-insensitive interaction XX + Y Y and
ancillary qubits, can have further applications in the context
of quantum computing.
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generate all U(1)-invariant Hamiltonians. To summarize

Theorem 3. Using a pair of ancillary qubits prepared in
states |0Í and |1Í, any unitary which is invariant under rota-
tions around z can be implemented using 2-local Hamiltoni-
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tonian on one of the ancillary qubits.

Discussion— The long-term dynamics of quantum many-
body systems with generic local Hamiltonians are intractable.
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possible unitary evolution of the system. In many cases, the
conservation laws imposed by the symmetries of Hamiltonian
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havior: For any time t, the unitary evolution U(t) of system
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that these constraints hold, even if the interactions are long-
range, provided that each term in the Hamiltonian acts non-
trivially on a finite number of sites.

Our second result, implies that using ancillary qubits, one
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FIG. 4. Circumventing the no-go theorem with ancillary qubits. Our no-go theorem implies that the family of unitaries generated by the
n-qubit Hamiltonian Z¢n cannot be implemented using local U(1)-invariant unitaries, even if they act on n ≠ 1 qubits. In this figure, we
describe a scheme for circumventing this no-go result, using two ancillary qubits. This scheme uses interaction R = (XX + Y Y )/2 between
nearest-neighbor qubits on a closed loop. The two ancillary qubits, denoted by a and b are initially prepared in states |1Í and |0Í, respectively.
First, we show that it is possible to realize the Hamiltonian K = Z¢n

¢ Ra,b without any direct interaction between the ancillary qubits.
This only requires coupling qubit a to qubit j = 1 in the chain, coupling between nearest-neighbor qubits in the chain, and coupling between
qubit j = n and ancilla b. This Hamiltonian describes the process in which a charge is transported through the chain from one ancillary qubit
to the other and obtains a phase depending on the parity of the total charge in the system. As we explain in Supplementary Note 6, this has
an intuitive interpretation in the fermionic description of this system, obtained by applying the Jordan-Wigner transform. After evolving the
entire system for a short time interval ”t under Hamiltonian K, we obtain the joint state |ÂÍ|1Ía|0Íb ≠ i”tZ¢n

|ÂÍ|0Ía|1Íb + O(”t2), where
|ÂÍ is the initial state of n qubits. Next, we directly couple a to b and close the loop, using the 2-local unitary exp (ifiRa,b/4) exp (ifiZb/4)
that allows the charge to move back and forth between the ancillary qubits, without going through the chain. Finally, we measure one of the
ancillary qubits in {|0Í, |1Í} basis. This determines the final location of the charge initially located in qubit a. The final state of n qubits
is exp(±i”tZ¢n)|ÂÍ + O(”t2), where the sign depends on whether the final location of charge is qubit a or b. Therefore, this process
stochastically implements the Hamiltonian ±Z¢n. In principle, by choosing infinitesimal time step ”t and repeating this scheme many times,
we can implement the desired unitary exp(i„Z¢n) for arbitrary angle „, with an error approaching zero and probability of success approaching
one. We show that a slightly more complicated version of this scheme can be realized deterministically.

that one can use a single ancillary qubit, which is initially entangled with one of the qubits in the system. In particular, the
scheme presented in Fig.3 does not require preparing superpositions of states with different charges, which might be impractical
due to the superselection rules (See Supplementary Note 5 for further discussion).

D. Circumventing the no-go theorem with ancillary systems

Interestingly, it turns out that in the case of U(1) symmetry our no-go theorem can be circumvented, provided that one is
allowed to interact with an ancillary qubit: for any n-qubit U(1)-invariant unitary V , there exists (n + 1)-qubit unitary Ṽ that
can be implemented using 2-local U(1)-invariant Hamiltonians XX + Y Y and local Z, and satisfies

Ṽ
!
|ÂÍ ¢ |0Ía

"
= (V |ÂÍ)¢ |0Ía , (6)

for all n-qubit states |ÂÍ. This means that, while by applying local symmetric unitaries the ancillary qubit becomes entangled
with the qubits in the system, at the end of the process it returns back to its initial state |0Í, whereas the state of system transforms
as the desired unitary V .

Fig.4 demonstrates a variant of this result that requires 2 ancillary qubits. In this example the goal is to implement the unitaries
generated by Hamiltonian Z¢n. Roughly speaking, in this scheme a charge is transported through a closed loop that starts from
an ancillary qubit, goes through the entire system and finally returns back to the ancilla. As a result, the joint state obtains a
phase depending on the parity of the total charge in the system, which corresponds to the observable Z¢n. The overall effect is
equivalent to applying the desired Hamiltonian Z¢n on the system. Here, the ancillary qubits can be interpreted as an internal
quantum reference frame [16], relative to which the phase-shift generated by observable Z¢n is measured in a coherent fashion.
As we further explain in Supplementary Note 6, this process has also a nice interpretation in the fermionic description of the
system, obtained by applying the Jordan-Wigner transform [26–28].

E. Application: Quantum thermodynamics with local interactions

Our surprising no-go theorem has also interesting implications in the context of quantum thermodynamics and, specifically,
the operational approach to thermodynamics, which is often called the resource theory of quantum thermodynamics [8–15].
A fundamental assumption in this framework is that all energy-conserving unitaries, i.e., those commuting with the intrinsic
Hamiltonian of the system, are free, that is, they can be implemented with negligible thermodynamic costs. This is assumed even
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$
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Locality and symmetry are fundamental and ubiquitous properties of physical systems and their interplay leads to diverse
emergent phenomena, such as spontaneous symmetry breaking. They also put various constraints on both equilibrium and
dynamical properties of physical systems. For instance, symmetry implies conservation laws, as highlighted by the Noether’s
theorem [1, 2], and locality of interactions implies finite speed of propagation of information, as highlighted by the Lieb-
Robinson bound [3]. Nevertheless, in spite of the restrictions imposed by locality on the short-term dynamics, it turns out
that after a sufficiently long time and in the absence of symmetries, a composite system with a general local (time-dependent)
Hamiltonian can experience any arbitrary unitary time evolution. This is related to a fundamental result in quantum computing:
any unitary transformation on a composite system can be generated by a sequence of 2-local unitary transformations, i.e., those
that couple, at most, two subsystems [4–6].

In this Letter, we study this phenomenon in the presence of conservation laws and global symmetries. In particular, we ask
whether this universality remains valid in the presence of symmetries, or whether locality puts additional constraints on the
possible unitary evolutions of a composite system. Clearly, if all the local unitaries obey a certain symmetry, then the overall
unitary evolution also obeys the same symmetry. The question is if all symmetric unitaries on a composite system can be
generated using local symmetric unitaries on the system. Surprisingly, it turns out that the answer is negative in the case of
continuous symmetries, such as SU(2) and U(1). In fact, we show that generic symmetric unitaries cannot be implemented,
even approximately, using local symmetric unitaries. Furthermore, the difference between the dimensions of the manifold of
all symmetric unitaries and the sub-manifold of unitaries generated by k-local symmetric unitaries with a fixed k, constantly
increases with the system size.

This result implies that, in the presence of locality, symmetries of Hamiltonian impose extra constraints on the time evolution
of the system, which are not captured by the Noether’s theorem. We show how the violation of these constraints can be observed
experimentally and, in fact, can be used as a new method for probing the locality of interactions in nature. These additional
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that

dim(VU(1)
n ) ≠ dim(GXX+Y Y ) = n ≠ 1 . (11)

Ref. [7] also shows that using a single ancilla qubit, it is pos-
sible to circumvent these constraints. That is

Corollary 5. [7] Any energy-conserving unitary can be re-
alized with a single ancillary qubit, and gates exp(i„Z) and
2-local gates exp(i„[XX + Y Y ]).

C. Elementary gates

We study quantum circuits that are formed from two types
of gates. First, single-qubit rotations around z, i.e., unitaries

Rz(„) = exp(i„2 Z) =
A

e
i „

2

e
≠i „

2

B
: „ œ (≠fi, fi] .

(12)
Two important specific cases are

T = e
ifi
4 Rz(≠ ifi

4 ) =
3

1
e

fi
4

4
= 4Ô

Z (13)

and

S = iRz(≠fi

2 ) =
3

1
i

4
=

Ô
Z = T

2
. (14)

The second type of gates used in our circuits are in the form
[Fix the intervals]

exp(i–[X ¢ X + Y ¢ Y ]) : – œ [0, fi) . (15)

Two important special cases are

Ô
iSWAP = exp(ifi8 [X¢X+Y ¢Y ]) =

Q

cca

1
1Ô
2

iÔ
2

iÔ
2

1Ô
2

1

R

ddb ,

(16)
and

W = iSWAP = exp(ifi4 [X ¢X +Y ¢Y ]) =

Q

ca

1
i

i
1

R

db ,

(17)
where the matrices are written in the computational basis
{|00Í, |01Í, |10Í, |11Í}. Note that

Ô
iSWAP

† = (
Ô

iSWAP)7.
See, e.g., [16, 17] for further discussions about properties and
applications and of

Ô
iSWAP and iSWAP gates for circuit syn-

thesis.

We also consider the two-qubit gate controlled-Z,

CZ = |0ÍÈ0| ¢ I + |1ÍÈ1| ¢ Z =

Q

ca
1

1
1

≠1

R

db = •

•

and the swap gate

SWAP =

Q

ca
1

1
1

1

R

db= ◊

◊

(18)

D. Circuits with iSwap and single-qubit z rotations

In this paper, we show how a general energy-conserving
unitary can be realized with

Ô
iSWAP and single-qubit rota-

tions around z. However, it is useful to first consider a more
restricted family of circuits generated by the single-qubit ro-
tations around z together with iSWAP gate. While iSWAP is
an entangling gate, it can be easily seen that a general energy-
conserving unitary cannot be realized using such circuits (In
particular, note that such circuits map any element of the com-
putational basis to an element of the computational basis, up
to a global phase). To analyze such circuits, we consider the
useful circuit identity

iSWAP =
◊ • S

◊ • S

Then, using this identity it can be easily seen that

Proposition 6. Suppose unitary V is realized by a circuit
formed from iSWAP gates. Then, V has a decomposition as
V = V3V2V1, where V1 is a permutation, i.e., is a composition
of Swap gates, V2 is a composition of controlled-Z gates, and
V3 is a composition of single-qubit S gates. Furthermore, if in
addition to iSWAP, the circuit also contains the single-qubit
rotations around z, denoted by Rz(„) : „ œ (≠fi, fi], then the
realized unitary V has a similar decomposition where V3 is
now a product of arbitrary single-qubit rotations around z.

7

IV. 3-QUBIT ENERGY-CONSERVING UNITARIES

Next, we study 3-qubit energy-conserving unitaries and
show how they can be realized. These methods can then be
generalized to implement energy-conserving unitaries on ar-
bitrary number of qubits.

A. A useful 2-level unitary: Two controlled-Z gates

Using a simple Lie-algebraic argument one can show that
the 3-qubit Hamiltonian Z2(Z3 ≠ Z1) can be realized using
only XX + Y Y Hamiltonian, without any ancillary qubit [7].
However, from this argument, it is not clear how the unitaries
generated by this Hamiltonian can be realized with finite cir-
cuits. Our first step in constructing general 3-qubit energy-
conserving unitaries, is to find a circuit that realize a special
case of this family of unitaries. Namely, consider the first
identity

W13W
†
23W12W23 = exp(ifi4 Z2[Z3 ≠ Z1]) (29a)

W13W23W12W23 = ≠i exp(ifi4 Z2[Z1 + Z3]) , (29b)

where Wij denotes iSWAP gate on qubits i and j, defined
in Eq.(??). The second identity and similar other identities
can be obtained by replacing Wij with W

†
ij , or vice versa.

It is worth noting that the specific combination of unitaries
Wij appearing in these identities has a nice interpretation in
terms of the permutation group: In the computational basis
the action of Wij is equivalent to transposition of bits i and
j, up to a phase. Using the cycle notation for the permutation
group, this transposition is denoted as (ij). Then, the fact
that (13) = (23)(12)(23) implies that (13)(23)(12)(23) is
the trivial permutation. It follows that under the action of the
above combination of unitaries, elements of the computational
basis remain invariant, up to a phase, which is determined by
the right-hand side of Eq.(29).

The first identity implies that

W13W
†
23W12W23S

†
1S3 = exp(ifi4 [(Z3 ≠ Z1)(Z2 ≠ I)]

= |0ÍÈ0|2 ¢ I13 + |1ÍÈ1|2 ¢ Z1Z3 . (30)

The left-hand side corresponds to the circuit

iSWAP
iSWAP

S
†

iSWAP iSWAP†

S

and the right-hand side is equal to two controlled-Z gates as

•
• •

•

iSWAP iSWAP

Ô
X

iSWAPÔ
X

Ô
X

|0Í
iSWAP

iSWAP

|0Í

iSWAP
S

†

Z

|0Í
iSWAP

iSWAP

|0Í

iSWAP†
S

Z

FIG. 1. The top circuit is the standard way of realizing the swap
unitary with using 3 iSwaps. It requires 3 single-qubit

Ô
X , which

is not energy-conserving. The middle and bottom circuits also real-
ize swap unitary using 3 iSwaps and energy-conserving single-qubit
gates, namely S, S†, and Z, with the help of an ancillary qubit.

This unitary is diagonal in the computational basis and
is 2-level, i.e., it acts non-trivially only on states |011Í and
|110Í, namely it gives ≠1 sign to both of these states. Note
that using the second identity in Eq.(29) we can obtain a
similar construction of this unitary using 4 iSwap gates.

For future applications we also note that Eq.(29) implies
the following circuit identity.

iSWAP
iSWAP

• S
†

iSWAP
ú =

SWAP
• S

Z

1. Implementing controlled-Z and swap gates using a single
ancilla qubit

Eq.(30) immediately gives a method for realizing the
controlled-Z gate: Suppose we prepare the top qubit (qubit
1) in state |0Í. Then, the overall action of this circuit on qubits
2 and 3 will be CZ gate.

Another important gate that can be realized using a similar
technique is the swap gate. The middle and bottom circuits
in Fig.1 presents two realizations of the swap gates. The top
circuit in this figure presents the standard way of implement-
ing the swap gate with 3 iSwaps, which was presented in [17].
However, this circuit requires single-qubit unitaries that do not
conserve energy. As a side remark, it is worth noting that the
middle and bottom circuits have another advantage: by mea-
suring the ancilla qubit at the end of the process in the z basis,
it is possible to detect the presence of certain X errors in the
circuit.
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Appendix A: Appendix

SWAP =

Q

ca

1
1

1
1

R

db , (A1)

�2 = ◊0 ≠ ◊1 + ◊2 = 0 (mod 2fi) . (A2)

◊1 = arg(det(V1))

�2 = ◊0 ≠ arg(det(V1)) + ◊2 = 0 (mod 2fi) . (A3)

• U

•
• •
•

.

•
•

H Z H

.

•
•

Locality and Conservation Laws:
How, in the presence of symmetry, locality restricts realizable unitaries

Iman Marvian1

1Departments of Physics & Electrical and Computer Engineering,
Duke University, Durham, North Carolina 27708, USA

According to an elementary result in quantum computing, any unitary transformation on a composite system
can be generated using 2-local unitaries, i.e., those which act only on two subsystems. Beside its fundamental
importance in quantum computing, this result can also be regarded as a statement about the dynamics of sys-
tems with local Hamiltonians: although locality puts various constraints on the short-term dynamics, it does not
restrict the possible unitary evolutions that a composite system with a general local Hamiltonian can experience
after a sufficiently long time. We ask if such universality remains valid in the presence of conservation laws
and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all sym-
metric unitaries on that system? Interestingly, it turns out that the answer is negative in the case of continuous
symmetries, such as U(1) and SO(3): unless there are interactions which act non-trivially on every subsystem
in the system, some symmetric unitaries cannot be implemented using symmetric Hamiltonians. In fact, the
difference between the dimensions of the Lie algebra of all symmetric Hamiltonians and its subalgebra gen-
erated by k-local symmetric Hamiltonians with a fixed k, constantly increases with the system size (i.e., the
number of subsystems). On the other hand, in the case of group U(1), we find that this no-go theorem can be
circumvented if one is allowed to use a single ancillary qubit. In particular, any unitary which is invariant under
rotations around z, can be implemented using Hamiltonian XX + Y Y together with a local Z Hamiltonian on
the ancillary qubit. We discuss some implications of these results in the context of quantum thermodynamics
and quantum computing.
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Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-
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imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-

Locality and Conservation Laws:
How, in the presence of symmetry, locality restricts realizable unitaries

Iman Marvian1

1Departments of Physics & Electrical and Computer Engineering,
Duke University, Durham, North Carolina 27708, USA

According to an elementary result in quantum computing, any unitary transformation on a composite system
can be generated using 2-local unitaries, i.e., those which act only on two subsystems. Beside its fundamental
importance in quantum computing, this result can also be regarded as a statement about the dynamics of sys-
tems with local Hamiltonians: although locality puts various constraints on the short-term dynamics, it does not
restrict the possible unitary evolutions that a composite system with a general local Hamiltonian can experience
after a sufficiently long time. We ask if such universality remains valid in the presence of conservation laws
and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all sym-
metric unitaries on that system? Interestingly, it turns out that the answer is negative in the case of continuous
symmetries, such as U(1) and SO(3): unless there are interactions which act non-trivially on every subsystem
in the system, some symmetric unitaries cannot be implemented using symmetric Hamiltonians. In fact, the
difference between the dimensions of the Lie algebra of all symmetric Hamiltonians and its subalgebra gen-
erated by k-local symmetric Hamiltonians with a fixed k, constantly increases with the system size (i.e., the
number of subsystems). On the other hand, in the case of group U(1), we find that this no-go theorem can be
circumvented if one is allowed to use a single ancillary qubit. In particular, any unitary which is invariant under
rotations around z, can be implemented using Hamiltonian XX + Y Y together with a local Z Hamiltonian on
the ancillary qubit. We discuss some implications of these results in the context of quantum thermodynamics
and quantum computing.

’◊ œ [0, 2fi) : U(ei◊Z)¢n = (ei◊Z)¢nU

e
i◊Z

U(
nÿ

j=1
Zj)U† =

nÿ

j=1
Zj

3
e
i„0

e
i„1

4

Q

cca

e
i„0

e
i„2

R

ddb

|00Í

|01Í

|10Í

|11Í

Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-

Locality and Conservation Laws:
How, in the presence of symmetry, locality restricts realizable unitaries

Iman Marvian1

1Departments of Physics & Electrical and Computer Engineering,
Duke University, Durham, North Carolina 27708, USA

According to an elementary result in quantum computing, any unitary transformation on a composite system
can be generated using 2-local unitaries, i.e., those which act only on two subsystems. Beside its fundamental
importance in quantum computing, this result can also be regarded as a statement about the dynamics of sys-
tems with local Hamiltonians: although locality puts various constraints on the short-term dynamics, it does not
restrict the possible unitary evolutions that a composite system with a general local Hamiltonian can experience
after a sufficiently long time. We ask if such universality remains valid in the presence of conservation laws
and global symmetries. In particular, can k-local symmetric unitaries on a composite system generate all sym-
metric unitaries on that system? Interestingly, it turns out that the answer is negative in the case of continuous
symmetries, such as U(1) and SO(3): unless there are interactions which act non-trivially on every subsystem
in the system, some symmetric unitaries cannot be implemented using symmetric Hamiltonians. In fact, the
difference between the dimensions of the Lie algebra of all symmetric Hamiltonians and its subalgebra gen-
erated by k-local symmetric Hamiltonians with a fixed k, constantly increases with the system size (i.e., the
number of subsystems). On the other hand, in the case of group U(1), we find that this no-go theorem can be
circumvented if one is allowed to use a single ancillary qubit. In particular, any unitary which is invariant under
rotations around z, can be implemented using Hamiltonian XX + Y Y together with a local Z Hamiltonian on
the ancillary qubit. We discuss some implications of these results in the context of quantum thermodynamics
and quantum computing.

’◊ œ [0, 2fi) : U(ei◊Z)¢n = (ei◊Z)¢nU

e
i◊Z

U(
nÿ

j=1
Zj)U† =

nÿ

j=1
Zj

3
e
i„0

e
i„1

4

Q

cca

e
i„0

e
i„2

R

ddb

|00Í

|01Í

|10Í

|11Í

Locality of interactions of a quantum many-body system
imposes strong constraints on the dynamics of the system.
A well-known example is the finite speed of propagation of
information, as highlighted by the celebrated Lieb-Robinson
bound [? ]. Nevertheless, it turns out that after a sufficiently
long time, systems with general local interactions can still
experience any arbitrary unitary time evolution. In particu-
lar, according to a fundamental result in quantum control and
quantum computing, any unitary transformation on a compos-
ite system can be generated by a sequence of 2-local unitary
transformations, i.e. those which act non-trivially on, at most,
two sites [? ? ? ? ].

In this Letter, we study this phenomenon in the presence
of conservation laws and global symmetries. Clearly, if all
the local unitaries obey a certain symmetry, e.g. SO(3), then
the overall unitary evolution also obeys the same symmetry.
The question is if all symmetric unitaries on a composite sys-
tem can be generated using local symmetric unitaries on the
system. Perhaps surprisingly, it turns out that the answer is
negative in the case of continuous groups, such as SO(3) and
U(1). In fact, we find that unless there are terms in the Hamil-
tonian which act non-trivially on all the subsystems, there are
some symmetric unitaries which cannot be implemented using
symmetric Hamiltonians.

More generally, we derive simple constraints on the family
of unitaries which can be implemented using k-local symmet-
ric Hamiltonians. These constraints imply that the difference
between the dimensions of the Lie algebra of all symmetric
Hamiltonians and its subalgebra generated by k-local sym-

7

IV. 3-QUBIT ENERGY-CONSERVING UNITARIES

Next, we study 3-qubit energy-conserving unitaries and
show how they can be realized. These methods can then be
generalized to implement energy-conserving unitaries on ar-
bitrary number of qubits.

A. A useful 2-level unitary: Two controlled-Z gates

Using a simple Lie-algebraic argument one can show that
the 3-qubit Hamiltonian Z2(Z3 ≠ Z1) can be realized using
only XX + Y Y Hamiltonian, without any ancillary qubit [7].
However, from this argument, it is not clear how the unitaries
generated by this Hamiltonian can be realized with finite cir-
cuits. Our first step in constructing general 3-qubit energy-
conserving unitaries, is to find a circuit that realize a special
case of this family of unitaries. Namely, consider the first
identity

W13W
†
23W12W23 = exp(ifi4 Z2[Z3 ≠ Z1]) (29a)

W13W23W12W23 = ≠i exp(ifi4 Z2[Z1 + Z3]) , (29b)

where Wij denotes iSWAP gate on qubits i and j, defined
in Eq.(??). The second identity and similar other identities
can be obtained by replacing Wij with W

†
ij , or vice versa.

It is worth noting that the specific combination of unitaries
Wij appearing in these identities has a nice interpretation in
terms of the permutation group: In the computational basis
the action of Wij is equivalent to transposition of bits i and
j, up to a phase. Using the cycle notation for the permutation
group, this transposition is denoted as (ij). Then, the fact
that (13) = (23)(12)(23) implies that (13)(23)(12)(23) is
the trivial permutation. It follows that under the action of the
above combination of unitaries, elements of the computational
basis remain invariant, up to a phase, which is determined by
the right-hand side of Eq.(29).

The first identity implies that

W13W
†
23W12W23S

†
1S3 = exp(ifi4 [(Z3 ≠ Z1)(Z2 ≠ I)]

= |0ÍÈ0|2 ¢ I13 + |1ÍÈ1|2 ¢ Z1Z3 . (30)

The left-hand side corresponds to the circuit

iSWAP
iSWAP

S
†

iSWAP iSWAP†

S

and the right-hand side is equal to two controlled-Z gates as

•
• •

•

iSWAP iSWAP

Ô
X

iSWAPÔ
X

Ô
X

|0Í
iSWAP

iSWAP

|0Í

iSWAP
S

†

Z

|0Í
iSWAP

iSWAP

|0Í

iSWAP†
S

Z

FIG. 1. The top circuit is the standard way of realizing the swap
unitary with using 3 iSwaps. It requires 3 single-qubit

Ô
X , which

is not energy-conserving. The middle and bottom circuits also real-
ize swap unitary using 3 iSwaps and energy-conserving single-qubit
gates, namely S, S†, and Z, with the help of an ancillary qubit.

This unitary is diagonal in the computational basis and
is 2-level, i.e., it acts non-trivially only on states |011Í and
|110Í, namely it gives ≠1 sign to both of these states. Note
that using the second identity in Eq.(29) we can obtain a
similar construction of this unitary using 4 iSwap gates.

For future applications we also note that Eq.(29) implies
the following circuit identity.

iSWAP
iSWAP

• S
†

iSWAP
ú =

SWAP
• S

Z

1. Implementing controlled-Z and swap gates using a single
ancilla qubit

Eq.(30) immediately gives a method for realizing the
controlled-Z gate: Suppose we prepare the top qubit (qubit
1) in state |0Í. Then, the overall action of this circuit on qubits
2 and 3 will be CZ gate.

Another important gate that can be realized using a similar
technique is the swap gate. The middle and bottom circuits
in Fig.1 presents two realizations of the swap gates. The top
circuit in this figure presents the standard way of implement-
ing the swap gate with 3 iSwaps, which was presented in [17].
However, this circuit requires single-qubit unitaries that do not
conserve energy. As a side remark, it is worth noting that the
middle and bottom circuits have another advantage: by mea-
suring the ancilla qubit at the end of the process in the z basis,
it is possible to detect the presence of certain X errors in the
circuit.

SWAP with energy-conserving gates and ancilla qubits

A simple example

arXiv:2309.11051
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iSw =
◊ • S

◊ • S

Eq. (29)

iSw
iSw

S
†

iSw iSw†

S

=

•

• •

•

Eq. (48b)

F =
iSw

iSw
iSw†

=

• S

◊ • S
†

◊ Z

=

S •

Z ◊

S
† • ◊

Eq. (49)

G = iSw
iSw iSw†

=

• • ◊ Z

• • ◊

• •

Eq. (97a)

FIG. 3. Summary of useful circuit identities involving iSWAP and S gates.

e
i◊R

=
iSw

iSw iSw†
iSw†

iSw†
e

±i◊R/2 iSw e
i◊R/2

S S
†

FIG. 4. The circuit corresponding to Eq. (51): Assuming the gate in the middle (the fifth gate) is exp(≠iR◊/2) with R = (X ¢X +Y ¢Y )/2,
this circuit implements controlled-exp(i◊R), i.e., the 2-level 3-qubit unitary U1 defined in Eq. (51). This family includes useful unitaries, such
as controlled-iSWAP (corresponding to ◊ = fi/2, which means the fifth gate is

Ô
iSWAP

†
and the tenth gate is

Ô
iSWAP) as well as the

controlled-
Ô

iSWAP (corresponding to ◊ = fi/4, which means the fifth gate is exp(≠ifiR/8) and the tenth gate is exp(ifiR/8)). On the other
hand, when the gate in the middle is exp(+iR◊/2), the circuit realizes U0 in Eq. (51), which applies exp(i◊R/2) when the control qubit is
in state |0Í rather than |1Í. As we explain in the next section, using this construction recursively, we can obtain all energy-conserving 2-level
unitaries with determinant 1.

B. General 2-level energy-conserving unitaries on 3 qubits

Next, we show how general 2-level energy-conserving unitaries in SVU(1)
3 can be realized. Here, we adapt the approach

developed in [36] for quantum circuits with general Abelian symmetries to the case of U(1) symmetry. To achieve this we use
the gate F123 defined in Eq. (49).

First, note that sandwiching exp(i◊R/2) on qubits 2 and 3 with F123 and F
†
123 and using the facts that S

† ¢ S
† and SWAP

Q =

FIG. 5. The circuit for implementing arbitrary unitaries in SVU(1)
3 , i.e., all 3-qubit energy-conserving unitaries with the property that the

determinant of the component of unitary in each Hamming weight sector is 1. Here, each gate is in the form of Eq. (55) and hence can be
realized by composing 3 circuits in the form of Fig. 4.
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Examples of useful circuit identities R = (X ⌦X + Y ⌦ Y )/2
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that

dim(VU(1)
n ) ≠ dim(GXX+Y Y ) = n ≠ 1 . (11)

Ref. [7] also shows that using a single ancilla qubit, it is pos-
sible to circumvent these constraints. That is

Corollary 5. [7] Any energy-conserving unitary can be re-
alized with a single ancillary qubit, and gates exp(i„Z) and
2-local gates exp(i„[XX + Y Y ]).

C. Elementary gates

We study quantum circuits that are formed from two types
of gates. First, single-qubit rotations around z, i.e., unitaries

Rz(„) = exp(i„2 Z) =
A

e
i „

2

e
≠i „

2

B
: „ œ (≠fi, fi] .

(12)
Two important specific cases are

T = e
ifi
4 Rz(≠ ifi

4 ) =
3

1
e

fi
4

4
= 4Ô

Z (13)

and

S = iRz(≠fi

2 ) =
3

1
i

4
=

Ô
Z = T

2
. (14)

The second type of gates used in our circuits are in the form
[Fix the intervals]

exp(i–[X ¢ X + Y ¢ Y ]) : – œ [0, fi) . (15)

Two important special cases are

Ô
iSWAP = exp(ifi8 [X¢X+Y ¢Y ]) =

Q

cca

1
1Ô
2

iÔ
2

iÔ
2

1Ô
2

1

R

ddb ,

(16)
and

W = iSWAP = exp(ifi4 [X ¢X +Y ¢Y ]) =

Q

ca

1
i

i
1

R

db ,

(17)
where the matrices are written in the computational basis
{|00Í, |01Í, |10Í, |11Í}. Note that

Ô
iSWAP

† = (
Ô

iSWAP)7.
See, e.g., [16, 17] for further discussions about properties and
applications and of

Ô
iSWAP and iSWAP gates for circuit syn-

thesis.

We also consider the two-qubit gate controlled-Z,

CZ = |0ÍÈ0| ¢ I + |1ÍÈ1| ¢ Z =

Q

ca
1

1
1

≠1

R

db = •

•

and the swap gate

SWAP =

Q

ca
1

1
1

1

R

db= ◊

◊

(18)

D. Circuits with iSwap and single-qubit z rotations

In this paper, we show how a general energy-conserving
unitary can be realized with

Ô
iSWAP and single-qubit rota-

tions around z. However, it is useful to first consider a more
restricted family of circuits generated by the single-qubit ro-
tations around z together with iSWAP gate. While iSWAP is
an entangling gate, it can be easily seen that a general energy-
conserving unitary cannot be realized using such circuits (In
particular, note that such circuits map any element of the com-
putational basis to an element of the computational basis, up
to a global phase). To analyze such circuits, we consider the
useful circuit identity

iSWAP =
◊ • S

◊ • S

Then, using this identity it can be easily seen that

Proposition 6. Suppose unitary V is realized by a circuit
formed from iSWAP gates. Then, V has a decomposition as
V = V3V2V1, where V1 is a permutation, i.e., is a composition
of Swap gates, V2 is a composition of controlled-Z gates, and
V3 is a composition of single-qubit S gates. Furthermore, if in
addition to iSWAP, the circuit also contains the single-qubit
rotations around z, denoted by Rz(„) : „ œ (≠fi, fi], then the
realized unitary V has a similar decomposition where V3 is
now a product of arbitrary single-qubit rotations around z.

Theorem: Any energy-conserving unitary on n>2 qubits can be realized with error 

with two ancilla qubit.

Approximate Implementation

See arXiv:2309.11051 for explicit circuit synthesis techniques.

gates alone

3

Ref. [10] proves that for any desired energy-conserving uni-
tary V on n qubits, there exists an energy-conserving unitary

Ṽ on n+1 qubits, such that Ṽ can be realized by Hamiltonians
X ⊗ X + Y ⊗ Y and single-qubit Z and

Ṽ (|ψ⟩ ⊗ |0⟩anc) = (V |ψ⟩) ⊗ |0⟩anc , (2)

for all states |ψ⟩ of n qubit system (See the example in Fig. 1).
Subsequently, Ref. [42] simplified and generalized this result,
to symmetric quantum circuits with arbitrary Abelian symme-
tries.

Building on the ideas developed in [10] and [42], in this
work we go beyond these results and develop various cir-
cuit synthesis techniques for constructing explicit circuits with
energy-conserving gates. (This is analogous to the develop-
ment of theory of quantum circuits: first, the universality of
2-local gates was established mostly using Lie-algebraic ar-
guments [6, 41], and then, building on those results, explicit
and efficient circuit synthesis techniques were developed. See,
e.g., [3, 43].)

Using these circuit synthesis methods we show that

Theorem 1. (Exact implementation) Any energy-conserving
unitary transformation on n qubits, i.e., a unitary transforma-
tion that commutes with

∑n
j=1 Zj , can be realized exactly, up

to a possible global phase, using O(4nn3/2) gates from any
one of the following universal gate sets

1.
√

iSWAP = exp(iπ4 R) , and exp(iφZ) : φ ∈ (−π,π]
gates, with one ancilla qubit, where

R =
1

2
(X ⊗ X + Y ⊗ Y ) . (3)

2. exp(iαHint) : α ∈ R , and S = eiπ/4 exp(−iπZ/4)
gates, with one ancilla qubit, where Hint is any energy-
conserving 2-qubit Hamiltonian that is not diagonal in
the computational basis, such that

[Hint, Z ⊗ I] = −[Hint, I ⊗ Z] ̸= 0 , (4)

3. exp(iαR) : α ∈ (−π,π] gates, with two ancilla qubits.

Two canonical examples of non-diagonal energy-
conserving Hamiltonians are the XY interaction and the
Heisenberg interaction RHeis := (X ⊗X +Y ⊗Y +Z ⊗Z)/2.
Then, part 2 of the theorem implies that the following sets are
universal:

• exp(iαR) : α ∈ (−π,π] , and S gates, with one ancilla
qubit,

• exp(iαRHeis) : α ∈ (−π,π] , and S gates, with one
ancilla qubit.

A few remarks are in order: First, as we show in
Sec. II A, general energy-conserving unitary transformations
on n qubits are smoothly parameterized by ≈ 4n/

√
πn real

parameters. Therefore, a simple parameter counting implies

that for generic energy-conserving unitaries, the above con-
structions are close to optimal, by a factor of n2.1

Second, note that in part 2 of the theorem the condition
that Hint is not diagonal is necessary, because otherwise qubits
cannot exchange energy with each other, i.e., the overall n-
qubit unitary will be also diagonal in the computational basis.

Finally, note that in all the 3 cases in Theorem 1 one needs,
at least, one ancilla qubit, which by the argument [10] is un-
avoidable. However, for the last gate set an extra ancilla is
used. This is because XY Hamiltonian has an additional Z2

symmetry, namely

X⊗2RX⊗2 = R . (5)

As we further explain in Sec. VI, this Z2 symmetry can be
broken with the extra ancilla qubit. In this case, the ancilla can
be interpreted as a quantum reference frame, or asymmetry
catalyst [44, 45].2

In addition to exact implementation, we also investigate the
approximate implementation of energy-conserving unitaries
using finite gate sets, e.g.,

√
iSWAP and S gates. Applying

the Solovay-Kitaev theorem [1, 50, 51], one can bound the
number of such gates that are needed to implement a desired
energy-conserving unitary, with any error ϵ > 0 as quantified
in terms of the operator norm distance between the desired
unitary and the realized unitary (See Sec. VII for the formal
statements). In particular, we show that

Corollary 2. (Approximate implementation) Any energy-
conserving unitary on n ≥ 2 qubits can be realized with an
error bounded by ϵ > 0, using O(4nn3/2(n+log ϵ−1)ν) num-
ber of gates from either of the following gate sets:

1.
√

iSWAP gate alone with 2 ancilla qubits.

2.
√

iSWAP and S gates with 1 ancilla qubit.

Here, ν is the exponent for the complexity of Solovay-Kitaev
algorithm, and can be chosen as any number greater than
log(1+

√
5)/2 2 ≈ 1.44042.

In the above discussions, we did not specify any geometry
for the system of qubits and assumed gates can be applied
between any pair of qubits. What happens if we assume the
qubits form an open chain and gates are allowed only between
nearest-neighbor qubits?

As it was noted in [10], this additional restriction does not
affect the set of realizable unitaries, provided that the ancilla
can be coupled to all the qubits in the chain. This is because
interacting two qubits with the ancilla using X ⊗ X + Y ⊗ Y

1 More generally, we will show in Sec. V Step 3 that if an energy-conserving
unitary acts non-trivially only on a subspace spanned by D elements of the
computational basis then it can be realized using O(n2 × D2) gates from
any one of the above gate sets.

2 It is worth noting that with any finite number of ancilla qubits, it is
impossible to implement non-energy-conserving unitaries, using energy-
conserving interactions alone. This can be understood as a consequence of
the Wigner-Araki-Yanase theorem [46, 47], or equivalently, a consequence
of the no-programming theorem [48] (See [49] for the connection).

using    
<latexit sha1_base64="HL0rdN0iG2SRRBlPPAJD0woCyUs="></latexit>
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D. Elementary gates

We mainly study quantum circuits formed from two types
of gates. First, single-qubit rotations around z, i.e., unitaries

Rz(φ) = exp(i
φ

2
Z) =

(
ei φ

2

e−i φ
2

)

: φ ∈ (−π,π] .

(23)
Two important specific cases are

T = e
iπ
8 Rz(−π

4
) =

(
1

ei π
4

)
=

4
√

Z (24)

and

S = e
iπ
4 Rz(−π

2
) =

(
1

i

)
=

√
Z = T 2 . (25)

The second type of gates used in our circuits are in the form

exp(iαR) : α ∈ (−π,π] , (26)

where

R :=
1

2
(X ⊗ X + Y ⊗ Y ) . (27)

Two important special cases are the iSWAP gate

iSWAP = iSw = exp(i
π

2
R) =

⎛

⎜⎝

1
i

i
1

⎞

⎟⎠ , (28)

and the square root of iSWAP gate

√
iSWAP =

√
iSw = exp(i

π

4
R) =

⎛

⎜⎜⎝

1
1√
2

i√
2

i√
2

1√
2

1

⎞

⎟⎟⎠ ,

(29)
where the matrices are written in the computational basis

{|00⟩, |01⟩, |10⟩, |11⟩}. Note that
√

iSw
†

= (
√

iSw)7. See,
e.g., [9, 56] for further discussions about the properties and
applications of

√
iSw and iSw gates for circuit synthesis.

We also consider the the SWAP gate

SWAP = Sw =

⎛

⎜⎝

1
1

1
1

⎞

⎟⎠ =

×

×
, (30)

and the controlled-Z gate

CZ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Z =

⎛

⎜⎝

1
1

1
−1

⎞

⎟⎠ =

•

•

E. Circuits with iSWAP and single-qubit z rotations

In this paper, we show how a general energy-conserving
unitary can be realized with the exp(iαR) gate and single-
qubit rotations around z. However, it is useful to first consider
a more restricted family of circuits generated by the single-
qubit rotations around z together with iSWAP gate. To ana-
lyze such circuits, we consider the useful circuit identity

iSw =

× • S

× • S

(31)

Note that the S gate commutes with the controlled-Z gate.
Then, using this identity it can be easily seen that

Proposition 7. Suppose unitary V is realized by a circuit
formed from iSWAP gates. Then, V has a decomposition as
V = V3V2V1, where V1 is a permutation, i.e., is a composition
of SWAP gates, V2 is a composition of controlled-Z gates, and
V3 is a composition of single-qubit S gates. More generally, if
in addition to iSWAP, the circuit also contains the single-qubit
rotations around z, denoted by Rz(φ) : φ ∈ (−π,π], then the
realized unitary V has a similar decomposition, where V3 is
now a product of arbitrary single-qubit rotations around the z
axis.

In particular, note that while iSWAP is an entangling gate,
the family of energy-conserving unitaries that can be realized
by combining this gate with single-qubit z-rotations, are very
limited. Namely, the set of realizable unitaries is specified by
n real parameters and they map any element of the computa-
tional basis to an element of the computational basis, up to a
global phase.

Using this property of iSWAP circuits one can establish
several other useful circuit identities, which are summarized
in Fig. 3. Such identities will play a key role for constructions
in the following sections.

III. 2-QUBIT ENERGY-CONSERVING UNITARIES

A. The structure and realization of VU(1)
2

For n = 2 qubits, the energy levels of the intrinsic Hamil-
tonian Hintrinsic in Eq. (7) decomposes the Hilbert space into
3 eigen-subspaces corresponding to Hamming weights 0, 1,
and 2. Then, a general 2-qubit energy-conserving unitary is
specified by 1 + 22 + 1 = 6 real parameters and is in the form

V =

⎛

⎝
eiθ0

V (1)

eiθ2

⎞

⎠ = QD = DQ . (32)

Here, V (1) is an arbitrary 2 × 2 unitary in the sector with
Hamming weight 1 spanned by |01⟩ and |10⟩. Furthermore, D
is diagonal in the computational basis and satisfies [D, V ] =
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exp(i
⇡

8
[X ⌦X + Y ⌦ Y ]) =



Conjecture: Similar to the case of U(1) symmetry, for general symmetry groups the locality of 
interactions only impose constraints on the realizable relative phases between subspaces with 
inequivalent irreducible representation (charge) of symmetry.

No! For instance, for SU(d) symmetry with d>2 there are constraints even inside such subspaces.

IM, Hanqing Liu, Austin Hulse, arXiv:2105.12877 (2021)

What about other symmetries? 

Additional constraints and new conservation laws

1) The unitary realized in a subspace with one irreducible representation (charge) of the symmetry 
dictates the realized unitaries in multiple other sectors with inequivalent representations of the 
symmetry.

2) In certain sectors, rather than all unitaries respecting the symmetry, the realizable unitaries are 
the symplectic or orthogonal subgroups of this group.



Single-particle purity as a function of time. 
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implies the conservation laws in Eq. (54) hold trivially for all
SU(2)-invariant unitaries.

Finally, we note that Lemma 3 and the qudit-fermion cor-
respondence discussed above impose further constraints on
the dynamics, which are not fully captured by the above con-
servation laws in Eq. (54). First, note that if under an SU(d)-
invariant unitary V , an initial density operator fl evolves to
fl
Õ = V flV

†, then for any unitary U œ SU(d), the initial state
U
¢n
flU

¢n† evolves to U
¢n
fl
Õ
U
¢n†. Therefore, applying the

conservation laws in Eq. (54), we find

Tr
!
�[U¢n

fl
Õ
U

†¢n]l
"

= Tr
!
�[U¢n

flU
†¢n]l

"
, (56)

for all U œ SU(d). In general, these conservation laws are
independent of those in Eq. (54). This is a consequence of the
fact that Hcomp is defined in terms of the computational basis
and is not invariant under unitaries U¢n : U œ SU(d). This in
turn implies the linear map � is not covariant under the action
of SU(d).7

In addition to these conservation laws, Lemma 3 also im-
plies that the dynamics in subspaces corresponding to different
particle numbers are correlated: the “single-particle” dynamics
determines the dynamics in all other sectors. In [29] we will
discuss more about this lemma and other implications of the
qudit-fermion correspondence.

D. Example: A 6 qutrit system with SU(3) symmetry

Consider a system of 6 qutrits in the initial state

(|0Í · |1Í · |2Í)¢ |0Í¢3
.

Similar to the state considered in the example in Sec. III C, this
state is also restricted to a single (but inequivalent) irrep8 of
SU(3). We study the dynamics of this system, and especially
the time evolution of Tr(Ê(t)2), i.e., the purity of the normal-
ized density operator Ê(t) = �[Â(t)]/Tr(�[Â(t)]). Recall
that Tr(�[Â(t)]) is always automatically conserved under all
SU(3)-invariant unitaries and in this case is equal to 2.

We study the time evolution under the same SU(3)-invariant
Hamiltonians considered in the previous example in Fig. 2:
first, we let the system evolve under a Hamiltonian that can
be written as the sum of 2-local terms, i.e. H =

q
i<j

hijPij ,
then we add the 3-local term P12P23 + P23P12 to this Hamil-
tonian, and finally, we turn off this 3-local term and turn on the
4-local term P(1234) + P(4321) (see the caption of Fig. 3
for further details). The plot in Fig. 3 clearly shows that

7 Note that �[U¢n
flU

†¢n] is the same as the single-particle reduced density
matrix which would be obtained if instead of the computational basis we had
used the basis {U |mÍ : m = 0, · · · , d ≠ 1}. In that case, the fermionic
correspondence would be between the fermionic system and the subspace
U

¢n
Hcomp, composed of the rotated versions of the states in Eq. (42).

8 For the readers familiar with Young diagrams, this irrep corresponds to the
diagram . See Appendix A 2 for more details.

FIG. 3. An example of the conservation laws implied by qudit-fermion

correspondence: Consider a system with 6 qutrits in the initial state
|ÂÍ = (|0Í · |1Í · |2Í) ¢ |0Í¢3, which is restricted to a single ir-
rep of SU(3) (see Appendix A 2). Let Ê(t) = �[Â(t)]/ Tr(�[Â(t)])
be the single-particle reduced state associated to the state |Â(t)Í,
defined in Eq. (51). The vertical axis is the purity of this state,
i.e. Tr(Ê(t)2). For t Æ 100, the system evolves under 2-local
SU(3)-invariant Hamiltonians, namely a Hamiltonian with random
2-local interactions between all pairs of qutrits (the red curve) and a
translationally-invariant 2-local Hamiltonian with nearest-neighbor
interactions on a closed chain (the blue curve). In both cases the
purity Ê(t) remains constant. At t = 100, we turn on the 3-local
interaction P12P23 + P23P12 and the purity starts changing. Fi-
nally, at t = 300, we turn off this 3-local interaction and turn on the
4-local interaction P(1234) + P(4321), and the purity is still not
conserved. Recall that in Fig. 2 the function fsgn remains conserved
in the presence of this 4-local term. This clearly demonstrates that
the conservation laws based on the qudit-fermion correspondence are
independent of those based on the Z2 symmetry.

Tr(Ê(t)2) remains conserved for the first family of Hamil-
tonians, whereas it evolves under the second and third families.
In particular, note that in the presence of the 4-local term
P(1234) + P(4321), the function Tr(Ê(t)2) does not remain
conserved, whereas the function fsgn does. We conclude that
the two conservation laws are independent of each other. As
we mentioned before, there also exist SU(3)-invariant Hamil-
tonians that are not 2-local and yet respect these conservation
laws (e.g., i(P12P23 ≠P23P12) = i[P12,P23] is in the Lie
algebra by 2-local SU(3)-invariant Hamiltonians and therefore
satisfies this property).

Forbidden superpositions: understanding the phenomenon
discussed in Fig. 1

Using the tools and ideas developed in this section, we
can now explain the phenomenon discussed in Fig. 1. Again,
consider a system of 6 qutrits in the same initial state (|0Í ·
|1Í · |2Í)¢ |0Í¢3. Starting with this state, via a sequence of
2-local SU(3)-invariant unitaries we can obtain the orthogonal
state |0Í¢3

¢ (|0Í · |1Í · |2Í), which lives in the same chargeExample: 6 Qutrits with SU(3) symmetry

3

FIG. 1: Examples of the new conservation laws for a system with 6 qutirts. The left plot presents the time evolution
of function fsgn defined in Eq.(4) and the right plot presents the time evolution of a function defined based on the
fermion-qudit correspondence (It corresponds to the second Rényi entropy of the single-particle reduced state in the
fermionic picture). The initial state of the qutirits in the left plot is (|0Í · |1Í · |2Í) ¢ (|0Í · |1Í) ¢ |0Í and in the
right plot is (|0Í · |1Í · |2Í) ¢ |0Í¢3 (Here · denotes the wedge product). Each of these states is restricted to a
different irrep of SU(3). In both plots for t Æ 100 the initial state evolves under Hamiltonians that can be written
as a sum of 2-local SU(3)-invariant terms, namely a Hamiltonian with random 2-local interactions between all pairs
of qutrits (the red curves) and a translationally-invariant 2-local Hamiltonian with nearest-neighbor interactions on a
closed chain (the blue curves). Both functions remain conserved under such Hamiltonians. At t = 100, we turn on
the 3-local interaction P12P23 + P23P12, and we see that both functions start evolving. At t = 300, we turn off the
previous 3-local interaction and turn on the 4-local interaction P(1234) + P(4321). This 4-local interaction satisfies
the Z2 symmetry condition in theorem 1 and therefore in the left plot fsgn remains constant, whereas the function in
the right plot continue evolving. This example demonstrates that the conservation laws based on the qudit-fermion
correspondence are independent of those based on the Z2 symmetry.

We show that in certain irreps of SU(d), the dynamics of the qudit system under Hamiltonian
H(t) = q

i<j hij(t) Pij can be unitarily mapped to the dynamics of the fermionic system under the
fermionic Hamiltonian H

f (t) = q
i<j hij(t)Pf

ij , which is a non-interacting Hamiltonian. On the other
hand, for general SU(d)-invariant qudit Hamiltonians the corresponding fermionic Hamiltonian will be
interacting. The fact that H

f (t) is a non-interacting Hamiltonian has important consequences. In particular,
under such Hamiltonian the correlation between particles and the purity of the reduced state of particles
remain conserved. These conservation laws then translate to corresponding conservation laws for the qudit
system that hold for dynamics under 2-local SU(d)-invariant Hamiltonians, whereas they can be violated
under general SU(d)-invariant Hamiltonians. The right plot in Fig.1 demonstrates an example of these
conservation laws for a system of 6 qutrits.

Random circuits with SU(d)-invariant unitaries: We also study the distribution of unitaries generated by
circuits formed from random 2-local SU(d)-invariant unitaries and show that due to the above conservation
laws, this distribution does not converge to the Haar measure over the group of all SU(d)-invariant unitaries.
In fact, even the second moment of the the two distributions remain different. In other words, for d Ø 3
circuits with random 2-local SU(d)-invariant unitaries are not 2-design for the Haar distribution over the
group of SU(d)-invariant unitaries (See [6] for further details).
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of function fsgn defined in Eq.(4) and the right plot presents the time evolution of a function defined based on the
fermion-qudit correspondence (It corresponds to the second Rényi entropy of the single-particle reduced state in the
fermionic picture). The initial state of the qutirits in the left plot is (|0Í · |1Í · |2Í) ¢ (|0Í · |1Í) ¢ |0Í and in the
right plot is (|0Í · |1Í · |2Í) ¢ |0Í¢3 (Here · denotes the wedge product). Each of these states is restricted to a
different irrep of SU(3). In both plots for t Æ 100 the initial state evolves under Hamiltonians that can be written
as a sum of 2-local SU(3)-invariant terms, namely a Hamiltonian with random 2-local interactions between all pairs
of qutrits (the red curves) and a translationally-invariant 2-local Hamiltonian with nearest-neighbor interactions on a
closed chain (the blue curves). Both functions remain conserved under such Hamiltonians. At t = 100, we turn on
the 3-local interaction P12P23 + P23P12, and we see that both functions start evolving. At t = 300, we turn off the
previous 3-local interaction and turn on the 4-local interaction P(1234) + P(4321). This 4-local interaction satisfies
the Z2 symmetry condition in theorem 1 and therefore in the left plot fsgn remains constant, whereas the function in
the right plot continue evolving. This example demonstrates that the conservation laws based on the qudit-fermion
correspondence are independent of those based on the Z2 symmetry.

We show that in certain irreps of SU(d), the dynamics of the qudit system under Hamiltonian
H(t) = q

i<j hij(t) Pij can be unitarily mapped to the dynamics of the fermionic system under the
fermionic Hamiltonian H

f (t) = q
i<j hij(t)Pf

ij , which is a non-interacting Hamiltonian. On the other
hand, for general SU(d)-invariant qudit Hamiltonians the corresponding fermionic Hamiltonian will be
interacting. The fact that H

f (t) is a non-interacting Hamiltonian has important consequences. In particular,
under such Hamiltonian the correlation between particles and the purity of the reduced state of particles
remain conserved. These conservation laws then translate to corresponding conservation laws for the qudit
system that hold for dynamics under 2-local SU(d)-invariant Hamiltonians, whereas they can be violated
under general SU(d)-invariant Hamiltonians. The right plot in Fig.1 demonstrates an example of these
conservation laws for a system of 6 qutrits.

Random circuits with SU(d)-invariant unitaries: We also study the distribution of unitaries generated by
circuits formed from random 2-local SU(d)-invariant unitaries and show that due to the above conservation
laws, this distribution does not converge to the Haar measure over the group of all SU(d)-invariant unitaries.
In fact, even the second moment of the the two distributions remain different. In other words, for d Ø 3
circuits with random 2-local SU(d)-invariant unitaries are not 2-design for the Haar distribution over the
group of SU(d)-invariant unitaries (See [6] for further details).

Consider a system with 6 qutrits that evolves under 
SU(3)-invariant Hamiltonians. 

Then, at t=300 we turn off this and turn on 4-body
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correspondence: Consider a system with 6 qutrits in the initial state
|ÂÍ = (|0Í · |1Í · |2Í) ¢ |0Í¢3, which is restricted to a single ir-
rep of SU(3) (see Appendix B 2). Let Ê(t) = �[Â(t)]/ Tr(�[Â(t)])
be the single-particle reduced state associated to the state |Â(t)Í,
defined in Eq. (56). The vertical axis is the purity of this state,
i.e. Tr(Ê(t)2). For t Æ 100, the system evolves under 2-local
SU(3)-invariant Hamiltonians, namely a Hamiltonian with random
2-local interactions between all pairs of qutrits (the red curve) and a
translationally-invariant 2-local Hamiltonian with nearest-neighbor
interactions on a closed chain (the blue curve). In both cases the
purity Ê(t) remains constant. At t = 100, we turn on the 3-local
interaction P12P23 + P23P12 and the purity starts changing. Fi-
nally, at t = 300, we turn off this 3-local interaction and turn on the
4-local interaction P(1234) + P(4321), and the purity is still not
conserved. Recall that in Fig. 2 the function fsgn remains conserved
in the presence of this 4-local term. This clearly demonstrates that
the conservation laws based on the qudit-fermion correspondence are
independent of those based on the Z2 symmetry.

that Tr(�[Â(t)]) is always automatically conserved under all
SU(3)-invariant unitaries and in this case is equal to 2.

We study the time evolution under the same SU(3)-invariant
Hamiltonians considered in the previous example in Fig. 2:
first, we let the system evolve under a Hamiltonian that can
be written as the sum of 2-local terms, i.e. H =

q
i<j

hijPij ,
then we add the 3-local term P12P23 + P23P12 to this Hamil-
tonian, and finally, we turn off this 3-local term and turn on the
4-local term P(1234) + P(4321) (see the caption of Fig. 3
for further details). The plot in Fig. 3 clearly shows that
Tr(Ê(t)2) remains conserved for the first family of Hamil-
tonians, whereas it evolves under the second and third families.
In particular, note that in the presence of the 4-local term
P(1234) + P(4321), the function Tr(Ê(t)2) does not remain
conserved, whereas the function fsgn does. We conclude that
the two conservation laws are independent of each other. As
we mentioned before, there also exist SU(3)-invariant Hamil-
tonians that are not 2-local and yet respect these conservation
laws (e.g., i(P12P23 ≠ P23P12) = i[P12, P23] is in the Lie
algebra by 2-local SU(3)-invariant Hamiltonians and therefore
satisfies this property).

Forbidden superpositions: understanding the phenomenon
discussed in Fig. 1

Using the tools and ideas developed in this section, we
can now explain the phenomenon discussed in Fig. 1. Again,
consider a system of 6 qutrits in the same initial state (|0Í ·

|1Í · |2Í) ¢ |0Í
¢3. Starting with this state, via a sequence of

2-local SU(3)-invariant unitaries we can obtain the orthogonal
state |0Í

¢3
¢ (|0Í · |1Í · |2Í), which lives in the same charge

sector of SU(3) (this state can be obtained, e.g., by swapping
qudits 1 with 4, 2 with 5, and 3 with 6). Consider the 2D
subspace spanned by these two orthogonal vectors. Up to
a global phase, any state in this subspace can be written as
|Â(◊, „)Í equal to

cos ◊

2(|0Í·|1Í·|2Í)¢|0Í
¢3+ei„sin ◊

2 |0Í
¢3

¢(|0Í·|1Í·|2Í) ,

(63)
with „ œ [0, 2fi) and ◊ œ [0, fi]. It can be easily shown that any
pair of states in this subspace can be converted to each other
via a general SU(3)-invariant unitary. In particular, under
unitaries generated by the 6-local SU(3)-invariant Hamilto-
nian P14P25P36, the initial state |Â(0, 0)Í evolves to state
|Â(◊,

fi

2
)Í for arbitrary ◊ œ [0, fi]. Then, by applying unitaries

generated by 2-local SU(3)-invariant Hamiltonian I ≠ P45,
this state can be converted to |Â(◊, „)Í for arbitrary „ œ [0, 2fi).
Since these transformations are reversible via SU(3)-invariant
unitaries, we conclude that state |Â(◊, „)Í can be converted to
any other |Â(◊Õ

, „
Õ)Í via SU(3)-invariant unitaries.9

Next, we ask what transitions in this subspace are possible
under unitaries generated by 2-local SU(3)-invariant unitaries.
In particular, what are the constraints imposed by the conserva-
tion law in Eq. (60), e.g., for l = 2. To apply this conservation
law we need to find the single-particle density operator Ê

associated to the state |Â(◊, „)Í, which can be found using
Eq. (53), or equivalently, using Eq. (56). Using the fact that
�comp|Â(◊, „)Í = |Â(◊, „)Í, we find

Ê = �[Â(◊, „)]
Tr

!
�[Â(◊, „)]

" =
3

[cos ◊

2
]2 fl

[sin ◊

2
]2 fl

4
, (64)

where fl is given by

fl = 1
6

Q

a
+2 ≠1 ≠1
≠1 +2 ≠1
≠1 ≠1 +2

R

b . (65)

Note that Ê is also the single-particle state associated to the
fermionic state U

f
|Â(◊, „)Í, which is equal to

1cos ◊

2
Ô

3
[c†

1
c

†
2
≠c

†
1
c

†
3
+c

†
2
c

†
3
]+ei„sin ◊

2
Ô

3
[c†

4
c

†
5
≠c

†
4
c

†
6
+c

†
5
c

†
6
]
2

|vacÍ.

(66)

9 Alternatively, this can be shown using the fact that for such pairs of states,
the condition in Eq. (3) is satisfied, i.e., for all U œ SU(3), the expectation
value ÈÂ(◊, „)|U¢6

|Â(◊, „)Í , is independent of ◊ and „. Therefore, by
the result of [? ], we conclude that states with different values of ◊ and „

can be converted to each other via SU(3)-invariant unitaries.

| i
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TABLE I. The correspondence between the fermionic system and a subspace of the qudit system

together with the global phases {ei◊ I}, these unitaries generate
Vn,2. This implies that

{V�comp : V œ Vn,2}
≥= U(1)◊U(n≠ 1) , (51)

where the operators on the left-hand side are interpreted as
unitary transformations on Hcomp. To understand the origin
of the U(1) factor on the right-hand side, note that the vectorq

n

r=1
|0Í¢(r≠1)

|1Í|0Í¢(n≠r) is inside Hcomp, and remains in-
variant under all unitaries {ei◊(Pab≠I) : ◊ œ [0, 2fi), 1 Æ a <

b Æ n}, whereas it obtains a phase under global phases {ei◊ I}.
Therefore, this 1D subspace is a faithful representation of the
U(1) group corresponding to the global phases.

As a simple example, in the case of n qubits, Hcomp is n-
dimensional and decomposes to a 1D subspace corresponding
to the vector

q
n

r=1
|0Í¢(r≠1)

|1Í|0Í¢(n≠r), which lives in the
highest angular momentum sector jmax = n

2
, and an (n≠ 1)-

dimensional orthogonal subspace that lives in the sector with
angular momentum jmax ≠ 1. Then, the above statement im-
plies that all unitaries inside the latter subspace can be realized
using 2-local rotationally-invariant unitaries, which is consis-
tent with the result of Theorem 1.

C. Conservation laws based on the qudit-fermion
correspondence

For systems evolving under non-interacting Hamiltonians,
the entanglement between particles remains conserved. Com-
bining this fact with the above correspondence, in the follow-
ing, we derive new conservation laws that hold for 2-local
SU(d)-invariant unitaries and are violated by 3-local ones.

For any state |ÂÍ œ (Cd)¢n of qudits consider its component
in Hcomp, i.e., �comp|ÂÍ. Then,

|�f
Í © U

f�comp|ÂÍ (52)

is the corresponding (unnormalized) state of the fermionic
system. Hence, the corresponding single-particle reduced state
�[Â] =

q
n

i,j=1
�ij [Â] |iÍÈj| is an (unnormalized) density

operator defined on the Hilbert space Cn, with matrix elements

�ij [Â] © È�f
|c
†
j
ci|�f

Í : i, j = 1, · · · , n , (53)

where Â = |ÂÍÈÂ|. As an example, in Appendix G 6 we
show that for state |ÂÍ =

q
n

i=1
Âi|0Í¢(i≠1)

|1Í|0Í¢(n≠i),
the corresponding single-particle reduced state is �[Â] =q

ij
ÂiÂ

ú
j
|iÍÈj|, which is the density operator for the state

vector
q

n

i=1
Âi|iÍ. This justifies the interpretation of �[Â] as

the “single-particle” reduced state.
Note that this definition can be easily generalized to the case

of mixed states. For a general density operator fl on (Cd)¢n,
define

�[fl] ©
nÿ

i,j=1

�ij [fl] |iÍÈj| , (54)

where

�ij [fl] © Tr(c†
j
ciU

f�compfl�compU
f†) , (55)

or equivalently, in terms of the qudit operators

�ij [fl]©
I

Tr
!
�compfl�comp [PijQij ]

"
: i ”= j,

Tr
!
�compfl�comp [Ii≠ |0ÍÈ0|i]

"
: i= j,

(56)

where Ai denotes I¢(i≠1)
¢A¢ I¢(n≠i), and therefore Ii ≠

|0ÍÈ0|i
is the projector to the subspace where qudit i is orthogonal

to state |0Í. Similarly,

Qij © (Ii ≠ |0ÍÈ0|i)|0ÍÈ0|j (57)

is the projector to the subspace of states in which qudit i is or-
thogonal to state |0Í and qudit j is in state |0Í. In Appendix G 7
we show that the above two expressions for �ij [fl] are indeed
equivalent. Furthermore, using the fermionic picture, in partic-
ular Eq. (39), in Appendix G 8 we show

Lemma 4. The linear map � defined in Eqs. (54) and (56),
satisfies the covariance condition

�[ei◊Pab fl e≠i◊Pab ] = ei◊Eab �[fl] e≠i◊Eab , (58)

for all ◊ œ [0, 2fi) and any pair of sites a, b œ {1, · · · , n},

where Eab is given in Eq. (38). Furthermore, � is a completely-

positive map.
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FIG. 3. An example of the conservation laws implied by qudit-fermion

correspondence: Consider a system with 6 qutrits in the initial state
|ÂÍ = (|0Í · |1Í · |2Í) ¢ |0Í¢3, which is restricted to a single ir-
rep of SU(3) (see Appendix B 2). Let Ê(t) = �[Â(t)]/ Tr(�[Â(t)])
be the single-particle reduced state associated to the state |Â(t)Í,
defined in Eq. (56). The vertical axis is the purity of this state,
i.e. Tr(Ê(t)2). For t Æ 100, the system evolves under 2-local
SU(3)-invariant Hamiltonians, namely a Hamiltonian with random
2-local interactions between all pairs of qutrits (the red curve) and a
translationally-invariant 2-local Hamiltonian with nearest-neighbor
interactions on a closed chain (the blue curve). In both cases the
purity Ê(t) remains constant. At t = 100, we turn on the 3-local
interaction P12P23 + P23P12 and the purity starts changing. Fi-
nally, at t = 300, we turn off this 3-local interaction and turn on the
4-local interaction P(1234) + P(4321), and the purity is still not
conserved. Recall that in Fig. 2 the function fsgn remains conserved
in the presence of this 4-local term. This clearly demonstrates that
the conservation laws based on the qudit-fermion correspondence are
independent of those based on the Z2 symmetry.

that Tr(�[Â(t)]) is always automatically conserved under all
SU(3)-invariant unitaries and in this case is equal to 2.

We study the time evolution under the same SU(3)-invariant
Hamiltonians considered in the previous example in Fig. 2:
first, we let the system evolve under a Hamiltonian that can
be written as the sum of 2-local terms, i.e. H =

q
i<j

hijPij ,
then we add the 3-local term P12P23 + P23P12 to this Hamil-
tonian, and finally, we turn off this 3-local term and turn on the
4-local term P(1234) + P(4321) (see the caption of Fig. 3
for further details). The plot in Fig. 3 clearly shows that
Tr(Ê(t)2) remains conserved for the first family of Hamil-
tonians, whereas it evolves under the second and third families.
In particular, note that in the presence of the 4-local term
P(1234) + P(4321), the function Tr(Ê(t)2) does not remain
conserved, whereas the function fsgn does. We conclude that
the two conservation laws are independent of each other. As
we mentioned before, there also exist SU(3)-invariant Hamil-
tonians that are not 2-local and yet respect these conservation
laws (e.g., i(P12P23 ≠ P23P12) = i[P12, P23] is in the Lie
algebra by 2-local SU(3)-invariant Hamiltonians and therefore
satisfies this property).

Forbidden superpositions: understanding the phenomenon
discussed in Fig. 1

Using the tools and ideas developed in this section, we
can now explain the phenomenon discussed in Fig. 1. Again,
consider a system of 6 qutrits in the same initial state (|0Í ·

|1Í · |2Í) ¢ |0Í
¢3. Starting with this state, via a sequence of

2-local SU(3)-invariant unitaries we can obtain the orthogonal
state |0Í

¢3
¢ (|0Í · |1Í · |2Í), which lives in the same charge

sector of SU(3) (this state can be obtained, e.g., by swapping
qudits 1 with 4, 2 with 5, and 3 with 6). Consider the 2D
subspace spanned by these two orthogonal vectors. Up to
a global phase, any state in this subspace can be written as
|Â(◊, „)Í equal to

cos ◊

2(|0Í·|1Í·|2Í)¢|0Í
¢3+ei„sin ◊

2 |0Í
¢3

¢(|0Í·|1Í·|2Í) ,

(63)
with „ œ [0, 2fi) and ◊ œ [0, fi]. It can be easily shown that any
pair of states in this subspace can be converted to each other
via a general SU(3)-invariant unitary. In particular, under
unitaries generated by the 6-local SU(3)-invariant Hamilto-
nian P14P25P36, the initial state |Â(0, 0)Í evolves to state
|Â(◊,

fi

2
)Í for arbitrary ◊ œ [0, fi]. Then, by applying unitaries

generated by 2-local SU(3)-invariant Hamiltonian I ≠ P45,
this state can be converted to |Â(◊, „)Í for arbitrary „ œ [0, 2fi).
Since these transformations are reversible via SU(3)-invariant
unitaries, we conclude that state |Â(◊, „)Í can be converted to
any other |Â(◊Õ

, „
Õ)Í via SU(3)-invariant unitaries.9

Next, we ask what transitions in this subspace are possible
under unitaries generated by 2-local SU(3)-invariant unitaries.
In particular, what are the constraints imposed by the conserva-
tion law in Eq. (60), e.g., for l = 2. To apply this conservation
law we need to find the single-particle density operator Ê

associated to the state |Â(◊, „)Í, which can be found using
Eq. (53), or equivalently, using Eq. (56). Using the fact that
�comp|Â(◊, „)Í = |Â(◊, „)Í, we find

Tr(Ê2) = Tr(�2[Â])
Tr2

!
�[Â]

" (64)

Ê = �[Â(◊, „)]
Tr

!
�[Â(◊, „)]

" =
3

[cos ◊

2
]2 fl

[sin ◊

2
]2 fl

4
, (65)

where fl is given by

fl = 1
6

Q

a
+2 ≠1 ≠1
≠1 +2 ≠1
≠1 ≠1 +2

R

b . (66)

9 Alternatively, this can be shown using the fact that for such pairs of states,
the condition in Eq. (3) is satisfied, i.e., for all U œ SU(3), the expectation
value ÈÂ(◊, „)|U¢6

|Â(◊, „)Í , is independent of ◊ and „. Therefore, by
the result of [? ], we conclude that states with different values of ◊ and „

can be converted to each other via SU(3)-invariant unitaries.

Starting at time t = 100, we add the 3-body term

Periodic 2-local Random 2-local
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ijk=0
‘ijk|iÍ|jÍ|kÍ

|singletÍ|0Í
¢3

–|singletÍ ¢ |0Í
¢3 + —|0Í

¢3
¢ |singletÍ

Let c
†
i

be the creation operator that creates a particle in site
i. These operators satisfy the usual anti-commutation rela-
tions

{c
†
i
, cj} = ”ij

and

i, j = 1, · · · , n

{c
†
i
, c

†
j
} = 0

.
Let |vacÍ be the Fock vacuum, satisfying ci|vacÍ = 0, for

all i = 1, · · · , n. On the space of creation operators, we can
define a natural representation of the permutation group: Un-
der permutation ‡ œ Sn, the creation operator c

†
i

is trans-
formed to c

†
‡(i). This also induces a natural representation of

the permutation group on the states of the fermionic system.
In particular, under transposition ‡ab œ Sn the L-particle state
c

†
iL

· · · c
†
i1

|vacÍ will be mapped to c
†
‡ab(iL) · · · c

†
‡ab(i1)|vacÍ. It

can be easily seen that this representation is unitary, i.e., there
exists a unitary transformation P

f

ab
satisfying

i = 1, · · · , n : P
f

ab
c

†
i

P
f

ab

† = c
†
‡ab(i) , (19)

which, in particular, implies (P
f

ab
)2 = If , and P

f

ab
|vacÍ =

±|vacÍ, where If is the identity operator on the Hilbert space
of fermions. Using the fermionic anti-commutation relations,
we can easily show that that, up to a plus/minus sign, [Show

this in the Appendix]the unitary operator satisfying Eq.(19) is
equal to

Pf

ab
© If

≠ (c†
a

≠ c
†
b
)(ca ≠ cb) . (20)

Note that a similar representation of the permutation group
can also be defined for bosonic systems. However, unlike the
fermionic case, the corresponding unitary will involve higher
degree polynomials of creation/annihilation operators.

Now we define a map from a subspace of (Cd)¢n to this
fermionic system. For L Æ min{n, d ≠ 1} qudits, consider
the totally anti-symmetric state

Lfi

m=1
|mÍ ©

1
Ô

L!
ÿ

‡œSL

sgn(‡)|‡(1)Í · · · |‡(L)Í . (21)

Consider the subspace Hfermi µ (Cd)¢n spanned by states

’‡ œ Sn , L Æ min{n, d≠1} : P(‡)
Ë! Lfi

m=1
|mÍ

"
¢|0Í

¢(n≠L)
È

.

(22)
We can identify this subspace with a subspace of the above
fermionic system via the map

U
f P(‡)

Ë! Lfi

m=1
|mÍ

"
¢ |0Í

¢(n≠L)
È

=
LŸ

i=1
c

†
‡(i)|vacÍ , (23)

for all ‡ œ Sn and all L Æ min{n, d ≠ 1}. It can be eas-
ily shown that this is a liner unitary transformation that inter-
twines the representation of Sn on a subspace of qudits to a
subspace of fermion states with total definite particle number
L (See Appendix) [To Do: Show this explicitly in the Ap-
pendix]. Note that a similar map can also be defined between
a certain subspace of (Cd)¢n and Bosonic systems.

Now Eq.(23) together with Eq.(19) imply that

’|ÂÍ œ Hfermi : U
f ei◊Pab |ÂÍ = ei◊P

f
ab U

f
|ÂÍ , (24)

i.e., for states inside Hfermi the time evolution under Hamilto-
nian Pab is equivalent to the time evolution under Hamiltonian
P

f

ab
in the fermionic picture.

SU(3)-invariant unitaries

2-local SU(3)-invariant unitaries
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Let |vacÍ be the Fock vacuum, satisfying ci|vacÍ = 0, for

all i = 1, · · · , n. On the space of creation operators, we can
define a natural representation of the permutation group: Un-
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‡(i). This also induces a natural representation of
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In particular, under transposition ‡ab œ Sn the L-particle state
c

†
iL

· · · c
†
i1

|vacÍ will be mapped to c
†
‡ab(iL) · · · c

†
‡ab(i1)|vacÍ. It

can be easily seen that this representation is unitary, i.e., there
exists a unitary transformation P

f

ab
satisfying

i = 1, · · · , n : P
f

ab
c

†
i

P
f

ab

† = c
†
‡ab(i) , (19)

which, in particular, implies (P
f

ab
)2 = If , and P

f

ab
|vacÍ =

±|vacÍ, where If is the identity operator on the Hilbert space
of fermions. Using the fermionic anti-commutation relations,
we can easily show that that, up to a plus/minus sign, [Show
this in the Appendix]the unitary operator satisfying Eq.(19) is
equal to

Pf

ab
© If

≠ (c†
a

≠ c
†
b
)(ca ≠ cb) . (20)
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can also be defined for bosonic systems. However, unlike the
fermionic case, the corresponding unitary will involve higher
degree polynomials of creation/annihilation operators.
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for all ‡ œ Sn and all L Æ min{n, d ≠ 1}. It can be eas-
ily shown that this is a liner unitary transformation that inter-
twines the representation of Sn on a subspace of qudits to a
subspace of fermion states with total definite particle number
L (See Appendix) [To Do: Show this explicitly in the Ap-
pendix]. Note that a similar map can also be defined between
a certain subspace of (Cd)¢n and Bosonic systems.

Now Eq.(23) together with Eq.(19) imply that
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Let |vacÍ be the Fock vacuum, satisfying ci|vacÍ = 0, for

all i = 1, · · · , n. On the space of creation operators, we can
define a natural representation of the permutation group: Un-
der permutation ‡ œ Sn, the creation operator c
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is trans-
formed to c
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‡(i). This also induces a natural representation of

the permutation group on the states of the fermionic system.
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†
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· · · c
†
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|vacÍ will be mapped to c
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‡ab(iL) · · · c
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can also be defined for bosonic systems. However, unlike the
fermionic case, the corresponding unitary will involve higher
degree polynomials of creation/annihilation operators.
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in the fermionic picture.
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Example: 6 Qutrits with SU(3) symmetry
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†
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· · · c
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|vacÍ will be mapped to c
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‡ab(iL) · · · c

†
‡ab(i1)|vacÍ. It

can be easily seen that this representation is unitary, i.e., there
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)2 = If , and P
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|vacÍ =

±|vacÍ, where If is the identity operator on the Hilbert space
of fermions. Using the fermionic anti-commutation relations,
we can easily show that that, up to a plus/minus sign, [Show
this in the Appendix]the unitary operator satisfying Eq.(19) is
equal to
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Note that a similar representation of the permutation group
can also be defined for bosonic systems. However, unlike the
fermionic case, the corresponding unitary will involve higher
degree polynomials of creation/annihilation operators.

Now we define a map from a subspace of (Cd)¢n to this
fermionic system. For L Æ min{n, d ≠ 1} qudits, consider
the totally anti-symmetric state
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for all ‡ œ Sn and all L Æ min{n, d ≠ 1}. It can be eas-
ily shown that this is a liner unitary transformation that inter-
twines the representation of Sn on a subspace of qudits to a
subspace of fermion states with total definite particle number
L (See Appendix) [To Do: Show this explicitly in the Ap-
pendix]. Note that a similar map can also be defined between
a certain subspace of (Cd)¢n and Bosonic systems.

Now Eq.(23) together with Eq.(19) imply that

’|ÂÍ œ Hfermi : U
f ei◊Pab |ÂÍ = ei◊P

f
ab U

f
|ÂÍ , (24)

i.e., for states inside Hfermi the time evolution under Hamilto-
nian Pab is equivalent to the time evolution under Hamiltonian
P

f

ab
in the fermionic picture.
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Let |vacÍ be the Fock vacuum, satisfying ci|vacÍ = 0, for

all i = 1, · · · , n. On the space of creation operators, we can
define a natural representation of the permutation group: Un-
der permutation ‡ œ Sn, the creation operator c

†
i
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formed to c

†
‡(i). This also induces a natural representation of

the permutation group on the states of the fermionic system.
In particular, under transposition ‡ab œ Sn the L-particle state
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· · · c
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Note that a similar representation of the permutation group
can also be defined for bosonic systems. However, unlike the
fermionic case, the corresponding unitary will involve higher
degree polynomials of creation/annihilation operators.

Now we define a map from a subspace of (Cd)¢n to this
fermionic system. For L Æ min{n, d ≠ 1} qudits, consider
the totally anti-symmetric state
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for all ‡ œ Sn and all L Æ min{n, d ≠ 1}. It can be eas-
ily shown that this is a liner unitary transformation that inter-
twines the representation of Sn on a subspace of qudits to a
subspace of fermion states with total definite particle number
L (See Appendix) [To Do: Show this explicitly in the Ap-
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a certain subspace of (Cd)¢n and Bosonic systems.
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Let |vacÍ be the Fock vacuum, satisfying ci|vacÍ = 0, for

all i = 1, · · · , n. On the space of creation operators, we can
define a natural representation of the permutation group: Un-
der permutation ‡ œ Sn, the creation operator c

†
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is trans-
formed to c

†
‡(i). This also induces a natural representation of

the permutation group on the states of the fermionic system.
In particular, under transposition ‡ab œ Sn the L-particle state
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· · · c
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|vacÍ will be mapped to c
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‡ab(iL) · · · c
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this in the Appendix]the unitary operator satisfying Eq.(19) is
equal to
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Note that a similar representation of the permutation group
can also be defined for bosonic systems. However, unlike the
fermionic case, the corresponding unitary will involve higher
degree polynomials of creation/annihilation operators.

Now we define a map from a subspace of (Cd)¢n to this
fermionic system. For L Æ min{n, d ≠ 1} qudits, consider
the totally anti-symmetric state
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for all ‡ œ Sn and all L Æ min{n, d ≠ 1}. It can be eas-
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twines the representation of Sn on a subspace of qudits to a
subspace of fermion states with total definite particle number
L (See Appendix) [To Do: Show this explicitly in the Ap-
pendix]. Note that a similar map can also be defined between
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in the fermionic picture.
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Let |vacÍ be the Fock vacuum, satisfying ci|vacÍ = 0, for

all i = 1, · · · , n. On the space of creation operators, we can
define a natural representation of the permutation group: Un-
der permutation ‡ œ Sn, the creation operator c

†
i

is trans-
formed to c

†
‡(i). This also induces a natural representation of

the permutation group on the states of the fermionic system.
In particular, under transposition ‡ab œ Sn the L-particle state
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· · · c
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|vacÍ will be mapped to c
†
‡ab(iL) · · · c
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of fermions. Using the fermionic anti-commutation relations,
we can easily show that that, up to a plus/minus sign, [Show
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Note that a similar representation of the permutation group
can also be defined for bosonic systems. However, unlike the
fermionic case, the corresponding unitary will involve higher
degree polynomials of creation/annihilation operators.

Now we define a map from a subspace of (Cd)¢n to this
fermionic system. For L Æ min{n, d ≠ 1} qudits, consider
the totally anti-symmetric state
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for all ‡ œ Sn and all L Æ min{n, d ≠ 1}. It can be eas-
ily shown that this is a liner unitary transformation that inter-
twines the representation of Sn on a subspace of qudits to a
subspace of fermion states with total definite particle number
L (See Appendix) [To Do: Show this explicitly in the Ap-
pendix]. Note that a similar map can also be defined between
a certain subspace of (Cd)¢n and Bosonic systems.
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i.e., for states inside Hfermi the time evolution under Hamilto-
nian Pab is equivalent to the time evolution under Hamiltonian
P

f
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in the fermionic picture.
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Let |vacÍ be the Fock vacuum, satisfying ci|vacÍ = 0, for

all i = 1, · · · , n. On the space of creation operators, we can
define a natural representation of the permutation group: Un-
der permutation ‡ œ Sn, the creation operator c

†
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is trans-
formed to c

†
‡(i). This also induces a natural representation of

the permutation group on the states of the fermionic system.
In particular, under transposition ‡ab œ Sn the L-particle state
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· · · c
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|vacÍ will be mapped to c
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of fermions. Using the fermionic anti-commutation relations,
we can easily show that that, up to a plus/minus sign, [Show
this in the Appendix]the unitary operator satisfying Eq.(19) is
equal to
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Note that a similar representation of the permutation group
can also be defined for bosonic systems. However, unlike the
fermionic case, the corresponding unitary will involve higher
degree polynomials of creation/annihilation operators.

Now we define a map from a subspace of (Cd)¢n to this
fermionic system. For L Æ min{n, d ≠ 1} qudits, consider
the totally anti-symmetric state
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for all ‡ œ Sn and all L Æ min{n, d ≠ 1}. It can be eas-
ily shown that this is a liner unitary transformation that inter-
twines the representation of Sn on a subspace of qudits to a
subspace of fermion states with total definite particle number
L (See Appendix) [To Do: Show this explicitly in the Ap-
pendix]. Note that a similar map can also be defined between
a certain subspace of (Cd)¢n and Bosonic systems.
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i.e., for states inside Hfermi the time evolution under Hamilto-
nian Pab is equivalent to the time evolution under Hamiltonian
P

f

ab
in the fermionic picture.
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Let |vacÍ be the Fock vacuum, satisfying ci|vacÍ = 0, for

all i = 1, · · · , n. On the space of creation operators, we can
define a natural representation of the permutation group: Un-
der permutation ‡ œ Sn, the creation operator c
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is trans-
formed to c
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‡(i). This also induces a natural representation of

the permutation group on the states of the fermionic system.
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· · · c
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±|vacÍ, where If is the identity operator on the Hilbert space
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equal to
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Note that a similar representation of the permutation group
can also be defined for bosonic systems. However, unlike the
fermionic case, the corresponding unitary will involve higher
degree polynomials of creation/annihilation operators.

Now we define a map from a subspace of (Cd)¢n to this
fermionic system. For L Æ min{n, d ≠ 1} qudits, consider
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for all ‡ œ Sn and all L Æ min{n, d ≠ 1}. It can be eas-
ily shown that this is a liner unitary transformation that inter-
twines the representation of Sn on a subspace of qudits to a
subspace of fermion states with total definite particle number
L (See Appendix) [To Do: Show this explicitly in the Ap-
pendix]. Note that a similar map can also be defined between
a certain subspace of (Cd)¢n and Bosonic systems.
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i.e., for states inside Hfermi the time evolution under Hamilto-
nian Pab is equivalent to the time evolution under Hamiltonian
P

f

ab
in the fermionic picture.
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The joint state is restricted to a subspace with a single irrep of SU(3). 
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±|vacÍ, where If is the identity operator on the Hilbert space
of fermions. Using the fermionic anti-commutation relations,
we can easily show that that, up to a plus/minus sign, [Show
this in the Appendix]the unitary operator satisfying Eq.(19) is
equal to
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Note that a similar representation of the permutation group
can also be defined for bosonic systems. However, unlike the
fermionic case, the corresponding unitary will involve higher
degree polynomials of creation/annihilation operators.

Now we define a map from a subspace of (Cd)¢n to this
fermionic system. For L Æ min{n, d ≠ 1} qudits, consider
the totally anti-symmetric state
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for all ‡ œ Sn and all L Æ min{n, d ≠ 1}. It can be eas-
ily shown that this is a liner unitary transformation that inter-
twines the representation of Sn on a subspace of qudits to a
subspace of fermion states with total definite particle number
L (See Appendix) [To Do: Show this explicitly in the Ap-
pendix]. Note that a similar map can also be defined between
a certain subspace of (Cd)¢n and Bosonic systems.

Now Eq.(23) together with Eq.(19) imply that
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i.e., for states inside Hfermi the time evolution under Hamilto-
nian Pab is equivalent to the time evolution under Hamiltonian
P

f
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in the fermionic picture.
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implies the conservation laws in Eq. (54) hold trivially for all
SU(2)-invariant unitaries.

Finally, we note that Lemma 3 and the qudit-fermion cor-
respondence discussed above impose further constraints on
the dynamics, which are not fully captured by the above con-
servation laws in Eq. (54). First, note that if under an SU(d)-
invariant unitary V , an initial density operator fl evolves to
fl
Õ = V flV

†, then for any unitary U œ SU(d), the initial state
U
¢n
flU

¢n† evolves to U
¢n
fl
Õ
U
¢n†. Therefore, applying the

conservation laws in Eq. (54), we find

Tr
!
�[U¢n

fl
Õ
U

†¢n]l
"

= Tr
!
�[U¢n

flU
†¢n]l

"
, (56)

for all U œ SU(d). In general, these conservation laws are
independent of those in Eq. (54). This is a consequence of the
fact that Hcomp is defined in terms of the computational basis
and is not invariant under unitaries U¢n : U œ SU(d). This in
turn implies the linear map � is not covariant under the action
of SU(d).7

In addition to these conservation laws, Lemma 3 also im-
plies that the dynamics in subspaces corresponding to different
particle numbers are correlated: the “single-particle” dynamics
determines the dynamics in all other sectors. In [29] we will
discuss more about this lemma and other implications of the
qudit-fermion correspondence.

D. Example: A 6 qutrit system with SU(3) symmetry

Consider a system of 6 qutrits in the initial state

(|0Í · |1Í · |2Í)¢ |0Í¢3
.

Similar to the state considered in the example in Sec. III C, this
state is also restricted to a single (but inequivalent) irrep8 of
SU(3). We study the dynamics of this system, and especially
the time evolution of Tr(Ê(t)2), i.e., the purity of the normal-
ized density operator Ê(t) = �[Â(t)]/Tr(�[Â(t)]). Recall
that Tr(�[Â(t)]) is always automatically conserved under all
SU(3)-invariant unitaries and in this case is equal to 2.

We study the time evolution under the same SU(3)-invariant
Hamiltonians considered in the previous example in Fig. 2:
first, we let the system evolve under a Hamiltonian that can
be written as the sum of 2-local terms, i.e. H =

q
i<j

hijPij ,
then we add the 3-local term P12P23 + P23P12 to this Hamil-
tonian, and finally, we turn off this 3-local term and turn on the
4-local term P(1234) + P(4321) (see the caption of Fig. 3
for further details). The plot in Fig. 3 clearly shows that

7 Note that �[U¢n
flU

†¢n] is the same as the single-particle reduced density
matrix which would be obtained if instead of the computational basis we had
used the basis {U |mÍ : m = 0, · · · , d ≠ 1}. In that case, the fermionic
correspondence would be between the fermionic system and the subspace
U

¢n
Hcomp, composed of the rotated versions of the states in Eq. (42).

8 For the readers familiar with Young diagrams, this irrep corresponds to the
diagram . See Appendix A 2 for more details.

FIG. 3. An example of the conservation laws implied by qudit-fermion

correspondence: Consider a system with 6 qutrits in the initial state
|ÂÍ = (|0Í · |1Í · |2Í) ¢ |0Í¢3, which is restricted to a single ir-
rep of SU(3) (see Appendix A 2). Let Ê(t) = �[Â(t)]/ Tr(�[Â(t)])
be the single-particle reduced state associated to the state |Â(t)Í,
defined in Eq. (51). The vertical axis is the purity of this state,
i.e. Tr(Ê(t)2). For t Æ 100, the system evolves under 2-local
SU(3)-invariant Hamiltonians, namely a Hamiltonian with random
2-local interactions between all pairs of qutrits (the red curve) and a
translationally-invariant 2-local Hamiltonian with nearest-neighbor
interactions on a closed chain (the blue curve). In both cases the
purity Ê(t) remains constant. At t = 100, we turn on the 3-local
interaction P12P23 + P23P12 and the purity starts changing. Fi-
nally, at t = 300, we turn off this 3-local interaction and turn on the
4-local interaction P(1234) + P(4321), and the purity is still not
conserved. Recall that in Fig. 2 the function fsgn remains conserved
in the presence of this 4-local term. This clearly demonstrates that
the conservation laws based on the qudit-fermion correspondence are
independent of those based on the Z2 symmetry.

Tr(Ê(t)2) remains conserved for the first family of Hamil-
tonians, whereas it evolves under the second and third families.
In particular, note that in the presence of the 4-local term
P(1234) + P(4321), the function Tr(Ê(t)2) does not remain
conserved, whereas the function fsgn does. We conclude that
the two conservation laws are independent of each other. As
we mentioned before, there also exist SU(3)-invariant Hamil-
tonians that are not 2-local and yet respect these conservation
laws (e.g., i(P12P23 ≠P23P12) = i[P12,P23] is in the Lie
algebra by 2-local SU(3)-invariant Hamiltonians and therefore
satisfies this property).

Forbidden superpositions: understanding the phenomenon
discussed in Fig. 1

Using the tools and ideas developed in this section, we
can now explain the phenomenon discussed in Fig. 1. Again,
consider a system of 6 qutrits in the same initial state (|0Í ·
|1Í · |2Í)¢ |0Í¢3. Starting with this state, via a sequence of
2-local SU(3)-invariant unitaries we can obtain the orthogonal
state |0Í¢3

¢ (|0Í · |1Í · |2Í), which lives in the same charge
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Random symmetric circuits: Not a 2-design

Consider the distribution of unitaries generated by circuits formed from 
random 2-local SU(d)-invariant unitaries.

For d>2 circuits with random 2-local  SU(d)-invariant unitaries are not 2-
design for the Haar distribution over the group of SU(d)-invariant unitaries
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From the conservation law in Eq. (59), we know that this quan-
tity remains conserved under 2-local SU(3)-invariant unitaries.
This means that under such unitary transformations the initial
state |Â(◊,„)Í evolves to the state |Â(◊Õ,„Õ)Í, only if ◊Õ = ◊

or ◊Õ = fi ≠ ◊. It turns out that this necessary condition is also
sufficient: the sequence of 2-local unitaries P14P25P36 con-
verts |Â(◊,„)Í to |Â(fi ≠ ◊,≠„)Í. Furthermore, as we have
seen above, under the unitaries generated by 2-local SU(3)-
invariant Hamiltonian I≠P45, initial state |Â(◊,„)Í can be
transformed to |Â(◊,„Õ)Í for any „ œ [0, 2fi). Therefore, to
summarize, we have shown that

|Â(◊,„)Í 2-local
Ω≠≠≠≠æ
SU(3)-inv

|Â(◊Õ,„Õ)Í ≈∆ ◊
Õ = ◊,fi ≠ ◊ , (67)

which means inside this 2-dimensional subspace, the conserva-
tion law in Eq. (59) for l = 2 fully characterizes the possible
state transitions under unitaries generated by 2-local SU(3)-
invariant unitaries. We conclude that if one is restricted to
2-local SU(3)-invariant unitaries, then starting from the initial
state (|0Í · |1Í · |2Í)¢ |0Í¢3 the only other reachable state
in this subspace is the state |0Í¢3

¢ (|0Í · |1Í · |2Í). That is,
superpositions of these two states are not reachable.

Finally, in [28] we show that the constraints in Eq. (67) can
be circumvented if the 6 qutrit system can interact with another
3 ancillary qutrits, which are initially prepared in the singlet
state and return to the same state at the end of the process. That
is,

|Â(◊,„)Í¢(|0Í· |1Í· |2Í)Ωæ |Â(◊Õ,„Õ)Í¢(|0Í· |1Í· |2Í) ,
(68)

where the arrow indicates that the transition is possible under
2-local SU(3)-invariant unitaries. In the language of quantum
resource theories, the three ancillary qutrits in the above state
conversion can be interpreted as a catalyst.

VI. QUANTUM CIRCUITS WITH RANDOM
SU(d)-INVARIANT UNITARIES

Statistical properties of quantum circuits with random local
gates have been extensively studied in the recent years (see
e.g., [43–48]). Besides their applications in quantum informa-
tion science (see e.g., [49, 50]), such circuits have become a
standard model for studying complex quantum systems. For
instance, they have been used to investigate thermalization
and the scrambling of information in chaotic systems [51–54],
as quantified by the out-of-time-ordered correlation functions
[23, 51, 55], and to probe the conjectured role [25, 56, 57] of
quantum complexity in quantum gravity. In particular, quan-
tum circuits with local symmetric gates have been consid-
ered as a model for quantum chaos in systems with conserved
charges (see e.g., [26, 27, 58, 59]).

In the absence of symmetries, the distribution of unitaries
generated by quantum circuits with random local unitaries con-
verges to the uniform (Haar) distribution over the unitary group
[43, 44]. One may naturally expect that a similar fact also holds
in the presence of symmetries. That is, for circuits with suf-
ficiently large number of random symmetric local unitaries,

the distribution of unitaries generated by the circuit converges
to the uniform distribution over the group of all symmetric
unitaries. However, the results of [3] and the present paper
imply that this conjecture is wrong.

Let µHaar be the uniform distribution over the group of all
SU(d)-invariant unitaies Vn,n. For circuits with random 2-
local SU(d)-invariant unitaries the distribution of generated
unitaries converges to µ2-loc, the uniform distribution over the
subgroup Vn,2 µ Vn,n generated by 2-local SU(d)-invariant
unitaries. Note that since both Vn,2 and Vn,n are compact Lie
groups, they both have a unique notion of uniform (Haar) dis-
tribution. Furthermore, because Vn,2 is a proper Lie subgroup
of Vn,n in general, µHaar and µ2-loc are distinct distributions.

In fact, as we explain below, our results imply that for d Ø 3,
even the second moments of these distributions are different,
i.e.,

EV≥µ2-loc
[V ¢t

¢ V
ú¢t] ”= EV≥µHaar

[V ¢t
¢ V

ú¢t] , (69)

for t Ø 2. A general distribution µ that satisfies Eq. (69) as
equality is called a t-design for µHaar. Therefore, the above
claim means µ2-loc is not a 2-design for µHaar.

This is an immediate corollary of our results in the previ-
ous section. Specifically, we saw that there exists a function,
namely Tr(�[Â]2), with the following properties: (i) it remains
invariant under unitaries in V œ Vn,2, i.e., Tr(�[V ÂV †]2) =
Tr(�[Â]2), whereas it can change under general rotationally-
invariant unitaries in Vn,n; and (ii) it is a quadratic polynomial
in the density operator Â = |ÂÍÈÂ|.

To see how these properties imply the claim in Eq. (69),
consider the function f(V ) © Tr(�[V ÂV †]2) for a fixed pure
state Â and arbitrary V œ Vn,n. For arbitrary W œ Vn,n con-
sider the expected value

EV≥µHaar
f(VW ) = EV≥µHaar

f(V ) , (70)

where the equality follows from the fact that µHaar is invariant
under all unitaries in Vn,n. Therefore, for the unitary V chosen
according to the Haar measure over Vn,n, the expected value
of f(VW ) is independent of W œ Vn,n. Next, consider the
expected value of f(VW ), where V is chosen uniformly from
Vn,2. Using the fact that Tr(�[Â]2) remains conserved under
unitaries in Vn,2, we find

EV≥µ2-loc
f(VW ) = Tr(�[WÂW

†]2) = f(W ) . (71)

But, for a general SU(d)-invariant unitary W œ Vn,n, f(W ) =
Tr(�[WÂW

†]2) depends non-trivially on W (this is be-
cause the conservation law in Eq. (59) is violated by gen-
eral SU(d)-invariant unitaries). We conclude that for gen-
eral W œ Vn,n the above two expected values in Eqs. (70)
and (71) are not equal. Finally, we note that the function
f(V ) = Tr(�[V ÂV †]2) can be written in the form of a linear
functional of V ¢2

¢ V
ú¢2. In summary, we find that the ex-

pected values of V ¢2
¢ V

ú¢2 for two distributions µHaar and
µ2-loc are not equal, i.e., Eq. (69) does not holds for t Ø 2.10



Part II. Irreversibility and Quantum Fisher Information Metrics

L Gao, H Li, IM, C Rouzé, Sufficient statistic and recoverability via Quantum Fisher Information metrics, 
arXiv:2302.02341 (2023).



Question: Can (Quantum) Fisher information always detect irreversibility?

Decay of Quantum Fisher Information implies irreversibility. 
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E
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⇢(t)
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⇢0(t) = E(⇢(t))
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R
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F (⇢(t)) � F (⇢0(t))

• Classically, yes!
• Quantum mechanically, it depends!

Does the conservation of Quantum Fisher Information imply reversibility?



The best known example of Quantum Fisher Information metrics is called Symmetric Logarithmic 
Derivative (SLD) Fisher information. It gives a tight Cramer-Rao bound, which is asymptotically 
achievable.

However, SLD Fisher information may remain conserved in irreversible processes. 

“Regular” Fisher information metrics, on the other hand, always decreases in irreversible processes.

Example: Winger-Yanase-Dyson skew information
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E
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⇢(t)
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⇢0(t) = E(⇢(t))
Classically, Fisher Information is the unique monotone Riemannian 
metric on the space of probability distributions. 

L. Gao, H. Li, IM, C Rouzé, arXiv:2302.02341, to appear in Comm. in Math. Physics (2024). 

Quantum mechanically, this is not the case!
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e�iHt⇢eiHt

Example of regular QFI metrics: Winger-Yanase-Dyson skew information

For the family of states
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t 2 R:

<latexit sha1_base64="RF5KXEJ9wrEnGtMIgJJmA/D9DxQ="></latexit>

W
(↵)
H

(⇢) = Tr(⇢H2)� Tr(⇢↵H⇢
1�↵

H)
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0 < ↵ < 1:

Example of measures of asymmetry.

IM, RW Spekkens,  Extending Noether's theorem by quantifying the asymmetry of quantum states, Nature Communications 5, 3821 (2014).

R. Takagi , Skew informations from an operational view via resource theory of asymmetry  (2019)
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W
(↵)
H

(⇢) = Tr(⇢H2)� Tr(⇢↵H⇢
1�↵

H)
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⇢
TI��! ⇢0If 

Furthermore, if the equality holds, then the process is reversible via TI operations, i.e., 
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E(e�iHt�eiHt) = e�iHtE(�)eiHt

Applications:  Reversibility under time-translationally-invariant operations

then 
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W (↵)(⇢) � W (↵)(⇢0)

System

Energy-Conserving Unitary

Energy Eigenstate
(Battery)

Applications of SLD and RLD QFI in the resource theories of Quantum Thermodynamics and Asymmetry
IM, Nature communications 11 (1), 25 (2020).
IM, PRL  129, 190502 (2022). 
H. Tajima, N. Shiraishi, and K. Saito, PHYS REV. RES. (2020)



• A general no-go theorem
In the case of continuous symmetries, it is not possible to implement generic symmetric unitaries, even approximately, 
using 2-local (k-local) symmetric unitaries on the subsystems.  [IM, Nature Physics 2022].

• Studied examples 
• U(1) symmetry     [IM, Nature Physics 2022]
• SU(2) symmetry with qubits [IM, Hanqing Liu, Austin Hulse,  PRL 2024]
• SU(d) symmetry with qudits [IM, Hanqing Liu, Austin Hulse, arXiv:2105.12877 (2021)]

New conservation laws for d>2

Conclusion: The restrictions imposed by locality and symmetry vary significantly across different symmetry groups.
• Theory of Abelian Quantum Circuits [IM, arXiv:2302.12466, To appear in Phys Rev. Research (2024)]

• Synthesis of Energy-Conserving Quantum Circuits with XY interaction 
[Ge Bai, IM, arXiv:2309.11051, To appear in Quantum Science and Technology (2024)]

Thank you for your attention.

The most popular Quantum Fisher Information metric, i.e., SLD QFI, cannot always detect irreversibility.
There exists a family of QFI metrics, including skew information, that can detect irreversibility.

Summary of Part I 

Summary of Part II 
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