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Part . Symmetric Quantum Circuits

» Energy-Conserving Circuits

* New Conservation Laws in systems with SU(d) symmetry

IM, Nature Physics (2022).

IM, H. Liu, and A. Hulse, Phys Rev. Lett (2024).

IM, H. Liu, and A. Hulse, arXiv:2105.12877 (2021).

G Bai, IM, arXiv:2309.11051, to appear in Quantum Science and Technology (2024).
IM, arXiv:2302.12466, to appear in Phys Rev. Research (2024).

Part ll. Irreversibility and Quantum Fisher Information Metrics

L. Gao, H. Li, IM, C Rouzé, arXiv:2302.02341, to appear in Comm. in Math. Physics (2024).



Universality: Any unitary transformation on a composite system can be realized exactly by a finite sequence of 2-local
unitaries on the subsystems.

Universality with 3-qubit gates (Deutsch 1985)
Universality with 2-qubits gates (DiVincenzo 1995), Almost all 2-qubits gates are universal (Lloyd 1995, Deutsch-Barenco-Ekert 1995)

What is the minimum energy that should be dissipated to the environment to calculate a Boolean function?

Classically, universality can be achieved with 3-bit reversible gates.




Universality as a statement about time evolution under general local Hamiltonians

Y H@V (@) V) = I

Locality of Hamiltonian puts various constraints on the

short-term dynamics, e.g. finite speed of propagation of
information, as highlighted by the Lieb-Robinson bound.

However, after a sufficiently long time, closed systems with local Hamiltonians can experience any
arbitrary time evolution.




Questions

Does the universality of 2-local (k-local) unitaries remain valid in the presence
of symmetries and conservation laws?

Do local symmetric Hamiltonians generate all symmetric unitaries?



The framework of Local Symmetric Quantum Circuits has become a standard tool in theoretical physics.

We need to understand them better!

* Classification of symmetry-protected topological phases

Chen-Gu-Wen, Classification of gapped symmetric phases in one-dimensional spin systems (2011)

Chen-Gu-Liu-Wen, Symmetry protected topological orders and the group cohomology of their symmetry group (2013) 1

* Quantum chaos with conserved charges
Khemani-Vishwanath-Huse (2018)

Implications and Applications

1) Finding new conservation laws and constraints imposed on the dynamics of quantum systems by the presence

of both symmetry and locality.

2) Symmetric unitaries are essential in Quantum Thermodynamics (athermality), Quantum Reference Frames,

Resource Theory of Asymmetry, and Covariant Error-Correcting Codes. How can we implement them?

* Is there any hidden thermodynamic cost for implementing a general

E=3AE

energy-conserving unitary, using local energy-conserving unitaries?

E=AE

Eo=0

3) Synthesizing noise-resilient quantum circuits
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Examples: Unitaries generated by XX+YY interaction, CCZ gate, and Fredkin (controlled-SWAP) gate

Question: Can we realize 3-qubit U(1)-invariant unitaries using 2-qubit U(1)-invariant unitaries?



H(t) = > he(t) h.(t) : k-local

Vi: [H(t),Y Z;] =0

dV (t
% = —iH(t)V(t) V() =1
Set of unitaries that can be implemented by Set of unitaries generated by symmetric

Hamiltonians that can be written as the
sum of k-local terms

k-local symmetric unitaries



General Symmetries

For a general group G, let {u;(g) : g € G’} be the representation of symmetry on site j.

We say a unitary V is symmetric with respect to the symmetry described by group G, if

Vg e G : V®uj(g) = ®uj(g)V
j=1 j=1

Or, equivalently Vge G: [®uj(g)]V[®u;(g)] =V a
j=1 j=1




« A general no-go theorem

In the case of continuous symmetries, it is not possible to implement generic symmetric unitaries, even

approximately, using 2-local (k-local) symmetric unitaries on the subsystems. [IM, Nature Physics 2022].

» Studied examples
* U(1) symmetry [IM, Nature Physics 2022]
*  SU(2) symmetry with qubits [IM, Hanging Liu, Austin Hulse, Phys Rev. Lett 2024]

* SU(d) symmetry with qudits [IM, Hanging Liu, Austin Hulse, arXiv:2105.12877 (2021)]
New conservation laws for d>2

Torus: Symmetric unitaries
Helix: The subgroup generated
by k-local symmetric unitaries

» Conclusion: The restrictions imposed by locality and symmetry vary significantly across different symmetry groups.

* Theory of Abelian Quantum Circuits [IM, arXiv:2302.12466 (2023), To appear in Phys Rev. Research]

+ Synthesis of Energy-Conserving Quantum Circuits with XY interaction
[Ge Bai, IM, arXiv:2309.11051 (2023), To appear in Q. Science and Technology]
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Example: Energy-Conserving Unitaries (i.e., U(1) Symmetry)

The group generated by k-local U(1)-invariant unitaries

dim(VY() — dim(Vy ) = n — k
The maximum charge in the system

Example: n=3 qubits minus the maximum charge that can

Group of all U(1)-invariant unitaries: 20 D participate in an interaction.

Subgroup generated by 2-local U(1)-invariant unitaries: 19 D

Many useful energy-conserving unitaries are forbidden by these constraints (CCZ, Fredkin,..)

The group generated by k-local SU(2)-invariant unitaries

Example: SU(2) Symmetry

dim(V3U®)) — dim(V35Y) = L%J - L;J



General groups

Grows unboundedly for continuous symmetries

/

v
dim(VS,,) — dim(VS,) > Irrepsg (n) — Irreps; (k)

A rough Interpretation (For Abelian groups):
The maximum charge in the system minus the maximum charge that can
participate in an interaction.

The Lie group of all symmetric unitaries {V : VVT =1,[V,u(g)®"] =0 : Vg € G}

The subgroup generated by k-local symmetric unitaries

Dimension of the corresponding manifold

Number of inequivalent irreducible representations of G appearing in
the representation of symmetry on k subsystems.  {u(¢)®* : g € G}



Application: Sensing the locality of interactions in nature

o ™
Consider a unitary time evolution under an unknown — —
Hamiltonian. — —
=
Question: By probing the outputs of this unitary evolution for
different inputs, is it possible to detect the presence of 3-body
(k-body) interactions in this unknown Hamiltonian? ) —E——— A4
|22) E 25
A%
No! 2-qubit gates are universal (DiVincenzo 1994) e TR )

IM, Nature Physics 2022
However, this becomes possible in the presence of symmetries!

21 — Sim
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L. Zhukas, Q. Wang, IM, C. Monroe, Observation of the symmetry-protected <"|" n
signature of 3-body interactions, under preparation.




What are the constraints?

€Z¢O

For qubit circuits with U(1) and SU(2) symmetry, the locality of gates only
restricts the relative phases between sectors with inequivalent irreducible

ey
=

representations of symmetry, e.g., different Hamming weights (energies) in the
case of U(1) symmetry.

Relative phases matter!
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Characterizing the constraints on the relative phases

U(1) Symmetry:

n

V = @ Vin  ——— arg(det(Vy,)) — &, = Z ci(m) x arg(det(Vin))

m=0

SU(2) Symmetry:

1

m=0

=0 k<l<n

1/2
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e |

I-body phase of unitary V

* If Vis realizable with k-local U(1)-invariant
gates, they vanish for k>I.
* They are physically observable for />0.

Integer-valued polynomial of degree /

Angular Momentum

J=0]j=11j=2|j=3]j=4|j=5

{ = 0 body 1 1 1 1 1 1

I =2body | -15 -11 3 9 25 45

I =4body | 150 70 -42 | -90 70 630

alj) = 2U2(n — 1)

l =6body | -1050 | -210 | 462 | -90 |-1050] 3150 ]

Z(—4)T7“!(n—2r)! S+AN(5-7\ sti+1
—~ (1/2 —r)! r r 5+j+1—r I

Integer-valued polynomial of degree I/2 of j(j+1)

I =8body | 4725 | -315 |-1323| 2565 |-3675 | 4725

| = 10 body |-10395| 3465 | -2079 | 1485 | -1155| 945

n=10 qubits (spin half systems)



Circumventing the no-go theorem with ancilla qubits

U(1) Symmetry: In the case of the group U(1), this no-go theorem can
be circumvented using an ancillary qubit. z

;
V(1Y) @ [0)a) = (V) @ |0,

Unitary V can be implemented using 2-local U(1)-invariant unitaries. . . ‘ ‘ . ‘

XX +YY

Indeed, it can be realized with XX+YY Hamiltonian and single-qubit
Pauli Z.

SU(2) Symmetry: Any rotationally-invariant unitary V on qubits can be implemented using
the Heisenberg exchange interaction and 2 ancilla qubits, i.e.,

V(’@M ® ‘00>ab) — (V|¢>) ® ‘00>ab

where unitary V can be implemented using the Heisenberg exchange interaction X 9 X + Y QY + 7 ® Z



Synthesis of Energy-Conserving Quantum Circuits with XY interaction

Ge Bai, IM, To appear in Q. Science and Technology,
arXiv:2309.11051 (2023)




A simple example

SWAP =

1
iISWAP = exp(i%[X®X+Y®y]) _ !

Even though SWAP is energy-conserving, the standard method for implementing SWAP with XX+YY interaction
requires non-energy-conserving unitaries.

-

iISWAP iSWAP iISWAP Schuch-Siewert, PRA 2003

-

Non-energy-conserving unitaries cannot be avoided.

SWAP with energy-conserving gates and ancilla qubits

0) — ——— [0)
iISWAP

— — iISWAP1— ST —

iSWAP
|

IM, Nature Physics (2022)

arXiv:2309.11051



Examples of useful circuit identities
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iSw
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arXiv:2309.11051



Approximate Implementation

Theorem: Any energy-conserving unitary on n>2 qubits can be realized with error € > 0 using

O3 (n +loge H1*%)  ViSWAP gates alone with two ancilla qubit.

LT
71—

8[X®X+Y®Y]) =

exp(

S
Sk

See arXiv:2309.11051 for explicit circuit synthesis techniques.



What about other symmetries?

Conjecture: Similar to the case of U(1) symmetry, for general symmetry groups the locality of
interactions only impose constraints on the realizable relative phases between subspaces with
inequivalent irreducible representation (charge) of symmetry.

No! For instance, for SU(d) symmetry with d>2 there are constraints even inside such subspaces.

IM, Hanging Liu, Austin Hulse, arXiv:2105.12877 (2021)

Additional constraints and new conservation laws

1) The unitary realized in a subspace with one irreducible representation (charge) of the symmetry
dictates the realized unitaries in multiple other sectors with inequivalent representations of the
symmetry.

2) In certain sectors, rather than all unitaries respecting the symmetry, the realizable unitaries are
the symplectic or orthogonal subgroups of this group.
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Example: 6 Qutrits with SU(3) symmetry

. . . 0.55 1 o
Consider a system with 6 qutrits that evolves under ] Hamiltonians
SU(3)-i iant Hamiltonians ] « turn on 3-local terms —— Periodic 2-local

( )_mvarlan I I ' 0 50_' - —— Random 2-local

] « turn off 3-local terms and

. . 4-| |
Periodic 2-local Random 2-local 0.45; turn on 4-local terms
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0 100 200 300 400 500
Starting at time t = 100, we add the 3-body term
100<t<300 P1oP2o3 + PasPyo

Then, at t=300 we turn off this and turn on 4-body
300<t<500 P(1234) + P(4321)



Example: 6 Qutrits with SU(3) symmetry

Catalyst
Total Hilbert space: ((C3)®6 OOO ... ...
10)®3  |singlet) |singlet)

2

|singlet) = (|0)A[1)A[2)) = % D enli)li)|k) € (C*)=?
ijk=0

The joint state is restricted to a subspace with a single irrep of SU(3).

|singlet) ® |0)®3 > alsinglet) ® |0)®3 4 5]0)®? @ |singlet)

SU(3)-invariant unitaries

|singlet) ® |0)®3

|singlet) ® |0)®?3 > ]
2-local SU(3)-invariant unitaries |0>®3 ® \Singlet>

>

Isinglet) ® [|sing1et> ® yo>®3} alsinglet) ® [0Y®3 + 510)®3 @ |singlet>] ® [singlet)
Catalyst 2-local SU(3)-invariant unitaries - Catalyst



Random symmetric circuits: Not a 2-design

Consider the distribution of unitaries generated by circuits formed from
random 2-local SU(d)-invariant unitaries.

For d>2 circuits with random 2-local SU(d)-invariant unitaries are not 2-
design for the Haar distribution over the group of SU(d)-invariant unitaries

EVN,U’Q—IOC [V®t ® V*®t] # EVN.U'Haar [V®t ® V*®t]




Part Il. Irreversibility and Quantum Fisher Information Metrics

L Gao, H Li, IM, C Rouzé, Sufficient statistic and recoverability via Quantum Fisher Information metrics,
arXiv:2302.02341 (2023).



Question: Can (Quantum) Fisher information always detect irreversibility?

Decay of Quantum Fisher Information implies irreversibility.

Does the conservation of Quantum Fisher Information imply reversibility?

» Classically, yes!
* Quantum mechanically, it depends!



Classically, Fisher Information is the unique monotone Riemannian
metric on the space of probability distributions. pt) e — pl(t) = E(p(t))

Quantum mechanically, this is not the case!

The best known example of Quantum Fisher Information metrics is called Symmetric Logarithmic
Derivative (SLD) Fisher information. It gives a tight Cramer-Rao bound, which is asymptotically
achievable.

However, SLD Fisher information may remain conserved in irreversible processes.

“‘Regular” Fisher information metrics, on the other hand, always decreases in irreversible processes.

Example: Winger-Yanase-Dyson skew information

L. Gao, H. Li, IM, C Rouzé, arXiv:2302.02341, to appear in Comm. in Math. Physics (2024).



Example of regular QFIl metrics: Winger-Yanase-Dyson skew information

For the family of states ¢ ~“¢pe!Ht .t e R
W' (p) = Tr(pH?) — Tr(p*Hp' " H) - O<a<1

Example of measures of asymmetry.

IM, RW Spekkens, Extending Noether's theorem by quantifying the asymmetry of quantum states, Nature Communications 5, 3821 (2014).

R. Takagi , Skew informations from an operational view via resource theory of asymmetry (2019)



Applications: Reversibility under time-translationally-invariant operations

g(e—z’HtO_eth) _ e—thg(O_)eth . +teR

Energy Eigenstate

(Battery)

P .y,
h———————/

Energy-Conserving Unitary

If p SELIN P then W (p) > W (y)

Furthermore, if the equality holds, then the process is reversible via Tl operations, i.e., p’ 1> P

Wi (p) = Tr(pH?) — Tr(p*Hp' " H)

Applications of SLD and RLD QFI in the resource theories of Quantum Thermodynamics and Asymmetry

IM, Nature communications 11 (1), 25 (2020).
IM, PRL 129, 190502 (2022).
H. Tajima, N. Shiraishi, and K. Saito, PHYS REV. RES. (2020)



Thank you for your attention.

* A general no-go theorem
In the case of continuous symmetries, it is not possible to implement generic symmetric unitaries, even approximately,

using 2-local (k-local) symmetric unitaries on the subsystems. [IM, Nature Physics 2022].

» Studied examples
U(1) symmetry [IM, Nature Physics 2022]
SU(2) symmetry with qubits [IM, Hanqing Liu, Austin Hulse, PRL 2024]
SuU(d) symmetry with qudits [IM, Hanqing Liu, Austin Hulse, arXiv:2105.12877 (2021)]
New conservation laws for d>2

Conclusion: The restrictions imposed by locality and symmetry vary significantly across different symmetry groups.
* Theory of Abelian Quantum Circuits [im, arxiv:2302.12466, To appear in Phys Rev. Research (2024)]

» Synthesis of Energy-Conserving Quantum Circuits with XY interaction
[Ge Bai, IM, arXiv:2309.11051, To appear in Quantum Science and Technology (2024)]

Summary of Part Il

The most popular Quantum Fisher Information metric, i.e., SLD QFI, cannot always detect irreversibility.
There exists a family of QFI metrics, including skew information, that can detect irreversibility.

L Gao, H Li, IM, C Rouzé, To appear in Comm in Mathematical Physics, arXiv:2302.02341 (2023). Regular QFl
IM, Nature communications 11 (1), 25 (2020). RLD QFl
IM, PRL 129, 190502 (2022). SLD QFI



