Coherence costs and effects in dynamics of thermodynamics

Hiroyasu Tajima UEC and JST

Frontiers in non-equilibrium Physics YITP 2024

Topics of this talk

Coherence costs of operations in quantum thermodynamics

 $\cdot \ \cdot \ \cdot$ and coherence enhancement on heat engines

Remark on wording in this talk:

- quantum thermodynamics=thermodynamics in quantum systems
- Resource theory of thermodynamics
 - =resource theoretic approach to thermodynamics

Topics of this talk

Coherence costs of operations in thermodynamics of quantum systems

Related works:

<u>HT</u> and R. Takagi, arXiv:2404.03479 (2024)

<u>HT,</u> N. Shiraishi, K. Saito, PRL **121**, 110403 (2018)

<u>HT</u>, N. Shiraishi, K. Saito, PRR **2**,043374 (2020)

<u>HT</u>, R. Takagi, Y. Kuramochi, arXiv:2206.11086, (2022)

➡First part of this talk

Related work:

<u>HT</u> and K. Funo, PRL. **127**, 190604 (2021) (Editor's suggestion +Featured in Physics)

➡Second part of this talk

Part I:

Coherence costs of operations in quantum thermodynamics

➡Gibbs-preserving maps requiring infinite amount of coherence

→Lower and upper bounds of coherence cost of approximate implementation of the cost-diverging Gibbs preserving maps

trade-off between generalized entropy production and coherence cost of arbitrary quantum operations

Outline of Part I

Backgrounds and brief summery of results

Details of Results:

- Setup and quantities
- Gibbs-preserving maps requiring infinite amount of coherence

• Lower and upper bounds of coherence cost of approximate implementation of Gibbs preserving maps

 \cdot trade-off between generalized entropy production and coherence cost of arbitrary quantum operations

Techniques:

Trade-off between symmetry, irreversibility and quantum coherence

Gibbs-preserving maps

In quantum thermodynamics, the Gibbs preserving map is an important class of operations

•
$$\mathcal{E}(\rho_{\beta|H}) = \rho_{\beta|H}$$
,
• \mathcal{E} is CPTP \mathcal{E} is a Gibbs preserving map

- It corresponds to the "isothermal process": a common class of operations in quantum thermodynamics
- It also plays a central role in resource theory of thermodynamics

 one of two possible "free operations"

Gibbs-preserving maps

In resource theory, we divide states and operations into two classes, respectively

We consider "free states" and "free operations" easy to realize.

→We assume that "free states" and "free operations" can be used freely.

All states and operations that are not achievable with combining free states and operations are resource.

Good references for resource theory:

Review for various resource theories: E. Chitambar and G. Gour, Rev. Mod. Phys. 91, 025001 (2019).

Resource theory of thermodynamics:

T. Sagawa, SpringerBriefs in Mathematical Physics 16 (2022) (textbook) Resource theory of asymmetry:

I. Marvian, PhD thesis (2012).

The structure of the resource theory depends on the choice of free operations.

And resource theory of thermodynamics has two candidates of free operations:

Gibbs-preserving operations and thermal operations

Gibbs-preserving operation v.s. thermal operation

Gibbs preserving operation:

$$\mathcal{E}(\rho_{\beta|H}) = \rho_{\beta|H}$$

Thermal operation: implementable, but difficult to treat Gibbs preserving operation: easy to treat.

> Recent important works in resource theory of thermodynamics employ Gibbs preserving maps:

> > P. Faist and R. Renner, PRX 8, 021011 (2018).

P. Faist, M. Berta, and F. Brandao, PRL122, 200601 (2019).

F. Buscemi, D. Sutter, and M. Tomamichel, Quantum 3, 209 (2019).

N. Shiraishi and T. Sagawa, PRL 126, 150502 (2021).

Therefore, it is important to clarify the relation between the thermal operations and the Gibbs preserving maps.

Gibbs-preserving map v.s. thermal operation It is easily obtained:

Thermal operation ⊂ Gibbs preserving map

Operations belonging to here actually exist:

P. Faist, J. Oppenheim, and R. Renner, New J. Phys. 17, 043003 (2015)

Since Gibbs state satisfies $[\rho_{\beta|H_B}, H_B] = 0$, the GPM Λ cannot be a thermal operation.

we need to prepare a state satisfying $[\rho, H_B] \neq 0$ here.

Cost of Gibbs-preserving map

Some Gibbs-preserving maps require extra states satisfying $[\rho, H_B] \neq 0$. \Rightarrow some Gibbs preserving maps requires extra energetic coherence (i.e. quantum fluctuation of energy).

Question: What is a general upper limit of required energetic coherence to realize an arbitrary Gibbs-preserving map?

It is important, because Gibbs-preserving maps are considered to be free, and thus they should be easy to realize.

This problem is in a formal list of open problems in quantum information theory: https://oqp.iqoqi.oeaw.ac.at/thermodynamic-implementation-of-gibbs-preserving-maps

Gibbs-preserving maps requiring infinite amount of coherence

HT and R. Takagi, arXiv:2404.03479 (2024)

but impossible by finite-cost GPM

Result 1-A: some Gibbs-preserving maps require infinite amount of energetic coherence (quantum fluctuation of energy), and thus they are not realizable.

These results are given by general tradeoff between coherence cost and irreversibility: **Results 2 and 3**

• σ

Outline of Part I

☑ Backgrounds and brief summery of results

Details of Results:

- Setup and quantities
- Gibbs-preserving maps requiring infinite amount of coherence

• Lower and upper bounds of coherence cost of approximate implementation of Gibbs preserving maps

 \cdot trade-off between generalized entropy production and coherence cost of arbitrary quantum operations

Techniques:

Trade-off between symmetry, irreversibility and quantum coherence

Preparation 1: measure of energetic coherence

Energetic coherence in ρ is measured by the SLDquantum Fisher information for state family $\{e^{-iHt}\rho e^{iHt}\}$:

$$\mathcal{F}_{\rho}(H) \coloneqq \sum_{ij} \frac{2(p_i - p_j)^2}{p_i + p_j} |\langle i|H|j \rangle|^2$$

 $\{p_i, |i\rangle\}$ are the eigenvalues and eigenvectors of ρ .

Property 1: $\mathcal{F}_{\rho}(H)$ is a standard measure of quantum fluctuation of energy:

$$\mathcal{F}_{\rho}(H) = 4 \min_{\{q_j, |\phi_j\rangle\}: \rho = \sum_j q_j \phi_j} \sum_j q_j V_{\phi_j}(H)$$

S. Yu, arXiv:1302.5311 (2013).

Property 2: SLD-Quantum Fisher information is a standard measure of resource in the resource theory of asymmetry.

C. Zhang, et al., PRA **96**, 042327 (2017).

R. Takagi, Scientific Reports **9**, 14562 (2019).

I. Marvian, Nat. Comm. **11**, 25 (2020).

I. Marvian, PRL **129** 190502 (2022).

Preparation 2: coherence cost of quantum operations

 (U, ρ, H_B) realizes Λ within error ϵ

$$\max_{\xi} D_F(\Lambda(\xi), \operatorname{Tr}_B[U\xi \otimes \rho U^{\dagger}]) \leq \epsilon \& H_A + H_B = U^{\dagger}(H_A + H_B)U$$

def

 $\mathcal{F}_{c}^{\epsilon}(\Lambda) := \inf\{\mathcal{F}_{\rho}(H_{B}) | (U, \rho, H_{B}) \text{ realizes } \Lambda \text{ within error } \epsilon\}$

Result 1: Cost-diverging Gibbs-preserving operations

<u>HT</u> and R. Takagi, arXiv:2404.03479 (2024)

We prove the following theorem:

Theorem 1:

If systems S and S' satisfy the following ordering condition

 $\exists i, i', j, \tau_{S,i} < \tau_{S',i'} < \tau_{S,j'}, \tau_{S,i}: i-th$ eigenvalue of the Gibbs state on S

there exists a cost-diverging Gibbs-preserving operation $\Lambda: S \rightarrow S'$ such that

$$\mathcal{F}_c^{\epsilon=0}(\Lambda) = \infty$$

Therefore, there are cost-diverging GPO between almost arbitrary systems.

Ex: S and S' are three level systems, and H_S=H_{S'} are the same non-degenerate Hamiltonian

Then, $\tau_{S,3} < \tau_{S',2} < \tau_{S,1}$ holds, and thus there is a cost-diverging Gibbs-preserving map from S to S'.

Ex 2: S and S' are two level systems and the energy gap of $H_{S'}$ is smaller than H_S .

Then, $\tau_{S,2} < \tau_{S',2} < \tau_{S,1}$ holds, and thus there is a cost-diverging Gibbs-preserving map from S to S'.

Result 1: Cost-diverging Gibbs-preserving operations

<u>HT</u> and R. Takagi, arXiv:2404.03479 (2024)

We prove the following theorem:

Theorem 2:

When S and S' satisfy the same condition as Theorem 1,

there exist ρ on S and σ on S' such that

• $\rho \rightarrow \sigma$ can be realized by a Gibbs-preserving map

• $\rho \rightarrow \sigma$ cannot be realized by a finite-cost Gibbs-preserving map

Therefore, there are infeasible state transition between almost arbitrary S and S'

Result 2: Upper and lower bound for approximate implementation

<u>HT</u> and R. Takagi, arXiv:2404.03479 (2024)

We also find upper and lower bounds of cost for approximate implementation of the cost-diverging GPMs

$$\frac{\mathcal{C}}{\epsilon} - a \leq \sqrt{\mathcal{F}_{\text{cost}}^{\epsilon}(\Lambda)} \leq \frac{2\mathcal{C}}{\epsilon} + a$$

 \mathcal{C} : coefficient corresponding to the change of energy by Λ . We define it later.

a : a constant

From this result, we can see the $\mathcal{F}_{cost}^{\epsilon} \approx \frac{N}{\epsilon^2}$, where N is the system size.

We also show that this scaling is the worst in all of approximate implementations of the CPTP maps.

GPMs include the "most costly" class in all CPTP maps.

Result 3: Tradeoff between coherence and entropy production for arbitrary Gibbs preserving map

• When Λ is Gibbs-preserving, the entropy production can be expressed as

$$\Sigma(\rho) \coloneqq \Delta S(\rho) - \beta Q$$

= $D(\rho | \rho_{\beta|H}) - D(\mathcal{E}(\rho) | \mathcal{E}(\rho_{\beta|H'}))$

• Then, the coherence cost of Λ is bounded by the entropy production as follows:

$$\mathcal{F}_{c}^{\epsilon=0}(\Lambda) \geq \max_{\rho} \frac{\mathcal{C}^{2}}{\sqrt{\Sigma(\rho)}} - \Delta^{2}$$

Example of application:

Result 3B: Tradeoff between coherence and entropy production for arbitrary Gibbs preserving map

When Λ is not Gibbs-preserving, the generalized entropy production is defined as

$$\Sigma(\rho|\sigma) := D(\rho|\sigma) - D(\mathcal{E}(\rho)|\mathcal{E}(\sigma))$$

Then, the coherence cost of Λ is bounded by the entropy production as follows:

$$\mathcal{F}_{c}^{\epsilon=0}(\Lambda) \geq \max_{\rho} \frac{\mathcal{C}^{2}}{\sqrt{\Sigma(\rho|\sigma)}} - \Delta^{2}$$

Example of application:

Outline of Part I

☑ Backgrounds and brief summery of results

\square Details of Results:

- Setup and quantities
- Gibbs-preserving maps requiring infinite amount of coherence

• Lower and upper bounds of coherence cost of approximate implementation of Gibbs preserving maps

 \cdot trade-off between generalized entropy production and coherence cost of arbitrary quantum operations

Techniques:

Trade-off between symmetry, irreversibility and quantum coherence

Technique: symmetry-irreversibility-quantumness tradeoff

Theorem :

$$\frac{\mathcal{C}}{\sqrt{\mathcal{F}} + \Delta} \leq \delta \text{ or } \sqrt{\delta}$$

H. Tajima, R. Takagi, Y. Kumorachi, arXiv:2206.11086 (2022).

Examples of applications : Quantum computation, error corrections, measurement theory,

OTOC, black hole physics,...

Let's see the details.

Technique: symmetry-irreversibility-quantumness tradeoff

setup

Properties of key quantities

Irreversibility δ : function of \mathcal{E} and a "test ensemble" $\{p_k, \rho_k\}_{k \in \mathcal{K}}$

$$\begin{cases} \delta \coloneqq \min_{\mathcal{R}:A' \to A} \sqrt{\sum_{k} p_{k} \delta_{k}^{2}} \\ p_{k} \rho_{k} \end{cases} & \delta_{k} \coloneqq D_{F}(\rho_{k}, \mathcal{R} \circ \mathcal{E}(\rho_{k})) \\ \text{recovery error for } \rho_{k} \\ D_{F}(\rho, \sigma) \coloneqq \sqrt{1 - F^{2}(\rho, \sigma)} \end{cases} \\ \{p_{k}, \rho_{k}\} \stackrel{A}{\longrightarrow} \mathcal{E} \stackrel{A'}{\longrightarrow} \mathcal{R} \stackrel{A}{\longrightarrow} \{p_{k}, \mathcal{R} \circ \mathcal{E}(\rho_{k})\} \end{cases}$$

Properties of key quantities

Irreversibility δ : function of \mathcal{E} and a "test ensemble" $\{p_k, \rho_k\}_{k \in \mathcal{K}}$

$$\delta \coloneqq \min_{\mathcal{R}: A' \to A} \sqrt{\sum_{k} p_k \delta_k^2}$$

Property: δ gives lower bounds for various irreversibility measures.

$$\delta \leq \sqrt{\Sigma}, \quad \delta \leq \delta_Q, \text{ and } \delta \leq \frac{\delta_P}{\sqrt{2}},$$

e.g., it bounds the entropy production, the entanglement-fidelity recovery error, and the error of Petz map recovery, etc.

Hirovasu Tajima, 2103.01876 & 2206.11086

Properties of key quantities

 \mathcal{C} : Degree of change of local charge

$$\mathcal{C} \coloneqq \sqrt{\sum_{k \neq k'} p_k p_{k'} \operatorname{Tr}[(\rho_k - \rho_{k'})_+ Y_A(\rho_k - \rho_{k'})_- Y_A]}$$

 $(0)_{\pm} \coloneqq$ Positive (negative) part of the Hermitian operator O

 $Y_A \coloneqq X_A - \mathcal{E}^{\dagger}(X_{A'})$ Operator of change of local charge

Property: • For the test states are orthogonal pure states $\{|\psi_k\rangle\}$,

$$\mathcal{C} = \sum_{k \neq k'} p_k p_{k'} |\langle \psi_k | Y_A | \psi_{k'} \rangle|^2 \qquad \begin{array}{l} \text{Sum of absolute values non-}\\ \text{diagonal parts} \end{array}$$

$$\mathcal{E} \text{ changes } X_A \text{ non-trivially (i.e. } Y_A \propto 1_A) \Rightarrow \quad \mathcal{C} > 0$$

SIQ tradeoff

Messages of SIQ tradeoff

1. $\mathcal{C}>0 \Rightarrow \delta>0$

When E changes the local charge nontrivially, E must be irreversible.

2. The coherence in B (= \mathcal{F}) can mitigate the irreversibility.

Take home message:

Under global *symmetry*, local charge cannot be changed without *irreversibility*. But the irreversibility can be mitigated by *quantum coherence*.

Derivation of result 1: Finding cost-diverging Gibbs-preserving maps

HT and R. Takagi, arXiv:2404.03479 (2024)

<u>HT</u>, R. Takagi and Y. Kuramochi, arXiv:2206.03479 (2022)

Therefore, if we can find a GPM satisfying C > 0 and $\delta = 0$, the GPM nees infinite coherence!

And we find a systematic way to construct such GPMs.

Derivation of result 1: Finding cost-diverging Gibbs-preserving operations

 $\frac{\text{HT}}{\text{B}} \text{ and } \text{R. Takagi, arXiv:2404.03479} (2024)$ Our strategy is to construct a "measurement-and-prepare" channel
satisfying C > 0 and $\delta = 0$.
(for simplicity, I give a special example for this talk. A
more general one is in our paper.)

We consider a four level system and a channel on it as follows:

 $\Lambda(\rho) \coloneqq \operatorname{Tr}[\rho|+_{1,2}\rangle\langle+_{1,2}|]|0,a\rangle\langle0,a| + \operatorname{Tr}[\rho|-_{1,2}\rangle\langle-_{1,2}|]|0,b\rangle\langle0,b| + \operatorname{Tr}[\rho I_0]\xi$ |2> $|\pm_{1,2}\rangle \coloneqq \frac{|1\rangle \pm |2\rangle}{\sqrt{2}}$ $I_0 \coloneqq |0,a\rangle\langle 0,a| + |0,b\rangle\langle 0,b|$ |1> $|0,a\rangle$ $|0,b\rangle$ $\xi \coloneqq \frac{\rho_{\beta|H} - (\mathrm{Tr}[\rho_{\beta|H}|+_{1,2})\langle+_{1,2}|]|0,a\rangle\langle 0,a| + \mathrm{Tr}[\rho_{\beta|H}|-_{1,2}\rangle\langle-_{1,2}|]|0,b\rangle\langle 0,b|)}{\mathrm{Tr}[\rho_{\beta|H} - (\mathrm{Tr}[\rho_{\beta|H}|+_{1,2})\langle+_{1,2}|]|0,a\rangle\langle 0,a| + \mathrm{Tr}[\rho_{\beta|H}|-_{1,2}\rangle\langle-_{1,2}|]|0,b\rangle\langle 0,b|)]}$ This channel satisfies: $|+_{1,2}\rangle \rightarrow |0,a\rangle \quad |-_{1,2}\rangle \rightarrow |0,b\rangle \quad \frac{\rho_{\beta|H} \rightarrow \rho_{\beta|H}}{\xi \ge 0}$ Gibbs-C > 0 and $\delta = 0$ for the ensemble CPTP preserving $\{(1/2,1/2),(|-_{1,2}\rangle, |-_{1,2}\rangle)\}$ This channel satisfies C > 0 and $\delta = 0$, and thus it needs infinite coherence!

Derivation of Result 2

```
<u>HT</u> and R. Takagi, arXiv:2404.03479 (2024)
```

We also find upper and lower bounds of cost for approximate implementation of the cost-diverging GPOs

$$\frac{\mathcal{C}}{\epsilon} - a \leq \sqrt{\mathcal{F}_{\text{cost},\epsilon}(\Lambda)} \leq \frac{2\mathcal{C}}{\epsilon} + a$$

obtained from SIQ tradeoff
obtained from SIQ tradeoff
$$\overset{\text{HT, N. Shiraishi and K. Saito,}}{\underset{\text{PRL 2018 and PRR 2020}}{\mathcal{C}}}$$

From this result, we can see the $\mathcal{F}_{\text{cost},\epsilon} \approx \frac{N}{\epsilon^2}$, where N is the system size.

This scaling is the worst in all of approximate implementations of the CPTP maps.

→GPMs include the "most costly" class in all CPTP maps.

Derivation of Result 3

Result 3 is easily obtained from SIQ.

First, when the test ensemble is $\{(1/2, 1/2), (\rho, \sigma)\}$, we can obtain

When σ is Gibbs state, and Λ is Gibbs-preserving, $\Sigma(\rho|\sigma) = \Sigma(\rho)$, and thus

$$\frac{\mathcal{C}^2}{\left(\sqrt{\mathcal{F}} + \Delta\right)^2} \le \delta \le \sqrt{\Sigma(\rho)}$$

Part II: Coherence enhancement of heat engines

➡general relation between heat current, coherence and entropy production

➡approximate achieving Carnot efficiency with finite power with collective jump

Implication on trade-offs in stochastic thermodynamics?

SIQ tradeoff:

$$\frac{\mathcal{C}}{\sqrt{\mathcal{F}} + \Delta} \le \delta \text{ or } \sqrt{\delta} \qquad \longleftarrow \qquad \underbrace{\text{change of local charge}}_{\text{coherence + const.}} \le \text{irreversiility}$$

Trade-offs in stochastic thermodynamics:

Entropy production rate $\times A \geq$ some current ²

$$\frac{\text{change of local charge}^2}{A} \leq \text{irreversiility}$$

SIQ tradeoff structure in stochastic thermodynamics…?

Coherence effect on tradeoff between heat current and entropy production rate HT and K. Funo, Phys. Rev. Lett. 127, 190604 (2021)

Result:

Quantum part

 A_{qm} is proportional to the amount of coherence between degeneracies

Editor's suggestion +Featured in Physics

Setup:

Coherence effect on tradeoff between heat current and entropy production rate HT and K. Funo, Phys. Rev. Lett. 127, 190604 (2021)

Result:

S-I-Q structure in stochastic thermodynamics!

Editor's suggestion +Featured in Physics

Dissipation-less current

HT and K. Funo, Phys. Rev. Lett. 127, 190604 (2021)

$$\frac{J(\rho)^2}{\dot{\sigma}(\rho)} \le \frac{A_{\rm cl} + A_{\rm qm}}{2}$$

Quantum part

 A_{qm} is proportional to the amount of coherence between degeneracies

When $A_{qm} = O(N^2)$, the scaling J = O(N) and $\dot{\sigma} = O(1)$ are formally possible.

➡Coherence can cause macroscopic heat current without entropy increase

We can construct an concrete example satisfying

$$A_{\rm qm} = O(N^2) \qquad \& \qquad \begin{aligned} J &= O(N) \\ \dot{\sigma} &= O(1) \end{aligned}$$

➡dissipation-less current

Application : effective realization finite power with Carnot efficiency

With using dissipation-less current, we can achieve the Carnot efficiency with finite power *effectively*.

$$J = O(N)$$
$$\dot{\sigma} = O(1)$$

$$\eta = \eta_{Car} - O(1/N)$$
$$W/\tau = O(N)$$

Summary

<u>HT</u>, R. Takagi, Y. Kuramochi, arXiv:2206.11086, (2022)

• Gibbs-preserving maps requiring infinite amount of coherence

 trade-off between generalized entropy production and coherence cost of arbitrary quantum operations <u>HT</u> and R. Takagi, arXiv:2404.03479 (2024) • general relation between heat current, coherence and entropy production

• approximate achieving Carnot efficiency with finite power with collective jump

HT and K. Funo, Phys. Rev. Lett. 127, 190604 (2021)

Thank you for attention!