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Topics of this talk

Coherence costs of operations in quantum thermodynamics
・・・and coherence enhancement on heat engines

・Resource theory of thermodynamics
=resource theoretic approach to thermodynamics

Remark on wording in this talk: 
・quantum thermodynamics=thermodynamics in quantum systems



Topics of this talk

Coherence costs of operations in thermodynamics of quantum systems

Related works:
HT and R. Takagi, 
arXiv:2404.03479 (2024)

Related work:
HT and K. Funo, 
PRL. 127, 190604 (2021)
(Editor’s suggestion +Featured in Physics)

HT, N. Shiraishi, K. Saito, 
PRL 121, 110403 (2018)
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Second part of this talk

First part of this talk

・・・and coherence enhancement on heat engines



Part I:
Coherence costs of operations in quantum thermodynamics

Lower and upper bounds of coherence cost of approximate 
implementation of the cost-diverging Gibbs preserving maps

trade-off between generalized entropy production and 
coherence cost of arbitrary quantum operations

Gibbs-preserving maps requiring infinite amount of coherence



Outline of Part I

Backgrounds and brief summery of results

Details of Results:

Techniques:
Trade-off between symmetry, irreversibility and quantum coherence

・Lower and upper bounds of coherence cost of approximate implementation 
of Gibbs preserving maps

・trade-off between generalized entropy production and coherence cost of 
arbitrary quantum operations

・Gibbs-preserving maps requiring infinite amount of coherence
・Setup and quantities



Gibbs-preserving maps

In quantum thermodynamics, the Gibbs preserving map is an important class of 
operations

・ℰ 𝜌𝜌𝛽𝛽|𝐻𝐻 = 𝜌𝜌𝛽𝛽|𝐻𝐻𝐻

・It corresponds to the “isothermal process”: 
a common class of operations in quantum thermodynamics

ℰ is a Gibbs preserving map・ℰ is CPTP

・It also plays a central role in resource theory of thermodynamics
one of two possible “free operations”



Gibbs-preserving maps
In resource theory, we divide states and operations into two classes, 
respectively

free resource

We assume that “free states” and 
“free operations” can be used freely.

All states and operations that are not  
achievable with combining free states 
and operations are resource.

We consider “free states” and “free 
operations” easy to realize.

Good references for resource theory:

Resource theory of thermodynamics: 
T. Sagawa, SpringerBriefs in Mathematical Physics 16 (2022) (textbook)
Resource theory of asymmetry: 
I. Marvian, PhD thesis (2012). 

Review for various resource theories:
E. Chitambar and G. Gour, Rev. Mod. Phys. 91, 025001 (2019).

The structure of the resource theory depends on the choice of free operations. 
And resource theory of thermodynamics has two candidates of free operations:

Gibbs-preserving operations and thermal operations



Gibbs-preserving operation v.s. thermal operation
Thermal operation:

Gibbs preserving operation:

ℰ 𝜌𝜌𝛽𝛽|𝐻𝐻 = 𝜌𝜌𝛽𝛽|𝐻𝐻

Thermal operation: implementable, but difficult to treat

𝜌𝜌𝛽𝛽𝐻𝐻𝐵𝐵
𝐻𝐻𝐴𝐴 + H𝐵𝐵 = 𝑈𝑈† 𝐻𝐻𝐴𝐴 + 𝐻𝐻𝐵𝐵 𝑈𝑈

Thermal operation

Gibbs preserving operation: easy to treat.
Recent important works in resource theory of thermodynamics 
employ Gibbs preserving maps:

P. Faist and R. Renner, PRX 8, 021011 (2018).
P. Faist, M. Berta, and F. Brandao, PRL122, 200601 (2019).
F. Buscemi, D. Sutter, and M. Tomamichel, Quantum 3, 209 (2019).
N. Shiraishi and T. Sagawa, PRL 126, 150502 (2021).

Therefore, it is important to clarify the relation between the thermal operations and the Gibbs 
preserving maps. 



Gibbs-preserving map v.s. thermal operation

Thermal operation Gibbs preserving map⊂
It is easily obtained:

But, the reverse is not true. Namely,

Thermal operation

Gibbs preserving map

Operations belonging to here 
actually exist:

P. Faist, J. Oppenheim, and R. Renner, 
New J. Phys. 17, 043003 (2015)

𝜌𝜌
𝐻𝐻𝐴𝐴 + H𝐵𝐵 = 𝑈𝑈† 𝐻𝐻𝐴𝐴 + 𝐻𝐻𝐵𝐵 𝑈𝑈

To realize Λ,

The article gives an example of Gibbs-preserving 
map Λ such that 

we need to prepare a state satisfying 𝜌𝜌,𝐻𝐻𝐵𝐵 ≠ 0 here.

Since Gibbs state satisfies
𝜌𝜌𝛽𝛽|𝐻𝐻𝐵𝐵 ,𝐻𝐻𝐵𝐵 = 0,

the GPM Λ cannot be a thermal 
operation.



Cost of Gibbs-preserving map
Some Gibbs-preserving maps require extra states satisfying 𝜌𝜌,𝐻𝐻𝐵𝐵 ≠ 0 .

some Gibbs preserving maps requires extra energetic
coherence (i.e. quantum fluctuation of energy).

It is important, because Gibbs-preserving maps are considered to be free, 
and thus they should be easy to realize.

Question: What is a general upper limit of required energetic 
coherence to realize an arbitrary Gibbs-preserving map?

This problem is in a formal list of open problems in quantum information theory: 
https://oqp.iqoqi.oeaw.ac.at/thermodynamic-implementation-of-gibbs-preserving-maps

𝜌𝜌

𝐻𝐻𝐴𝐴 + H𝐵𝐵 = 𝑈𝑈† 𝐻𝐻𝐴𝐴 + 𝐻𝐻𝐵𝐵 𝑈𝑈

To realize an arbitrary GPO Λ

how much resource 
should 𝜌𝜌 have?



Gibbs-preserving maps requiring infinite amount 
of coherence

Result 1-A: some Gibbs-preserving maps require infinite amount of 
energetic coherence (quantum fluctuation of energy), and thus they are 
not realizable.

HT and R. Takagi, arXiv:2404.03479 (2024)

Result 1-B:There are sets of (𝜌𝜌,𝜎𝜎) such that

Thermal operation

Gibbs preserving map(GPM)

Cost-diverging 
GPM

Operations belonging to here exist

𝜌𝜌 𝜎𝜎
possible by cost-diverging GPM,
but impossible by finite-cost GPM

These results are given by general tradeoff between coherence cost
and irreversibility: Results 2 and 3
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Preparation 1: measure of energetic coherence
Energetic coherence in 𝜌𝜌 is measured by the SLD-
quantum Fisher information for state family {𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝜌𝜌𝑒𝑒𝑖𝑖𝐻𝐻𝑡𝑡}: 

ℱ𝜌𝜌 𝐻𝐻 ≔ Σ
𝑖𝑖𝑖𝑖

2 𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗
2

𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑗𝑗
𝑖𝑖 𝐻𝐻 𝑗𝑗 2

{𝑝𝑝𝑖𝑖 , |𝑖𝑖⟩} are the eigenvalues and eigenvectors of 𝜌𝜌.

Property 1: ℱ𝜌𝜌 𝐻𝐻 is a standard measure of quantum fluctuation of energy:
ℱ𝜌𝜌 𝐻𝐻 = 4 min

𝑞𝑞𝑗𝑗,|𝜙𝜙𝑗𝑗⟩ :𝜌𝜌=∑𝑗𝑗 𝑞𝑞𝑗𝑗𝜙𝜙𝑗𝑗
∑𝑗𝑗 𝑞𝑞𝑗𝑗𝑉𝑉𝜙𝜙𝑗𝑗 (𝐻𝐻)

S. Yu, arXiv:1302.5311 (2013).

Property 2: SLD-Quantum Fisher information is a standard measure of 
resource in the resource theory of asymmetry.

I. Marvian, Nat. Comm. 11, 25 (2020).

C. Zhang, et al., PRA 96, 042327 (2017). 
R. Takagi, Scientific Reports 9, 14562 (2019).

I. Marvian, PRL 129 190502 (2022).



Preparation 2: coherence cost of quantum operations

𝜌𝜌

𝐻𝐻𝐴𝐴 + H𝐵𝐵 = 𝑈𝑈† 𝐻𝐻𝐴𝐴 + 𝐻𝐻𝐵𝐵 𝑈𝑈

≈𝜖𝜖 Λ

ℱ𝑐𝑐𝜖𝜖 Λ : = inf{ℱ𝜌𝜌 𝐻𝐻𝐵𝐵 | 𝑈𝑈,𝜌𝜌,𝐻𝐻𝐵𝐵 realizes Λ within error 𝜖𝜖}

𝑈𝑈,𝜌𝜌,𝐻𝐻𝐵𝐵 realizes Λ within error 𝜖𝜖 

def
𝐻𝐻𝐴𝐴 + H𝐵𝐵 = 𝑈𝑈† 𝐻𝐻𝐴𝐴 + 𝐻𝐻𝐵𝐵 𝑈𝑈max

𝜉𝜉
𝐷𝐷𝐹𝐹 Λ 𝜉𝜉 , Tr𝐵𝐵 𝑈𝑈𝜉𝜉 ⊗ 𝜌𝜌𝜌𝜌† ≤ 𝜖𝜖 ＆



Result 1: Cost-diverging Gibbs-preserving operations
We prove the following theorem:

Therefore, there are cost-diverging GPO between almost arbitrary systems.

If systems S and S’ satisfy the following ordering condition

HT and R. Takagi, arXiv:2404.03479 (2024)

Theorem 1:

𝜏𝜏𝑆𝑆,𝑖𝑖 < 𝜏𝜏𝑆𝑆′,𝑖𝑖𝑖 < 𝜏𝜏𝑆𝑆,𝑗𝑗, 𝜏𝜏𝑆𝑆,𝑖𝑖: 𝑖𝑖-th eigenvalue of the Gibbs state on S

there exists a cost-diverging Gibbs-preserving operation Λ: S → 𝑆𝑆′such that
ℱ𝑐𝑐𝜖𝜖=0(Λ) = ∞

Ex: S and S’ are three level systems, and H_S=H_{S’} are the same non-degenerate Hamiltonian
Then, 𝜏𝜏𝑆𝑆,3 < 𝜏𝜏𝑆𝑆′,2 < 𝜏𝜏𝑆𝑆,1 holds, and thus there is a 
cost-diverging Gibbs-preserving map from S to S’. 

Ex 2: S and S’ are two level systems and the energy gap of H_{S’} is smaller than H_S.

Then, 𝜏𝜏𝑆𝑆,2 < 𝜏𝜏𝑆𝑆′,2 < 𝜏𝜏𝑆𝑆,1 holds, and thus there is a 
cost-diverging Gibbs-preserving map from S to S’. 

∃𝑖𝑖, 𝑖𝑖𝑖, 𝑗𝑗,



We prove the following theorem:

Therefore, there are infeasible state transition between almost arbitrary S and S’

When S and S’ satisfy the same condition as Theorem 1,

HT and R. Takagi, arXiv:2404.03479 (2024)

Theorem 2:

there exist 𝜌𝜌 on S and 𝜎𝜎 on S’ such that
・𝜌𝜌 → 𝜎𝜎 can be realized by a Gibbs-preserving map

Ex1: Ex 2:

・𝜌𝜌 → 𝜎𝜎 cannot be realized by a finite-cost Gibbs-preserving map

Result 1: Cost-diverging Gibbs-preserving operations



Result 2: Upper and lower bound for approximate implementation

We also find upper and lower bounds of cost for approximate implementation 
of the cost-diverging GPMs

GPMs include the “most costly” class in all CPTP maps.

From this result, we can see the ℱcost𝜖𝜖 ≈ 𝑁𝑁
𝜖𝜖2

, where 𝑁𝑁 is the system size.

HT and R. Takagi, arXiv:2404.03479 (2024)

We also show that this scaling is the worst in all of approximate 
implementations of the CPTP maps.

𝒞𝒞 : coefficient corresponding to the change of energy by Λ. 
We define it later.

𝒞𝒞
𝜖𝜖
− 𝑎𝑎 ≤ ℱcost𝜖𝜖 Λ ≤

2𝒞𝒞
𝜖𝜖

+ 𝑎𝑎

𝑎𝑎 : a constant



Result 3: Tradeoff between coherence and entropy production for 
arbitrary Gibbs preserving map

ℱ𝑐𝑐𝜖𝜖=0 Λ ≥ max
𝜌𝜌

𝒞𝒞2

Σ(𝜌𝜌)
− Δ2

・When Λ is Gibbs-preserving, the entropy production can be expressed as 

= 𝐷𝐷 𝜌𝜌|𝜌𝜌𝛽𝛽|𝐻𝐻 − 𝐷𝐷(ℰ(𝜌𝜌)|ℰ(𝜌𝜌𝛽𝛽|𝐻𝐻𝐻))

Σ 𝜌𝜌 ≔ ΔS 𝜌𝜌 − 𝛽𝛽𝛽𝛽

・Then, the coherence cost of Λ is bounded by the entropy production as 
follows: 

Example of application:

𝑈𝑈,𝐻𝐻𝑆𝑆 + 𝐻𝐻𝑅𝑅 + 𝐻𝐻𝐶𝐶 = 0

system
Heat Reservoir

（Gibbs states）
Other systems

（e.g. coherence battery, 
catalyst）

Gibbs states do not have coherence of energy.
we can evaluate the amount of coherence in C.



Result 3B: Tradeoff between coherence and entropy production for 
arbitrary Gibbs preserving map

ℱ𝑐𝑐𝜖𝜖=0 Λ ≥ max
𝜌𝜌

𝒞𝒞2

Σ(𝜌𝜌|𝜎𝜎)
− Δ2

When Λ is not Gibbs-preserving, the generalized entropy production is defined as 

Σ 𝜌𝜌 𝜎𝜎 : = 𝐷𝐷 𝜌𝜌|𝜎𝜎 − 𝐷𝐷(ℰ(𝜌𝜌)|ℰ(𝜎𝜎))

Then, the coherence cost of Λ is bounded by the entropy production as 
follows: 

Example of application:

𝑈𝑈,𝐻𝐻𝑆𝑆 + 𝐻𝐻𝑅𝑅 + 𝐻𝐻𝐶𝐶 = 0

system
Heat Reservoir

（Gibbs states）
Other systems

（e.g. coherence battery, 
catalyst）

We can evaluate the amount of coherence in C to 
realize arbitrary channel Λ.
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Theorem：

Technique: symmetry-irreversibility-quantumness tradeoff

𝒞𝒞
ℱ + Δ

≤ 𝛿𝛿 or 𝛿𝛿

Examples of applications：
Quantum computation, error corrections, measurement theory,
OTOC, black hole physics,…

H. Tajima, R. Takagi, Y. Kumorachi, arXiv:2206.11086 (2022).

21

Let’s see the details.



ℰ
𝜌𝜌𝐵𝐵

𝑋𝑋𝐴𝐴′ + X𝐵𝐵′ = 𝑈𝑈† 𝑋𝑋𝐴𝐴 + 𝑋𝑋𝐵𝐵 𝑈𝑈

22

ℰ … : = Tr𝐵𝐵′[𝑈𝑈 …⊗𝜌𝜌𝐵𝐵 𝑈𝑈†]

Change of local conserved charge 𝑋𝑋𝐴𝐴 by ℰ

Quatnum coherence of 𝑋𝑋𝐵𝐵 in B＝Fisher information Positive constant
Irreversibility of ℰ

Result
𝒞𝒞
ℱ + Δ

≤ 𝛿𝛿 or 𝛿𝛿

Technique: symmetry-irreversibility-quantumness tradeoff
setup



Properties of key quantities

𝒞𝒞
ℱ + Δ

≤ 𝛿𝛿 or 𝛿𝛿

𝛿𝛿𝑘𝑘 ≔ 𝐷𝐷𝐹𝐹(𝜌𝜌𝑘𝑘,ℛ ∘ ℰ(𝜌𝜌𝑘𝑘))

𝐷𝐷𝐹𝐹 (𝜌𝜌, 𝜎𝜎): = 1 − 𝐹𝐹2(𝜌𝜌,𝜎𝜎)

ℰ{pk,𝜌𝜌𝑘𝑘} {pk,ℛ ∘ ℰ(𝜌𝜌𝑘𝑘)}

𝛿𝛿 ≔ min
ℛ:𝐴𝐴′→𝐴𝐴

�
𝑘𝑘

𝑝𝑝𝑘𝑘𝛿𝛿𝑘𝑘2

Irreversibility δ : function of ℰ and a “test ensemble” pk,𝜌𝜌𝑘𝑘 𝑘𝑘∈𝒦𝒦

recovery error for 𝝆𝝆𝒌𝒌

23
＆ Hiroyasu Tajima, 2103.01876 2206.11086



Properties of key quantities

𝒞𝒞
ℱ + Δ

≤ 𝛿𝛿 or 𝛿𝛿

𝛿𝛿 ≔ min
ℛ:𝐴𝐴′→𝐴𝐴

�
𝑘𝑘

𝑝𝑝𝑘𝑘𝛿𝛿𝑘𝑘2

Irreversibility δ : function of ℰ and a “test ensemble” pk,𝜌𝜌𝑘𝑘 𝑘𝑘∈𝒦𝒦

Property: δ gives lower bounds for various irreversibility measures.

e.g., it bounds the entropy production, the entanglement-fidelity recovery 
error, and the error of Petz map recovery, etc. 

𝛿𝛿 ≤ Σ, 𝛿𝛿 ≤ 𝛿𝛿𝑄𝑄, and 𝛿𝛿 ≤ 𝛿𝛿𝑃𝑃
2

,

24
＆ Hiroyasu Tajima, 2103.01876 2206.11086



Properties of key quantities

𝓒𝓒 : Degree of change of local charge

𝒞𝒞
ℱ + Δ

≤ 𝛿𝛿 or 𝛿𝛿

Property: ・For the test states are orthogonal pure states {|𝜓𝜓𝑘𝑘⟩} , 

𝒞𝒞 ≔ ∑
𝑘𝑘≠𝑘𝑘𝑘

𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘𝑘Tr[ 𝜌𝜌𝑘𝑘 − 𝜌𝜌𝑘𝑘′ +𝑌𝑌𝐴𝐴 𝜌𝜌𝑘𝑘 − 𝜌𝜌𝑘𝑘′ −𝑌𝑌𝐴𝐴]

𝑂𝑂 ± ≔Positive (negative) part of the Hermitian operator O
𝑌𝑌𝐴𝐴 ≔ 𝑋𝑋𝐴𝐴 − ℰ†(𝑋𝑋𝐴𝐴𝐴)

・ℰ changes 𝑋𝑋𝐴𝐴 non-trivially (i.e.𝑌𝑌𝐴𝐴 ∝ 1𝐴𝐴)⇒ 𝒞𝒞 > 0

𝒞𝒞 = ∑
𝑘𝑘≠𝑘𝑘𝑘

𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘𝑘 𝜓𝜓𝑘𝑘 𝑌𝑌𝐴𝐴 𝜓𝜓𝑘𝑘′ 2

Operator of change of local charge

Sum of absolute values non-
diagonal parts



SIQ tradeoff

𝒞𝒞
ℱ + Δ

≤ 𝛿𝛿 or 𝛿𝛿

For an arbitrary test ensemble {𝑝𝑝𝑘𝑘,𝜌𝜌𝑘𝑘}

For the test states {𝜌𝜌𝑘𝑘} are orthogonal each other, 
i.e., F 𝜌𝜌𝑘𝑘 ,𝜌𝜌𝑘𝑘′ = 0 for k ≠ 𝑘𝑘′,  



Messages of SIQ tradeoff

𝒞𝒞
ℱ + Δ

≤ 𝛿𝛿 or 𝛿𝛿

𝒞𝒞>0 ⇒ 𝛿𝛿>0
When ℰ changes the local charge nontrivially, 
ℰ must be irreversible.

2. The coherence in B (= ℱ) can mitigate the irreversibility.

1.

Under global symmetry, local charge cannot be changed without irreversibility. 
But the irreversibility can be mitigated by quantum coherence.

Take home message:



Derivation of result 1: Finding cost-diverging 
Gibbs-preserving maps

And we find a systematic way to construct such GPMs.

𝒞𝒞
ℱ + Δ

≤ 𝛿𝛿 or 𝛿𝛿

Therefore, if we can find a GPM satisfying 𝒞𝒞 > 0 and 𝛿𝛿 = 0, the GPM 
nees infinite coherence!  

HT and R. Takagi, arXiv:2404.03479 (2024)

HT, R. Takagi and Y. Kuramochi, 
arXiv:2206.03479 (2022)

𝒞𝒞
𝛿𝛿
− Δ ≤ ℱ𝑐𝑐𝜖𝜖=0 Λ



Derivation of result 1: Finding cost-diverging 
Gibbs-preserving operations

Our strategy is to construct a “measurement-and-prepare” channel 
satisfying 𝒞𝒞 > 0 and 𝛿𝛿 = 0. 

This channel satisfies 𝒞𝒞 > 0 and 𝛿𝛿 = 0, and thus it needs infinite coherence!  

HT and R. Takagi, arXiv:2404.03479 (2024)

We consider a four level system and a channel on it as follows:

|0, 𝑎𝑎⟩ |0, 𝑏𝑏⟩

|1⟩

|2⟩

(for simplicity, I give a special example for this talk. A 
more general one is in our paper.) 

Λ 𝜌𝜌 ≔ Tr[𝜌𝜌|+1,2⟩⟨+1,2|]|0, 𝑎𝑎⟩⟨0, a| + Tr[𝜌𝜌|−1,2⟩⟨−1,2|]|0, 𝑏𝑏⟩⟨0, b| + Tr[𝜌𝜌𝐼𝐼0]𝜉𝜉

±1,2 ≔
1 ± |2⟩

2

𝜉𝜉 ≔
𝜌𝜌𝛽𝛽|𝐻𝐻 − (Tr[𝜌𝜌𝛽𝛽|𝐻𝐻|+1,2⟩⟨+1,2|]|0, 𝑎𝑎⟩⟨0, a| + Tr[𝜌𝜌𝛽𝛽|𝐻𝐻|−1,2⟩⟨−1,2|]|0, 𝑏𝑏⟩⟨0, b|)

Tr[𝜌𝜌𝛽𝛽|𝐻𝐻 − (Tr[𝜌𝜌𝛽𝛽|𝐻𝐻|+1,2⟩⟨+1,2|]|0, 𝑎𝑎⟩⟨0, a| + Tr[𝜌𝜌𝛽𝛽|𝐻𝐻|−1,2⟩⟨−1,2|]|0, 𝑏𝑏⟩⟨0, b|)]

𝐼𝐼0 ≔ |0, 𝑎𝑎⟩⟨0, a| + |0, 𝑏𝑏⟩⟨0, b|

This channel satisfies: +1,2 → |0, 𝑎𝑎⟩ −1,2 → |0, 𝑏𝑏⟩ 𝜌𝜌𝛽𝛽|𝐻𝐻 → 𝜌𝜌𝛽𝛽|𝐻𝐻 𝜉𝜉 ≥ 0

Gibbs-
preserving CPTP𝒞𝒞 > 0 and 𝛿𝛿 = 0 for the ensemble 

{(1/2,1/2),( −1,2 , −1,2 )}



Derivation of Result 2

We also find upper and lower bounds of cost for approximate implementation 
of the cost-diverging GPOs

GPMs include the “most costly” class in all CPTP maps.

𝒞𝒞
𝜖𝜖
− 𝑎𝑎 ≤ ℱcost,𝜖𝜖 Λ ≤

2𝒞𝒞
𝜖𝜖

+ 𝑎𝑎

From this result, we can see the ℱcost,𝜖𝜖 ≈
𝑁𝑁
𝜖𝜖2

, where 𝑁𝑁 is the system size.

HT and R. Takagi, arXiv:2404.03479 (2024)

This scaling is the worst in all of approximate implementations of the 
CPTP maps.

obtained from SIQ tradeoff 
obtained from upper bound of 

coherence cost for unitary 
implementation 

HT, N. Shiraishi and K. Saito, 
PRL 2018 and PRR 2020



Derivation of Result 3

𝒞𝒞2

ℱ + Δ
2 ≤ 𝛿𝛿 ≤ Σ(𝜌𝜌)

Result 3 is easily obtained from SIQ.

First, when the test ensemble is {(1/2,1/2),(𝜌𝜌,𝜎𝜎)}, we can obtain

𝛿𝛿 ≤ Σ(𝜌𝜌|𝜎𝜎)
Generalized entropy production

Σ 𝜌𝜌 𝜎𝜎 ≔ 𝐷𝐷 𝜌𝜌 𝜎𝜎 − 𝐷𝐷(Λ(𝜌𝜌)|Λ(𝜎𝜎))

When 𝜎𝜎 is Gibbs state, and Λ is Gibbs-preserving, Σ 𝜌𝜌 𝜎𝜎 = Σ(𝜌𝜌), and thus   



Part II:
Coherence enhancement of heat engines

general relation between heat current, coherence and entropy 
production

approximate achieving Carnot efficiency with finite power 
with collective jump



Implication on trade-offs in stochastic thermodynamics?

SIQ tradeoff structure in stochastic thermodynamics…?

𝒞𝒞
ℱ + Δ

≤ 𝛿𝛿 or 𝛿𝛿 change of local charge
coherence + const.

≤ irreversiility

SIQ tradeoff:

Trade-offs in stochastic thermodynamics:

Entropy production rate × 𝐴𝐴 ≥ some current 2

change of local charge2

𝐴𝐴
≤ irreversiility



Coherence effect on tradeoff between heat current and 
entropy production rate 34HT and K. Funo, Phys. Rev. Lett. 127, 190604 (2021)

Editor’s suggestion +Featured in Physics

𝐽𝐽 𝜌𝜌 2

𝜎̇𝜎(𝜌𝜌)
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2
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𝐴𝐴qm is proportional to the amount of 
coherence between degeneracies

Quantum part



Coherence effect on tradeoff between heat current and 
entropy production rate 35HT and K. Funo, Phys. Rev. Lett. 127, 190604 (2021)

Editor’s suggestion +Featured in Physics

𝐽𝐽 𝜌𝜌 2

𝜎̇𝜎(𝜌𝜌)
≤
𝐴𝐴cl + 𝐴𝐴qm

2

Result:
𝐴𝐴qm is proportional to the amount of 
coherence between degeneracies

Quantum part

(change of local charge)2

coherence + const.
≤ irreversiility

2𝐽𝐽 𝜌𝜌 2

𝐴𝐴qm + 𝐴𝐴cl
≤ 𝜎̇𝜎 𝜌𝜌

S-I-Q structure in stochastic thermodynamics!



Dissipation-less current
36HT and K. Funo, Phys. Rev. Lett. 127, 190604 (2021)

𝐽𝐽 𝜌𝜌 2

𝜎̇𝜎(𝜌𝜌)
≤
𝐴𝐴cl + 𝐴𝐴qm

2

When 𝐴𝐴qm = 𝑂𝑂(𝑁𝑁2), the scaling 𝐽𝐽 = 𝑂𝑂 𝑁𝑁 and 𝜎̇𝜎 = 𝑂𝑂(1) are formally 
possible. 

𝐴𝐴qm is proportional to the amount of 
coherence between degeneracies

Quantum part

Coherence can cause macroscopic heat current without entropy increase

We can construct an concrete example satisfying

𝐴𝐴qm = 𝑂𝑂(𝑁𝑁2)
𝐽𝐽 = 𝑂𝑂(𝑁𝑁)

𝜎̇𝜎 = 𝑂𝑂(1)
＆

dissipation-less current



Application：effective realization finite power with 
Carnot efficiency

37

𝑊𝑊/𝜏𝜏 = 𝑂𝑂(𝑁𝑁)

With using dissipation-less current, we can  achieve the Carnot 
efficiency with finite power effectively.

𝐽𝐽 = 𝑂𝑂(𝑁𝑁)
𝜎̇𝜎 = 𝑂𝑂(1)



Symmetry

Summary

𝒞𝒞
ℱ + Δ

≤ 𝛿𝛿 or 𝛿𝛿
2𝐽𝐽 𝜌𝜌 2

𝐴𝐴qm + 𝐴𝐴cl
≤ 𝜎̇𝜎 𝜌𝜌

・Gibbs-preserving maps requiring 
infinite amount of coherence
・trade-off between generalized entropy 
production and coherence cost of arbitrary 
quantum operations

・general relation between heat current, 
coherence and entropy production
・approximate achieving Carnot efficiency 
with finite power with collective jump
HT and K. Funo, Phys. Rev. Lett. 127, 190604 (2021)

HT and R. Takagi, 
arXiv:2404.03479 (2024)

HT, R. Takagi, Y. Kuramochi, 
arXiv:2206.11086, (2022)



Thank you for attention!
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