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Let me first introduce myself:

| have been working on

quantum Hall edge state

quantum dots/wires

MesOoSCcopIC systems

graphene focusing mainly on
topological insulators transport properties
Recently,

non-Hermitian quantum systems
Maybe, in the near future,

machine/deep learning, etc.
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Important Dates

July 1st — August 2nd, 2024:
Workshop

March 31st, 2023: Website open

ZTYITP

J:. -w YUKAWA INSTITUTE FOR

THEORETICAL PHYSICS

dynamics

Rregam ITIPRATDELES REGISIALIGN

non-equilibrium
quantum
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Dynamics Days Asia Pacific 13 will be held as YKIS2024

University.

Scope

Dynamics Days meetings are international meetings which launched in 1980 with focus on the nonlinear
dynamics. Dynamics Days Asia Pacific started in 1999 in Hong Kong, and are moved to Hangzhou (2002),
Singapore (2004), Pohang (2006), Nara (2008), Sydney (2010), Taipei (2012), Chennai (2014), Hong Kong (2016),
Xiamen (2018), Singapore (2020) and Daejong (2022). Now, DDAP13 will be held in Kyoto, Japan on July 1st-5th
as a part of the long-term workshop. Topics include

~ Dynamics of complex systems
~ Dynamics of nonequilibrium systems

~ Dynamics of quantum systems
~ Dynamics of condensed matter and photonics

~ Dynamics of active and biological systems
~ Dynamics of earth climate

~ Dynamics of machine learning

The meeting will offer invited talks without any parallel sessions. The meeting is supposed to be hybrid, but
participants are strongly encouraged to come to the YITP which is the meeting place.

Since 1987, Yukawa Institute for Theoretical Physics (YITP) has hosted an international research meeting
known as the Yukawa International Seminar (YKIS). This is a five-day international symposium held jointly

with the Yukawa Memorial Foundation.
Dact VKTICAc
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non-reciprocal

REK... .
grE= lp31)—2-
e |7 S0 x SCOpe (hOpplng)
I A In thermal equilibrium, Gaussian fluctuations play a decisive role, and their behavior is well understood.
'?ﬁﬁlm&:w However, the statistical mechanics in non-equilibrium systems is characterized by non-Gaussian fluctuations.
- One of the milestones is to establish the framework of stochastic thermodynamics, which is relatively new.
'L_" 'C + | Such a framework is relevant to describe fluctuating motion in small systems. Nevertheless, we still do not
| . know how relaxation processes are affected by non-equilibrium fluctuations, topological constraints, and
L Google 7 quantum effects. Thus, we invite researchers in this field from all over the world. Moreover, non-Gaussian
= WEr-y 02024 FAAK & features in non-equilibrium systems require a new framework of statistical physics. Indeed, there is no

reciprocal theorem for strongly non-equilibrium systems associated with a non-reciprocal phase transition.
|

Important Dates —

Such non-reciprocal relations can be observed in active matter systems easily. Classical densely packed
July 1st — August 2nd, 2024:
Workshop

systems exhibit different behavior from usual systems: thermal fluctuations do not significantly affect the
motion of individual elements like colloids, powders, and bubbles when these constituents are random and
March 31st, 2023: Website open large. To describe their dynamics, we require a distinct logic. Thus, a new branch of non-equilibrium statistical

physics is essential to understand and describe these dynamic, self-driven systems.

- - _
- T P There is a worldwide momentum for discussion on these topics, and | (non —)g aussian

“"uu YURANARGTITUTE FOR week of the workshop is dedicated to a relatively large international v 7 .
(DDAP13), the Yukawa International Seminar (YKIS2024). The second (n on _) recli p rocal
related to stochastic thermodynamics. The fourth week will focus on active matter, non-reciprocal transitions,

and the Mpemba effect. The fifth week of the conference will focus on jamming and rheology of dense



AS the 3rd speaker of the workshop,

Conjecture:
This talk merges the ideas of the 1st and 2nd speakers

cf. in the Hermitian case: ETH vs. MBL

- ETH: eigenstates thermalizes themselves in the presence
of interaction at sufficiently weak disorder

The interaction also tends to delocalize the wave function
- MBL.: a counter example

What about the non-Hermitian case?

In this talk, we aim at adadressing the questions such as:

- Do eigenstates still thermalize also in the non-Hermitian
delocalized regime?

Possibly, a related question:

- What is the (analogue of) ground state in the non-Hermitian
delocalized regime?

5



Non-Hermitian quantum mechanics

In quantum mechanics, textbooks say
Hamiltonian must be (?) Hermitian in a closed system

- real eigenvalues cf. von Neumann, C. Bender,...
- probabllity conservation

Here, we consider open quantum systems
= system + environment

) .
Figenstates: reservoirs/leads
(eigenvectors) > system Hlng) = Ep|ng)
(np|H = Ep(ng|
................... J (nLl # Ing)" (MRlnR) # dmnn

— 5mn
" no longer orthogonal mlng)

(bi-orthogonal: left/right eigenstates)



Typical examples of a non-Hermitian Hamiltonian

1) Gain vs. loss type : (sometimes) PT symmetric =% next speaker

- - gain

} ¢ -
H = Z i +iy N _— 2
— X X .
B B 1 \/ - Zf}/
Bender & Boettcher, PRL1998;
Guo et al. PRL2009 loss
2) Non-reciprocal hopping type |The Hatano-Nelson type
(@asymmetric) F
0 Ty R .
H=11. 0 T R
- R = 1 V
Hatano & Nelson, PRL1996; PRB1998 F
Yao & Wang, PRL2018: L

I'p # g



The Hatano-Nelson model:

A 1D tight-binding model with asymmetric/non-

reciprocal hopping:

Hun = ) _(Crlj+ 1)+ Tl G + 1]+ W;l5) ()

J

Hatano & Nelson,
PRL1996; PRB1998

FR — 6_gF0,FL — GQFO

g 75 0 —» asymmetry/non-reciprocity in hopping

Basic (static) properties:

In the clean limit: complex spectrum (pbc), skin effect (obc), and
the sensitivity to the boundary condition

The spectrum:

®
g
_%

0.1

........ <eeceeephC: complex

obc:*real

*
4ReE
S

-1

0.4 -

o

0.2

31

0.1/

The wave function:

pbc: plane-wave like
obc: skin effect

| L | L e L | . " o " " & " &
o |20||/° 40 60 80 100



Propagation m

Experimental realizations

of the “effective” Hatano-Nelson models

- mechanical material

k(1 +¢)
—> > > > —
k(1 —¢)
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Weidemann et al., Science 2020

(ii) (iii)
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g o . s | 5
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I~ 0 ° %M
010 &1L 1+ [ v | AR R N R B
. ] ] 0.04 0.06 0.08 0.04 006 0.08
- electric circuit Re(j) (@) Re(j) @)
Helbig et al.,
Nat. Phys. =
2020

Re[A] [1/1]

Palacios et al., Nat. Commun. 2021

skin effect/open boundary
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- Disordered case: localization-delocalization transition
Non-Hermiticity tends to delocalize the wave function

The (on-site) disorder potential: W; e |-W/2,W /2]
(in the original work of Hatano & Nelson) (uncorrelated disorder)

Here, we consider the case of quasi-periodic disorder (Aubry-

Andre model) W, = W cos(2r05 + 6o), Aubry & Andre, AIPS "80
¢ : an irrational constant e.d., (chosen typically to be) 0 = \/52_ !
0y : disorder configuration — sample average
wave function: spectrum (eigenvalues):
delocalized <«—» complex Hatano & Nelson,
localized <+— real PRL 96

cf. in 1D all the states are localized in a Hermitian disordered
system (Anderson '58)
10
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: IPR
2.0 :

delocalized
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1
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IPR: inverse
participation ratio

IPR=/|¢|4da;

- in the localized regime:
Y(x) ~d(x) IPR ~1
- In the delocalized

—

kx
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1 1
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Hermitian case : disorder suppresses

Wave-packet dynamics

spreading of the wave packet
: 0
= P;(t)]4)
J ' 200
— Z cne "ntn),

- Initial wave packet:
(t = 0)) = |jo) 609

localized at a single
site 200

site

400

Y W=2.4

site

400
- Mechanism underlying

the spreading of wave 600
packet: 0 50 100 0 50 100
time time

The stationary phase condition:

[B(t)) =Y e " k) (kljo) < Zwk k)

k
_ 1 Z Z e—iekt+ik(jo—1) | jy —P |ocation of wave front: “light cone
VL cf. Lieb-Robinson bound

QFQ SiIlE t = ] —j().



Wave-packet dynamics (on-Hermitian case

A caveat:

i : - : Hamiltonian: non-Hermitian
Specificity of the non-unitary time evolution: rontan. non-riermiia

time evolution: non-unitary

(W(t)|¥(t)) is not conserved

- in the expansion: complex: Im E, # 0

8%

+£ |co(0)]*  are no longer
constants

eigenstates co ()
—P e focus on the relative importance of C, (t)

by rescaling/(re)normalizing the wave function as:

D(t) = |W(t) = \/&fq(jt()t\)\li (1))



Simulation of the wave-packet dynamics:

(b) non-Hermitian case

- clean limit: W=0
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- (weakly) dlsordered case: W=1.0
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7=0
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D1+ Teli) (G +11)

Ggro, FR = G_QFO

[type of disorder: quasi-periodic potential
disorder (AA model)]
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1
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80 100

cos(2mh7 + 6y),

VvhH—1

0= >

pbc

periodic boundary condition



Non-Hermitian case

wave-packet dynamics 200

- Disorder enhances spreading | 400
of the wave packet

. " 600 &
- In the superposition: 0

[b(8)) = > e k) (kljo) ( Zwk(t)M) 200
k k

site

@

Q
1 o =
— e—zekt—l—zk(jo—])‘j>7 N
VL ; ; 400
contribution from k=Fky = —7/2
predominates: Max Im e, 6008

As a result, (in the clean limit

[P(t)) ~ Z 7) exp (_ ((Jo —J) + 2(cosh g)t)

N

e time=0 e time=5
time=1 e time=10
e time=2 time=30

e _time=3 e time=100

Emergent gaussian diffusion!

Orito & Imura, Phys. Rev. B 105, 024303 (2022)

15 ki




Finally, statement of the problem!
cf. in the Hermitian case: ETH vs. MBL

- ETH: eigenstates thermalizes themselves in the presence
of interaction at sufficiently weak disorder

The interaction also tends to delocalize the wave function
- MBL: a counter example

What about the non-Hermitian case?

In this talk, we aim at adadressing the questions such as:

- Do eigenstates still thermalize also in the non-Hermitian
delocalized regime?

Possibly, a related question:

- What is the (analogue of) ground state in the non-Hermitian
delocalized regime?

16



Luitz et al, PRB 15

Hermitian case: ETH vs. MBL e m i R o S

In the regime of sufficiently weak
disorder,

l
=
o

Interactions tend to mediate
eigenstates to thermalize

=== |Eigenstate thermalization

cf. ETH: eigenstate thermalization

hypothesis strength of disorder

ETH

Still many open issues on the ETH-MBL
transition/crossover;
KT-like?

Oganeysyan & Huse, PRB °07; Pal &
Huse, PRB ’10; Luitz et al, PRB 15

Thiery et al., PRL '18; Goremykina et
al.,, PRB ’19; Morningstar & Huse,
PRB ‘19

17
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Remarks:

volume vs. area law

- Inter-particle interactions included
- focus on the scaling of entanglement entropy

The interaction (Hermitian case)
- delocalize the wave function
- thermalizes the eigenstates

Non-Hermiticity also?

In the wave-packet and we will see an emergence of non-
entanglement dynamics of a non- equilibrium steady state in the
Hermitian system asymptotic long time regime

Is this non-equilibrium steady state an analogue of the ground
state in a Hermitian quantum mechanics?

A non-Hermitian version of Fermi sea?




The entanglement dynamics:

(Hermitian case, g=0)

Definitions:

- The bipartite entanglement entropy: 4.

SA(t)——TI‘ QA()logQA() \E
W
:—ZA ) log A “

- The reduced/full density matrix:

QA(t) = 1rp Q(t)o 0-

Q) = [P () (P ()]

- Disorder suppresses the
entanglement growth

- Interacting case: logarithmic
growth in the localized (MBL)
regime

Znhidaric, et al. PRB °08; Bardarson et al.,
PRL '12; Serbyn et al., PRL '13

Non-interacting case: V=0

=

L=18,W

0.5 —— 3.0

1.0 —— 4.0
2.0 —— 5.0

10" 10’ 10°

tim‘énteracting case: V=2

19
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Nature of MBL
(many-body localization)

Gornyi et al., PRL ’05; Basko et al., AP 06
- LIOM: quasi-local integrals of motion

H = Zhifi“r Zfijfz T+ > > K,
i i,]

n=11i,j,{k}

Ros & Mueller, NPB °12; Serbyn, et al, PRL, '13;
al., PRB "14; Imbrie et al., AdP °17

- Logarithmic growth of the
entanglement entropy in the MBL
phase:

- dephasing
- manifestation of the many-body nature

Znidaric, et al. PRB '08; Bardarson et al., PRL ’'12;
Serbyn et al., PRL ’13

20
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The entanglement dynamics:

(hon-Hermitian case, g=0.5)

Two very characteristic features!

1) As opposed to the Hermitian case

disorder enhances the
entanglement growth

in the delocalized regime (small
W<W _c), then it suppresses the
entanglement entropy (\W>W_c)

2) Non-monotonic time evolution of
the entanglement entropy in the
regime of intermediate disorder

Interacting case
V #0

No

n-interacting case: V=0

L=20,W
W=0.5 —— W=3.0

« W=1.0—=— W=4.0
—o— W=2.0 —— W=5.0

0.
10 100 10 10”
Interacting case: V=2 fime
N |
1.0 —* 5.0
e 20— 70
S5+ 3.0 e 80

21
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Hamiltonian: non-Hermitian

Nature of the non-monotonic time evolution: time evolution: non-unitary

collapse of the superposition in the initial state in the course of non-unitary
time evolution

- in the expansion: _
elgenstates

(t)) = calt)|a),

o | complex:
Ca(t) = co(0)e Eel  Im E, #0

If Im(F,,)>Im(E,,) > -

Cay (B)]7 > [y ()7 > - -

fime

collapse of the superposition, i
evolution to a single eigenstate:  lim [¥(?)) ~ |au)

—>

Competition between
spreading of the density/information vs. collapse of the superposition

=g NON-monotonic time evolution of entanglement entropy

22



Density dynamics in the crystal momentum (k-)space:

g=70
: W=5.0 : ’;)O
| i 08
_;_ i 0.6
- lf/{r.]i./f(}_. S+ N kin= 0.4
—05 (;{;)ﬂ 0.5 1 02
—W=7.0 0.0
= wii quilibrium
o kr=0.5"7% N k= 0.5 ____distribution
—0.5 0.0 0.5 1 —0.5 0.0 0.5 1.0
fel ki kin
g+ 0 non-Hermitian Hermitian
Recall the (one-body) spectrum: occupied
e, = —20'g cos(k — 1g), | (k<0)
(Reek )2+(Ime;C )2_1 i J
I'g cosh g I'gsinhg/ -
», Unoccupied m }
% p'“ o obc: real

(periodic boundary condition) (.k>0) obe: complex



Logarithmic scaling of the entanglement entropy

in the asymptotic regime

- in the asymptotic regime: t — o0
| | (non-interacting case,
[T(t — 00)) ~ e a0l (H cL) 0) = e™"Fflag)  clean limit: V=0, W=0)
k<0
_ _ |: subsystem size
Analogy with the Fermi-sea ground (a) 2 _—
state: j D 0000 gecoese
we)=|( [I <)o) - ol IR
ks.t.|k|<kp C/]§ 1: _____ & N = )\\\
o numerical  fit: %ﬁ log(£)+cst. A
(k) = B(ep — e) = 4 (for ex — €r) _ #V=00 o cyy=1.00£0.03
PG F — €k 0 (for e, — er) 0- V=20 o cp=143+0.04
L thmi fi fth 107 4 10
rithmi in
) oga c scaling of the (b) .
entanglement entropy ° °
- ] - ;’x,x—x—x-x-X*%%% %; o
S = 3 log x + cst. ‘ §1j ‘a x”ﬁ;
cf. Carabrese & Cardy, 2005(/; numerical  fit: glog(Lsin(”Tf))+cst. |
. _ *V=0.0 o cr=1.01+0.01
T V=2.0 = 1. .
S = —log (QL sin —) + cst. o+rx - e 138i002 —
3 L 00 02 04 06 08 1.0
chord distance:4 /L




Conclusions

1) (Non-Hermitian) wave-packet dynamics

- robust uni-directional dynamics

- (Unlike in the Hermitian case) disorder enhances spreading of
the wave packet

2) Entanglement dynamics

- Non-monotonic time evolution of entanglement entropy
spreading of information vs. collapse of the superposition
\ evolution to a single eigenstate with maximal Im E

quasiparticle picture tli>I£10 W (t)) ~ |ay)

- Logarithmic scaling in the asymptotic regime: t — o
<P analogy with a Fermi sea (many-body) ground state

- (particle-hole/bosonic) excitations: conformal field theory at c=1
- interacting case: effective central charge?

Orito & Imura, Phys. Rev. B 108, 214308 (2023)

25




Take-home message

Im E non-Hermitian ver. of
Fermi sea

(Hermitian)
Fermi sea

non-equilibrium Steady state
emergent in the asymptotic long
time regime



Localization-delocalization transition
in the Hatano-NelsonxAubry-Andre model

wave function: spectrum (eigenvalues):
delocalized <«—— complex Hatano & Nelson,
localized <¢—» real PRL °96
L. . 1 |44
- Localization length in the Aubry-Andre model: & =~ log 5T
%4
*In the Hermitian case: § — 00 ata W=W, =—p QFC = 1.
0
- In the Non-Hermitian case: - phase diagram IPR
2.0 :
" (@) ~ exp (— L £$C| F g(x — ﬂfc)),
1.5
delocalization point: ,S_l =g > 0.
S0 1.0
» W =W_,=2I'ged =21
W 0.5
g = log —
2 0.0

IPR: inverse participation ratio



Comparison of periodic vs. open

boundary conditions
case of pbc:

the periodic boundary conditions

Simulation of the wave-
packet dynamics:
(b) non-Hermitian case

- clean limit: W=0

800 10
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500 _
~ 400
300 -
200
100 |
0 _
0 20 40 60 80
X

- case of weak disorder: W=1.0
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Comparison of periodic vs. open

boundary conditions

- clean limit: W=0

800

700

case of obc:
the open boundary conditions

Simulation of the wave-
packet dynamics:
(b) non-Hermitian case

10
10 -
600 ‘ 0.8 -
=
‘wn
o : T 06
e
~ 400 =
, S 04 -
300 '8
a
200 0.2 -
100
0.0 -
0 - L ]
0 20 40 60 80 0 20
X
- case of weak disorder: W=1.0
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=
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0 , ,
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Simulation of the wave-packet dynamics:
pbc vs. obc (b) non-Hermitian case

. case of pbc:
(continued) the periodic boundary conditions

- Case of stronger disorder: W=3.0 (still in the extended phase)

800 10
10 -
700
0.8 |
600 :
200 0.6 €
+« 400 ‘
300 0.4 ]
200 |
0.2 -
100
0.0 -
0 0.0 :
0 20 40 &0 80
X

0 20 40 &0 80 100

o (=] (=]
= [«)] (e 4]
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(=)
N

- Case of even stronger disorder: W=4.0 (localized phase)

800 10 10 4 :
700
0.8 8 1
600
200 0.6 ]
+~ 400 .
300 0-4
200 2 4
0.2
100 |
0 0.0 0 20 40 60 80 100
0 20 40 &0 80
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Simulation of the wave-packet dynamics:
pbc vs. obc (b) non-Hermitian case

. case of obc:
(continued) the open boundary conditions

- Case of stronger disorder: W=3.0 (still in the extended phase)

800 10
10 -
700
0.8 |
600 :
200 0.6 €
+« 400 ‘
300 0.4 ]
200 |
0.2 ‘
100
0.0 -
0 0.0 :
0 20 40 &0 80
x

0 20 40 &0 80 100
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- Case of even stronger disorder: W=4.0 (localized phase)
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700
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