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Since I am not really from this community…

I have been working on

✅ quantum Hall edge states
✅ quantum dots/wires

✅ graphene
✅ topological insulators

✅ non-Hermitian quantum systems

✅ machine/deep learning, etc.

Recently,

Maybe, in the near future,

Let me first introduce myself:

mesoscopic systems

transport properties

focusing mainly on
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Important Dates
July 1st — August 2nd, 2024:

Workshop

March 31st, 2023: Website open

Dynamics Days Asia Pacific 13 will be held as YKIS2024 at Yukawa Institute for Theoretical Physics, Kyoto

University.

Scope
Dynamics Days meetings are international meetings which launched in 1980 with focus on the nonlinear

dynamics. Dynamics Days Asia Pacific started in 1999 in Hong Kong, and are moved to Hangzhou (2002),

Singapore (2004), Pohang (2006), Nara (2008), Sydney (2010), Taipei (2012), Chennai (2014), Hong Kong (2016),

Xiamen (2018), Singapore (2020) and Daejong (2022). Now, DDAP13 will be held in Kyoto, Japan on July 1st-5th

as a part of the long-term workshop. Topics include

Dynamics of complex systems

Dynamics of nonequilibrium systems

Dynamics of quantum systems

Dynamics of condensed matter and photonics

Dynamics of active and biological systems

Dynamics of earth climate

Dynamics of machine learning

The meeting will offer invited talks without any parallel sessions. The meeting is supposed to be hybrid, but
participants are strongly encouraged to come to the YITP which is the meeting place.

Since 1987, Yukawa Institute for Theoretical Physics (YITP) has hosted an international research meeting
known as the Yukawa International Seminar (YKIS). This is a five-day international symposium held jointly
with the Yukawa Memorial Foundation.
Past YKISes 

The registration fee is free, but, we will have a coffee break once a day in weekdays. We kindly ask you to pay
1,000 JPY by cash for each week for its cost.
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Important Dates
July 1st — August 2nd, 2024:

Workshop

March 31st, 2023: Website open

Scope
In thermal equilibrium, Gaussian fluctuations play a decisive role, and their behavior is well understood.

However, the statistical mechanics in non-equilibrium systems is characterized by non-Gaussian fluctuations.

One of the milestones is to establish the framework of stochastic thermodynamics, which is relatively new.

Such a framework is relevant to describe fluctuating motion in small systems. Nevertheless, we still do not

know how relaxation processes are affected by non-equilibrium fluctuations, topological constraints, and

quantum effects. Thus, we invite researchers in this field from all over the world. Moreover, non-Gaussian

features in non-equilibrium systems require a new framework of statistical physics. Indeed, there is no

reciprocal theorem for strongly non-equilibrium systems associated with a non-reciprocal phase transition.

Such non-reciprocal relations can be observed in active matter systems easily. Classical densely packed

systems exhibit different behavior from usual systems: thermal fluctuations do not significantly affect the

motion of individual elements like colloids, powders, and bubbles when these constituents are random and

large. To describe their dynamics, we require a distinct logic. Thus, a new branch of non-equilibrium statistical

physics is essential to understand and describe these dynamic, self-driven systems.

There is a worldwide momentum for discussion on these topics, and programs will be organized. The first

week of the workshop is dedicated to a relatively large international workshop, Dynamics Days Asia Pacific

(DDAP13), the Yukawa International Seminar (YKIS2024). The second and third weeks are dedicated to topics

related to stochastic thermodynamics. The fourth week will focus on active matter, non-reciprocal transitions,

and the Mpemba effect. The fifth week of the conference will focus on jamming and rheology of dense

matters.
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What about the non-Hermitian case?
In this talk, we aim at addressing the questions such as:
- Do eigenstates still thermalize also in the non-Hermitian 
delocalized regime?

5

This talk merges the ideas of the 1st and 2nd speakers

cf. in the Hermitian case: ETH vs. MBL
- ETH: eigenstates thermalizes themselves in the presence 
of interaction at sufficiently weak disorder

The interaction also tends to delocalize the wave function
- MBL: a counter example

- What is the (analogue of) ground state in the non-Hermitian 
delocalized regime?

Possibly, a related question:

Conjecture:
As the 3rd speaker of the workshop,



In quantum mechanics, textbooks say
Hamiltonian must be (?) Hermitian

cf. von Neumann, C. Bender,…- real eigenvalues 

- probability conservation

in a closed system

Here, we consider open quantum systems
= system + environment

reservoirs/leads
<latexit sha1_base64="DlnrO6EgurCrSdOyIlUGVg//xmI=">AAACZXichVHLSsNAFD2N7/pofSCCC4tFcVVuY23VVcGNS63WByqSxGkNTZOQpAUt/QFxqy5cKYiIn+HGH3DhF4i4VHDjwpu0Ii7UO8zcO2fuuffMjGobuusRPYaklta29o7OrnB3T29fJNo/sOZaFUcTec0yLGdDVVxh6KbIe7pniA3bEUpZNcS6Wlrwz9erwnF1y1z1DmyxU1aKpl7QNcVjKLdd343GKTE3m5Zn5BgliDLydNoP5ExKno4lGfEtjqYtWdFrbGMPFjRUUIaACY9jAwpcHltIgmAztoMaYw5HenAuUEeYuRXOEpyhMFritci7rSZq8t6v6QZsjbsYPB1mxjBBD3RDr3RPt/RMH7/WqgU1fC0H7NUGV9i7kaORlfd/WWX2Hva/WX9q9lDAbKBVZ+12gPi30Br86uHZ68p8bqI2SZf0wvov6JHu+AZm9U27Wha5c4T5A75eOfZ7sCYnkulEajkVz242v6IToxjHFL93BlksYgl57lvAMU5wGnqSeqUhabiRKoWanEH8MGnsE2vYisc=</latexit>

} system
Eigenstates:
(eigenvectors)

no longer orthogonal

(bi-orthogonal: left/right eigenstates)

<latexit sha1_base64="ae1D4Y6675J9gWeO5H2C+RDX2HY="></latexit>

}
<latexit sha1_base64="Vujd95JNfhcocXObC7cq9cPanxw=">AAACZXichVHLSsNAFD2N7/pofSCCC4tFcRVu2mqNK8GNS63WByqSxKkG0yQkaaEWf0DcqgtXCiLiZ7jxB1z4BSIuFdy48DatiAv1DjP3zpl77j0zo7uW6QdEjxGpqbmlta29I9rZ1d0Ti/f2rfhOyTNE3nAsx1vTNV9Ypi3ygRlYYs31hFbULbGq78/VzlfLwvNNx14OKq7YKmq7tlkwDS1gKLd5uB1PkqyklTSlEiSrqjqlZjmgVHpSzSQUmUJLomELTvwam9iBAwMlFCFgI+DYggafxwYUEFzGtlBlzOPIDM8FDhFlbomzBGdojO7zusu7jQZq875W0w/ZBnexeHrMTGCMHuiGXumebumZPn6tVQ1r1LRU2Ot1rnC3Y0dDS+//sorsA+x9s/7UHKCA6VCrydrdEKndwqjzywdnr0szubHqOF3SC+u/oEe64xvY5TfjalHkzhHlD/h65cTvwUpKVqbkzGImObve+Ip2DGMUE/zeWcxiHgvIc98CjnGC08iT1C0NSIP1VCnS4PTjh0kjn4XhitU=</latexit>

}
orthogonal (unitary)

<latexit sha1_base64="A7jSMbxTH/OYDfRS0gj4WMHujj8=">AAACZXichVHLSsNAFD2N7/pofSCCC4tFcRVu2mqNK8GNS63WByqSxKkG0yQkaaEWf0DcqgtXCiLiZ7jxB1z4BSIuFdy48DatiAv1DjP3zpl77j0zo7uW6QdEjxGpqbmlta29I9rZ1d0Ti/f2rfhOyTNE3nAsx1vTNV9Ypi3ygRlYYs31hFbULbGq78/VzlfLwvNNx14OKq7YKmq7tlkwDS1gKLdZ3Y4nSVbSSppSCZJVVZ1SsxxQKj2pZhKKTKEl0bAFJ36NTezAgYESihCwEXBsQYPPYwMKCC5jW6gy5nFkhucCh4gyt8RZgjM0Rvd53eXdRgO1eV+r6Ydsg7tYPD1mJjBGD3RDr3RPt/RMH7/WqoY1aloq7PU6V7jbsaOhpfd/WUX2Afa+WX9qDlDAdKjVZO1uiNRuYdT55YOz16WZ3Fh1nC7phfVf0CPd8Q3s8ptxtShy54jyB3y9cuL3YCUlK1NyZjGTnF1vfEU7hjGKCX7vLGYxjwXkuW8BxzjBaeRJ6pYGpMF6qhRpcPrxw6SRT4HhitM=</latexit>

{system

+ environment

= Hermitian

<latexit sha1_base64="wnaqJGyMsnHqYx4PyVedxkLuiQg="></latexit>

H|nRi = En|nRi
<latexit sha1_base64="gSOZZOmeoD5HEPrhwhLsa4rcg7o="></latexit>

hnL|H = EnhnL|
<latexit sha1_base64="DkF6yjeYdTER+CbkV1xoO+zUVtw="></latexit>

hnL| 6= |nRi†
<latexit sha1_base64="8EPHQGRLEy9SSWfcgPVDZqs2VXc=">AAACh3ichVFNLwNBGH6s7/oqLhKXRkOcaipSjUTi4+LgQCkSlc3uGrUxO7vZnTah3MUfcHAiERGJK3cXf8DBTxBHEhcHb7ebCIJ3szPP+8z7vPPMjOkJO1CMPdZp9Q2NTc0trbG29o7Ornh3z0rglnyL5y1XuP6aaQRc2JLnla0EX/N8bjim4Kvmzmx1fbXM/cB25bLa9fiGYxSlvWVbhiJKjw8UhCGLgiccfX5f6rmCH6aThU0ulKFXHHmgx5MsxcJI/ATpCCQRxYIbv0ABm3BhoQQHHBKKsICBgL51pMHgEbeBCnE+ITtc5zhAjLQlquJUYRC7Q2ORsvWIlZRXewah2qJdBP0+KRMYZA/skr2we3bFntj7r70qYY+ql12azZqWe3rXUd/S278qh2aF7U/Vn54VtpANvdrk3QuZ6imsmr68d/yyNJEbrAyxM/ZM/k/ZI7ujE8jyq3W+yHMniNEDpL9f90+wMppKZ1Jji2PJqZnoKVrQjwEM032PYwpzWECe9j3ENW5wq7VqI1pGy9ZKtbpI04svoU1/ALDJl1E=</latexit>

hmL|nRi = �mn

<latexit sha1_base64="NJPCmhx7eF2HkMOD2Ri/AdBKluQ="></latexit>

hmR|nRi 6= �mn

Non-Hermitian quantum mechanics
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Typical examples of a non-Hermitian Hamiltonian

1) Gain vs. loss type : (sometimes) PT symmetric

2) Non-reciprocal hopping type

x x

(asymmetric)

1

2
gain

loss

x x
1

2

The Hatano-Nelson type

next speaker

Bender & Boettcher,  PRL1998;

Guo et al. PRL2009  

Hatano & Nelson, PRL1996; PRB1998

Yao & Wang, PRL2018; 



The Hatano-Nelson model: 

A 1D tight-binding model with asymmetric/non-
reciprocal hopping:

asymmetry/non-reciprocity in hopping
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Re E
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0.2

Im E

pbc

obc

The wave function:
pbc: plane-wave likepbc: complex

obc: real

Basic (static) properties:

In the clean limit: complex spectrum (pbc), skin effect (obc), and 
the sensitivity to the boundary condition 

Hatano & Nelson, 
PRL1996; PRB1998



Experimental realizations

skin effect/open boundary

- mechanical material 
- electric circuit

of the “effective” Hatano-Nelson models 

- photonic lattice 

- active matter
Brandenbourger et al., Nat. Commun. 2019 

Reciprocity is a fundamental property of linear, time-reversal
invariant physical systems, entailing that their response
functions are symmetrical, namely that signals are trans-

mitted symmetrically between any two points in space1–3. In
other words, if one sends an electromagnetic, acoustic, or
mechanical signal through a material in one direction, one can
also send it in the opposite direction. While breaking reciprocity
has been a long-standing challenge in electromagnetics, there has
been over the last few years an explosion of interest for breaking
reciprocity in optical4–7 and micro8 waves without magnetic
fields, and beyond electromagnetism, i.e., in acoustics9, quantum
systems10,11, and mechanics12,13, thus creating new tools to
engineer a novel generation of devices and materials that guide,
damp, or control energy and information. Non-reciprocity has
been achieved by using passive structures combining
broken spatial symmetries and nonlinearities13,14 and using active
time-modulated components that break time-reversal
symmetry3,12,15–17. These strategies have led to large levels of
nonreciprocal isolations, but with input magnitudes or input
frequencies that are limited to narrow ranges, and are sensitive to
attenuation.

Here, inspired by recent developments in robotics18,19 and
active metamaterials12,16,17,20–22, we create a robotic mechanical
metamaterial that uses distributed active control to break reci-
procity at the level of the interactions between the building blocks
themselves. This work builds on the field of active metamaterials,
yet with a key new twist: while active metamaterials only have
actuating elements, robotic metamaterials include a combination
of local sensing, computation, communication, and actuation. As
a result, they feature unique wave phenomena, namely asym-
metric modes at all frequencies and unidirectional amplification,
and in turn realize large, broadband, linear, and self-amplified
nonreciprocal transmission of mechanical waves. These findings
realize the classical counterpart of the so-called non-Hermitian
skin effect23–28.

Results
Nonreciprocal wave equation. We first investigate theoretically
the emergent properties in a mass-and-spring model with non-
reciprocal springs (Fig. 1a). For reciprocal mechanical

structures1,29,30, the stiffness matrix—relating displacements to
forces—is symmetrical by virtue of the Maxwell–Betti reciprocity
theorem1. In particular, for a simple spring, left-to-right and
right-to-left stiffnesses are equal: kL→R= kR→L= k where kL→R
and kR→L are defined as kL→R= FL→R/(uR− uL) and kR→L=
FR→L/(uL− uR), where FL (FR) is the force on the left (right)
spring and uL (uR) the displacement of the left (right) spring.
Here, we consider a special mass-and-spring model, where the
left-to-right and right-to-left stiffnesses differ kL!R ¼
kð1þ εÞ ≠ kR!L ¼ kð1% εÞ (Fig. 1a). We obtain the following
continuum equation (Methods, Mass-and-spring model with
nonreciprocal springs)

1
c2
d2u
dt2

% d2u
dx2

þ 2ε
p
du
dx

¼ 0; ð1Þ

where c ¼ p
ffiffiffiffiffiffiffiffiffi
k=m

p
and where p is the interparticle distance. In

the case of reciprocal interactions (ε= 0), Eq. (1) becomes the
wave equation, which admits dispersion-free mechanical waves of
group and phase velocity c. For nonreciprocal interactions (ε ≠ 0),
the first-order term in Eq. (1) breaks inversion symmetry u →
−u, x → −x. This asymmetry has dramatic consequences on the
nature of the mechanical waves, which can be readily seen from
the solutions of this equation both in the frequency domain and
in real space. In the frequency domain, solutions consist of a
linear combination of the functions exp(i(ωt−q±x)), where the
wave vector q± ¼ i

p ðε±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 % ω2p2=c2

p
Þ. For small frequencies

ω < c|ε|/p, these solutions are exponentially localized standing
waves, while for large frequencies ω > c|ε|/p, they are localized
oscillatory standing waves with an exponential envelope (Fig. 1b).
Crucially, for ε > 0 (ε < 0), the imaginary part is always positive
(negative), so these solutions are always localized on the right
(left) edge. In real space, we obtain the Green’s function of Eq. (1)
(Methods, Mass-and-spring model with nonreciprocal springs
and Supplementary Information Note 1), which is an asymmetric
step function propagating at a velocity c with a wave front
magnitude given by exp(εct/p)/2 (exp(−εct/p)/2) for x > 0 (x < 0).
For any value of ε > 0 (ε < 0), the initial pulse is amplified for
forward (backward) propagation and attenuated for backward
(forward) propagation (Fig. 1c). This behavior can be intuitively
understood from the structure of Eq. (1): work is injected in
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Fig. 1 Asymmetric and unidirectionally amplified waves in a nonreciprocal mass-and-spring model. a Schematic representation of the nonreciprocal mass-
and-spring model. b Magnitude of the solutions of Eq. (1) in the frequency domain exp(i(ωt−q±x)) vs. spatial coordinate, for three different frequencies.
c Green’s function of Eq. (1) vs. time and spatial coordinate. In (b) and (c), ε= 0.9 and c= 0.5
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in the non-Hermitian lattice has further pro-
found consequences: No matter where the
lattice is excited, every signal travels toward
the interface. In the context of photonics, this
means that any light signal that impinges on
the lattice is guided toward the interface and
remains there. These findings suggest the
opportunity to realize a non-Hermitian light
funnel, which may form the basis for intrigu-
ing applications. Note that the presence of an
interface does not change the propagation
until the light field reaches the interface.
Here, we study the non-Hermitian skin

effect by using a modified version of a one-
dimensional discrete-time quantum walk,

also called a light walk (24). The dynamics
are governed by the evolution in Eqs. 1 and 2,

umþ1
n ¼ Gu½cosðbÞum

nþ1 þ i sinðbÞvmnþ1&expðiϕuÞ
ð1Þ

vmþ1
n ¼ Gv½i sinðbÞum

n'1 þ cosðbÞvmn'1& ð2Þ

where um
n denotes the amplitude at lattice po-

sition n and time stepm on left-moving paths,
and vmn denotes the corresponding ampli-
tude on right-moving paths. The parameter
b = b(n, m) characterizes the splitting ratio
of the beamsplitter. The beamsplitter mediates
the hopping between lattice sites, as depicted

in Fig. 3A. For instance, b = p/4 corresponds
to a homogeneous lattice of 50:50 beamsplitter.
The ability to adjust the splitting b at will allows
us to control the coupling between individual
sites. In the evolution described by Eqs. 1 and
2, the common quantum walk dynamics are
extended by Gu,v = Gu,v(n, m), which captures
a non-Hermitian attenuation and amplifica-
tion within the lattice, which in turn enables
the realization of an anisotropic coupling as
described below. Additionally, a phase mod-
ulation exp(iϕu) allows the implementation of
arbitrary real parts of the potential. In our ex-
periments, optical pulses propagate in two
unequally long fiber loops connected by a

Weidemann et al., Science 368, 311–314 (2020) 17 April 2020 2 of 4

modes delocalized modes delocalized

one mode localized

A

B

SSH Model

D

modes delocalized modes delocalized
C Anisotropic Coupling

all modes localized

Fig. 2. Eigenmodes of systems with interfaces.
(A) An interface is formed with two lattices with
SSH modulation (as in Fig. 1C), where the inverted
ribbon indicates the inverted coupling ratio. (B) The
eigenmodes of the system shown in (A) are plotted
for a lattice with 120 lattice sites. (C) An interface
is formed with two lattices with anisotropic modu-
lation (as in Fig. 1D), where the inverted ribbon
indicates the inverted anisotropy d → –d. (D) The
eigenmodes of the system shown in (C) are plotted
for a lattice with 120 lattice sites. For the calculation
of both spectra, we used periodic boundary con-
ditions to avoid terminations. Note that for the case
of the SSH modulation, the topological boundary
mode appearing at the other boundary is not shown
for the sake of clarity.
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Fig. 3. Experimental setup and measurements. (A) Mapping from the models shown in Fig. 1, B and C,
to a light walk. The different shades of orange represent different coupling strengths (coupling ratios); the
green plus and minus signs represent amplitude modulations. Note that in the experiments, either the
coupling modulation (SSH) or the amplitude modulation (skin effect) is applied; the two are never combined.
(B) The experimental setup consists of two fiber loops connected by a variable beamsplitter (VBS). One
loop is connected to a pulsed laser source. The propagation of pulses through the loop arrangement can be
mathematically mapped to a propagation through a mesh lattice of beamsplitter cubes (A). An acousto-optical
modulator (AOM) and a phase modulator (PM) respectively manipulate the amplitudes and phases of the
pulses. (C to E) Propagation through the photonic lattice with the SSH modulation for three different excitations,
which are at the interface and to its left and right. (F to H) Propagation through the photonic lattice with the
anisotropic modulation for three different excitations, which are at the interface and to its left and right.
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due to non-Hermiticity17–19. In Fig. 2c, we analyse the admittance 
spectral flow as we interpolate from PBC to OBC. Starting from our 
PBC circuit configuration, this is done by continuously attenuating 
the 1–20 bond to zero conductance. The interpolation is quantified 
by η, which is the 1–20 bond capacitance normalized to its PBC 

value. This observation explains the remarkable sensitivity of the 
admittance spectrum with respect to a single-bond attenuation.

A remarkable asset of our circuit network platform is that BBC 
breakdown manifests itself as a non-local voltage response. As dis-
played in Fig. 3, we inject the a.c. current feed at different nodes on 
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Fig. 2 | BBC breakdown in the admittance spectrum. a, Numerically computed admittance spectrum of equation (1) as a function of external a.c. 
frequency f split into imaginary (left) and real (right) parts for PBC and OBC. Line cuts (i) to (v) highlight representative values of f that are further 
discussed in b. b, Top: complex admittance for a.c. frequencies f(i) = 70 kHz, f(ii) = 84.2 kHz, f(iii) = 91.5 kHz, f(iv) = 95 kHz and f(v) = 98.5 kHz of the circuit 
model with PBC in red and OBC in green. Dots denote experimental data, solid lines show the parasitic-corrected theoretical band predictions. The 
Su–Schrieffer–Heeger edge modes (blue) appear for (ii)–(v). For v ≠ 0, the OBC spectrum differs drastically from the PBC spectrum. Bottom: for each 
frequency f, voltage amplitudes ∣Vn∣ are shown for the nth eigenvector with OBC as a function of the node index x. The green and blue curves represent 
skin and Su–Schrieffer–Heeger edge modes, respectively. As seen in (i), (ii) ((iv), (v)), for v < 0 (v > 0), all voltage modes localize at the left (right) 
circuit boundary. The itinerant transition point is reached for v = 0 in (iii), where no bulk mode localization is observed. c, Spectral flow of the admittance 
spectrum from PBC to OBC for f = 80 kHz, as the 1–20 bond is continously modified from PBC (η = 1) to OBC (η = 0). Experimental data are shown as 
black dots combined with the predicted PBC and OBC spectra in red and green, respectively.
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The existence of edge modes is guaranteed by a bulk Hermitian
topological invariant. In the vertical direction the couplings, t1
and t2, alternate between weak and strong (see Fig. 1b). This is the
stochastic equivalent of the Su–Schrieffer–Heeger model of the
polyacetylene chain53, which is characterized by a winding
number wH in the y-direction (see Supplementary Discussion 1).
wH= 1 and wH= 0 for the topological and trivial device models,
respectively. This implies that they, respectively, have, or not,
topological edge modes for a boundary in the y-direction,
indicated by black arrows in Fig. 3b, d.

The topological edge modes have a noticeable effect on the
edge particle dynamics of the active particles. We probe them by
initializing Eq. (1) with a probability distribution localized at the
top left corner. We compare the experimental results with
theoretical predictions in Fig. 2e–h, using the parameters t1, t2, t+,
t−, and τ set by our statistical analysis of the experimental data.
The theoretical curves qualitatively reproduce the experimental
trends without any fitting parameter, for both topological and
trivial devices. This demonstrates that the displacement in the
topological device is larger as a consequence of the topological
edge modes.

The above observations are reproduced for smaller devices and
larger densities of active particles, see Supplementary Discus-
sion 2. We find that for larger densities, the particles are slower
than theory predicts, an effect we attribute to particle jamming,
neglected in our model. A lower density of particles prevents
jamming, in which case the motion compares better with
our model.

Corner accumulation from second-order non-Hermitian skin
effect. The detailed balance of the unit cell implies that Ŵ has no
strong topological invariant54 (see Supplementary Discussion 1).
Moreover, Ŵ has inversion symmetry, implying that the first-
order skin effect vanishes.

To derive the second-order skin effect of Ŵ we consider the
topological edge modes, Ps,χ, at the top (χ=+) and bottom

(χ=−) described by a 1D equation τ∂tPs,±=Hs,±Ps,± (see
Supplementary Discussion 1). These modes locate on either A
(for χ=+) or B (for χ=−) sub-lattice, have a ballistic
propagation 〈x〉±= ± (t+− t−)t/τ, and diffuse by an amount
Δx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtþ þ t$Þt=τ

p
after a time t (see Supplementary Discus-

sion 1). The real part of Hs,± is finite and indicates that the
contribution of the topological edge modes to the total probability
decays over a timescale τd= τ/(t1+ t2). τd sets how far the
particles propagate due to the topological edge modes.

The edge modes Hs,± have a finite 1D winding number wnH=
±1 that implies a 1D non-Hermitian skin effect21–23. Since the
edge modes are spatially separated, active particles can accumu-
late at the top and bottom corners. We detect the accumulation of
active particles experimentally by post-selecting trajectories that
start from a uniform configuration (see Fig. 1h and “Methods”).
We observe an accumulation of active particles at the corners
which is larger in the topological device (Fig. 4a, c) and that
qualitatively compares with our model (Fig. 4b, d).

This observation can be made quantitative using the Shannon
entropy of the particle distribution S ¼ $∑ijσPijσ ln ðPijσÞ. The
entropy is maximal for a uniform distribution of particles,
S < Suniform ¼ ln ðLxLyÞ, and it decreases if particles localize. We
average out other sources of particle localization unrelated to the
non-Hermitian skin effect by averaging the probability distribu-
tion over neighboring cells (see Supplementary Discussion 2).
The experimental and theoretical entropies are depicted in
Fig. 4h. Both figures show a smaller entropy in the topological
device than in the trivial one. They depart from each other at the
same rate, yet the absolute values of the experimental entropies
are a factor 13 smaller than theory. Our model thus captures the
difference between trivial and topological devices, but under-
estimates the accumulation that occurs in the experiment. A
potential reason is that, in the experiment, a local increase in the
number of active particles leads to particle jamming, neglected in
our model. When we decrease the density of particles to reduce
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right and bottom left corners. e, f Parametric representation of the real and imaginary parts of the spectrum of normal modes for the model of the trivial
(e) and topological (f) devices with (Lx, Ly)= (L, L)= (70, 70), colored with the participation ratio of each normal mode ∑σij∣Pσij∣4, which is small for a
delocalized mode. The gap in the periodic band structure is within the dashed circle (see Supplementary Discussion 1). The number of localized modes
within the point gap is proportional to the size of the device, L, and are localized at the corners as shown in (g). h Shannon entropy of the particle
distribution over time. The smaller entropy in the topological device is associated with an accumulation of particles at the corners, signaling the second-
order non-Hermitian skin effect. The theoretical figures match the experimental curves when multiplied by a factor ×13, suggesting that particle jamming,
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(in the original work of Hatano & Nelson)
The (on-site) disorder potential:

(uncorrelated disorder)

Here, we consider the case of quasi-periodic disorder (Aubry-
Andre model)

2

FIG. 1. Single-particle dynamics; evolution of the initial wave
packet:  j(0) = �j,j0 . The amplitude of the time-evolved
wave function | j(t)| [Eq. (8)] is visualized by a gradation of
plot colors indicated in the color bar. The abscissa represents
time t, and the ordinate the site j. Di↵erent panels (a-d)
correspond to di↵erent values of disorder strength W ; W =
0.4, 3.6, 8.0, 10.0, respectively, for panels (a-d). g is fixed at
g = 1.4. ✓0 also fixed (✓0 = 0); no disorder averaging.

underlying the di↵erence in the behaviors of Stot(t) in the
Hermitian and non-Hermitian systems is a very di↵erent
way how di↵usion occurs in the two systems. It has re-
cently been pointed out38 that di↵usion in non-Hermitian
systems with non-reciprocal hopping shows very di↵er-
ent features. In the presence of a finite non-reciprocity
g in hopping the standard “cascade-like” di↵usion [see
Fig. 1, panel (a)] in the Hermitian limit g = 0 becomes
extinct. It only revives in the vicinity of the localiza-
tion transition: W ' Wc [see Fig. 1, panel (c)]. In the
extended phase: W < Wc, the wave packet does not dif-
fuse, but it only slides in the direction imposed by the
non-reciprocality g. In the body of the paper we show
and study systematically how this drastic change in the
manner of di↵usion caused by the non-reciprocity g is
reflected in the dynamical property of the entanglement
entropy.

As already mentioned in the Hermitian limit, the inter-
particle interaction V plays a non-trivial role in determin-
ing the dynamical property of the entanglement entropy;
especially, its e↵ect is predominant in long time-scale
dynamics. Here, we show in this paper that the inter-
particle interaction V plays also a non-trivial and princi-
pal role in the entanglement dynamics of a non-Hermitian
system with non-reciprocal hopping. The remainder of
the paper is structured as follows. In Sec. II we describe
the model and show the mechanics of unusual dynamics.
In Sec. III we give details of the entanglement dynamics,
highlighting its non-monotonic time evolution. In Sec.
IV we examine the size dependence of the results, pre-
dicting an unusual are-volume-are law crossover of the
maximal entanglement entropy. In Sec. V we point out

FIG. 2. Single-particle dynamics; wave function profile in
k-space. The Fourier transform | k(t)| [Eq. (10)] of the
wave packet is plotted as a function of k at di↵erent time
slices t = 0, 1, 2, 3, 5, 30, 100 as indicated in the inset of panel
(a). Di↵erent panels (a-d) and the inset of panel (d) corre-
spond, respectively, to di↵erent values of disorder strength
W = 0, 0.4, 3.6, 8.0, 12.0. g is fixed at g = 1.4. ✓0 = 0 (no
disorder average).

and visualize the characteristic stages in the evolution of
the reduced density matrix, which underlie the unusual
non-Hermitian entanglement dynamics. Sec. VI is de-
voted to concluding remarks. Some details are left to the
appendices.

II. DIFFUSION IN NON-HERMITIAN
SYSTEMS WITH NON-RECIPROCAL HOPPING

A. Single-particle case: Hatano-Nelson ⇥
Aubry-André model

Let us consider the following one-dimensional tight-
binding model with non-reciprocal hopping amplitudes
�L,�R (Hatano-Nelson model):33

H = �

L�1X

j=0

⇣
�R|j + 1ihj|+ �L|jihj + 1|

⌘

+ Wj

L�1X

j=0

|jihj|, (1)

where �L = e
g�0, �R = e

�g�0 with g being a parameter
quantifying the degree of non-reciprocity. g is also some-
times regarded as an imaginary vector potential.3339 |ji

represents a single-particle state localized at site j. In
the first two (hopping) terms we have chosen the bound-
ary condition to be periodic: |Li ⌘ |0i.40 In the third
term, we have chosen the on-site potential Wj to be
quasi-periodic:41

Wj = W cos(2⇡✓j + ✓0), (2)Aubry & Andre, AIPS ’80

e.g., (chosen typically to be)an irrational constant
disorder configuration sample average

10

delocalized
localized

wave function: spectrum (eigenvalues):
complex

real
Hatano & Nelson, 

PRL ’96

- Disordered case: localization-delocalization transition

cf. in 1D all the states are localized in a Hermitian disordered 
system (Anderson ’58)

Non-Hermiticity tends to delocalize the wave function  
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Wave-packet dynamics

- initial wave packet:

3

playing e↵ectively the role of a random potential (Aubry-
André model42), where ✓ is an irrational constant, which
we choose to be the so-called (inverse) golden ratio:
✓ = (

p
5 � 1)/2. ✓0 is an additive phase introduced

for the purpose of taking a disorder average; averaging
over ✓0 distributed uniformly in the range 2 [0, 2⇡) plays
e↵ectively the role of averaging over di↵erent disorder
configurations.43

In the Hermitian limit: g = 0, the eigenstates are ex-
tended when W is weak enough (W < Wc), while local-
ized for W > Wc, where

Wc

2�0
= 1. (3)

This may be understood44 from the behavior of localiza-
tion length ⇠ defined in the localized phase;38,45 i.e.,

⇠
�1

' log
W

2�
. (4)

The localization length ⇠ diverges as W approaches the
critical value (3) from above.

In the non-Hermitian case: g 6= 0, the delocalization
point is determined by the condition:34,4647

⇠
�1 = g > 0. (5)

If this is combined with Eq. (4), the delocalization tran-
sition is expected to occur at

W = Wc = 2�0 e
g = 2�L, (6)

where we have assumed �L > �R (g > 0); i.e., Wc in the
non-Hermitian case is found simply by replacing �0 in Eq.
(3) with the right/large hopping amplitude �0. Both in
the Hermitian and non-Hermitian cases, the location of
the mobility edge (6) does not depend on the energy ✏n;
H|ni = ✏n|ni. When g 6= 0, the eigenenergy ✏n becomes
complex in the extended phase (W < Wc = 2�L); cf.
the case of free particle motion described in Appendix B,
while it remains real in the localized phase (W > Wc).
Thus, the localization-delocalization transition is accom-
panied by a real-complex transition of the eigenenergies
(see Appendix A for details).

Let us focus on the dynamics of the system by following
how an initially localized wave packet evolves in time.
Four panels of Fig. 1 show examples of such dynamics.
We assume that at t = 0 the wave packet is just at an
initial site j = j0;

| (t = 0)i = |j0i. (7)

At time t, the wave packet may evolve as

| (t)i =
X

j

 j(t)|ji

=
X

n

cne
�i✏nt|ni, (8)

where |ni represents the nth single-particle eigenstate of
the Hamiltonian (1) with an eigenenergy ✏n; i.e., H|ni =

✏n|ni, while cn = hhn| (t = 0)i. Here, hhn| represents
the left eigenstate corresponding to the eigenenergy ✏n :
hhn|H = ✏nhhn| and not |ni†; hhn| 6= |ni

†. We make sure
that the left and right eigenstates satisfy the biorthogonal
condition, .i.e, hhn|mi = �n,m. In case of g 6= 0, the
eigenenergy ✏n is typically complex; cf. the free particle
case in Appendix B [see also Eqs. (14), (15)], so that the
time-evolved wave packet | (t)i literally as given in Eq.
(8) tends to grow exponentially; its norm h (t)| (t)i is
not conserved due to the contribution from states with
Im ✏n > 0. In the actual computation, we, therefore,
rescale (renormalize) | (t)i at every interval �t as48

| (t)i ! | ̃(t)i =
| (t)ip

h (t)| (t)i
. (9)

and avoid this computational di�culty.35,36

The four panels of Fig. 1 show the distribution of
| j(t)| in the case of g = 1.4 (L = 601, j0 = 580) for
di↵erent strength of W . At site j (the abscissa) and at
time t (the ordinate), the amplitude of | j(t)| is specified
by a variation of the plot color indicated in the color bar.
The four panels show unlike in the Hermitian case49 that
the wave packet does not di↵use; at least in the regime
of weak W [cases of panels (a-b)],50 but rather slides in
the direction imposed by the non-reciprocity g. In the
non-Hermitian case g 6= 0 the standard cascade-like dif-
fusion as in the Hermitian limit disappears in the regime
of weak W [panels (a-b)] such that W ⌧ Wc,38 but a
similar (cascade-like) behavior reappears in the vicinity
of the localization transition: W ' Wc [panel (c)]. In the
localized phase, the wave packet does not move [panel
(d)]. Comparing the three cases on the delocalized side
[panels (a-c)], one also notices that the “sliding velocity”
of the wave packet; at least the velocity of the wave front
vf , tends to increase as W is increased.38

To understand why in the non-Hermitian system the
wave-packet dynamics becomes very di↵erent from the
standard Hermitian di↵usion case, one may well start
with the clean limit: W = 0. In this limit, the eigenstates
are plane waves hj|ki = e

ikj
/
p
L so that

| (t)i =
X

k

e
�i✏kt|kihk|j0i

 
⌘

X

k

 k(t)|ki

!

=
1

p
L

X

j

X

k

e
�i✏kt+ik(j0�j)

|ji, (10)

i.e., | (t)i is generally expressed as a superposition of
such plane waves; at site j contributions from di↵erent k
add up with a phase factor

e
i�(k) = e

�i✏kt+ik(j0�j)
. (11)

At t = 0 and at j 6= j0, such contributions are out of
phase and cancel each other, while at j = j0 they add
up in phase to form the peak of the initial wave packet.
At t > 0, similarly, the only non-vanishing contributions
[in the summation over k in Eq. (10)] are those from the

3

playing e↵ectively the role of a random potential (Aubry-
André model42), where ✓ is an irrational constant, which
we choose to be the so-called (inverse) golden ratio:
✓ = (

p
5 � 1)/2. ✓0 is an additive phase introduced

for the purpose of taking a disorder average; averaging
over ✓0 distributed uniformly in the range 2 [0, 2⇡) plays
e↵ectively the role of averaging over di↵erent disorder
configurations.43

In the Hermitian limit: g = 0, the eigenstates are ex-
tended when W is weak enough (W < Wc), while local-
ized for W > Wc, where

Wc

2�0
= 1. (3)

This may be understood44 from the behavior of localiza-
tion length ⇠ defined in the localized phase;38,45 i.e.,

⇠
�1

' log
W

2�
. (4)

The localization length ⇠ diverges as W approaches the
critical value (3) from above.

In the non-Hermitian case: g 6= 0, the delocalization
point is determined by the condition:34,4647

⇠
�1 = g > 0. (5)

If this is combined with Eq. (4), the delocalization tran-
sition is expected to occur at

W = Wc = 2�0 e
g = 2�L, (6)

where we have assumed �L > �R (g > 0); i.e., Wc in the
non-Hermitian case is found simply by replacing �0 in Eq.
(3) with the right/large hopping amplitude �0. Both in
the Hermitian and non-Hermitian cases, the location of
the mobility edge (6) does not depend on the energy ✏n;
H|ni = ✏n|ni. When g 6= 0, the eigenenergy ✏n becomes
complex in the extended phase (W < Wc = 2�L); cf.
the case of free particle motion described in Appendix B,
while it remains real in the localized phase (W > Wc).
Thus, the localization-delocalization transition is accom-
panied by a real-complex transition of the eigenenergies
(see Appendix A for details).

Let us focus on the dynamics of the system by following
how an initially localized wave packet evolves in time.
Four panels of Fig. 1 show examples of such dynamics.
We assume that at t = 0 the wave packet is just at an
initial site j = j0;

| (t = 0)i = |j0i. (7)

At time t, the wave packet may evolve as

| (t)i =
X

j

 j(t)|ji

=
X

n

cne
�i✏nt|ni, (8)

where |ni represents the nth single-particle eigenstate of
the Hamiltonian (1) with an eigenenergy ✏n; i.e., H|ni =

✏n|ni, while cn = hhn| (t = 0)i. Here, hhn| represents
the left eigenstate corresponding to the eigenenergy ✏n :
hhn|H = ✏nhhn| and not |ni†; hhn| 6= |ni

†. We make sure
that the left and right eigenstates satisfy the biorthogonal
condition, .i.e, hhn|mi = �n,m. In case of g 6= 0, the
eigenenergy ✏n is typically complex; cf. the free particle
case in Appendix B [see also Eqs. (14), (15)], so that the
time-evolved wave packet | (t)i literally as given in Eq.
(8) tends to grow exponentially; its norm h (t)| (t)i is
not conserved due to the contribution from states with
Im ✏n > 0. In the actual computation, we, therefore,
rescale (renormalize) | (t)i at every interval �t as48

| (t)i ! | ̃(t)i =
| (t)ip

h (t)| (t)i
. (9)

and avoid this computational di�culty.35,36

The four panels of Fig. 1 show the distribution of
| j(t)| in the case of g = 1.4 (L = 601, j0 = 580) for
di↵erent strength of W . At site j (the abscissa) and at
time t (the ordinate), the amplitude of | j(t)| is specified
by a variation of the plot color indicated in the color bar.
The four panels show unlike in the Hermitian case49 that
the wave packet does not di↵use; at least in the regime
of weak W [cases of panels (a-b)],50 but rather slides in
the direction imposed by the non-reciprocity g. In the
non-Hermitian case g 6= 0 the standard cascade-like dif-
fusion as in the Hermitian limit disappears in the regime
of weak W [panels (a-b)] such that W ⌧ Wc,38 but a
similar (cascade-like) behavior reappears in the vicinity
of the localization transition: W ' Wc [panel (c)]. In the
localized phase, the wave packet does not move [panel
(d)]. Comparing the three cases on the delocalized side
[panels (a-c)], one also notices that the “sliding velocity”
of the wave packet; at least the velocity of the wave front
vf , tends to increase as W is increased.38

To understand why in the non-Hermitian system the
wave-packet dynamics becomes very di↵erent from the
standard Hermitian di↵usion case, one may well start
with the clean limit: W = 0. In this limit, the eigenstates
are plane waves hj|ki = e

ikj
/
p
L so that

| (t)i =
X

k

e
�i✏kt|kihk|j0i
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X

k

 k(t)|ki
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=
1

p
L
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e
�i✏kt+ik(j0�j)

|ji, (10)

i.e., | (t)i is generally expressed as a superposition of
such plane waves; at site j contributions from di↵erent k
add up with a phase factor

e
i�(k) = e

�i✏kt+ik(j0�j)
. (11)

At t = 0 and at j 6= j0, such contributions are out of
phase and cancel each other, while at j = j0 they add
up in phase to form the peak of the initial wave packet.
At t > 0, similarly, the only non-vanishing contributions
[in the summation over k in Eq. (10)] are those from the

localized at a single 
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Hermitian case            : disorder suppresses 
spreading of the wave packet
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playing e↵ectively the role of a random potential (Aubry-
André model42), where ✓ is an irrational constant, which
we choose to be the so-called (inverse) golden ratio:
✓ = (

p
5 � 1)/2. ✓0 is an additive phase introduced

for the purpose of taking a disorder average; averaging
over ✓0 distributed uniformly in the range 2 [0, 2⇡) plays
e↵ectively the role of averaging over di↵erent disorder
configurations.43

In the Hermitian limit: g = 0, the eigenstates are ex-
tended when W is weak enough (W < Wc), while local-
ized for W > Wc, where

Wc

2�0
= 1. (3)

This may be understood44 from the behavior of localiza-
tion length ⇠ defined in the localized phase;38,45 i.e.,

⇠
�1

' log
W

2�
. (4)

The localization length ⇠ diverges as W approaches the
critical value (3) from above.

In the non-Hermitian case: g 6= 0, the delocalization
point is determined by the condition:34,4647

⇠
�1 = g > 0. (5)

If this is combined with Eq. (4), the delocalization tran-
sition is expected to occur at

W = Wc = 2�0 e
g = 2�L, (6)

where we have assumed �L > �R (g > 0); i.e., Wc in the
non-Hermitian case is found simply by replacing �0 in Eq.
(3) with the right/large hopping amplitude �0. Both in
the Hermitian and non-Hermitian cases, the location of
the mobility edge (6) does not depend on the energy ✏n;
H|ni = ✏n|ni. When g 6= 0, the eigenenergy ✏n becomes
complex in the extended phase (W < Wc = 2�L); cf.
the case of free particle motion described in Appendix B,
while it remains real in the localized phase (W > Wc).
Thus, the localization-delocalization transition is accom-
panied by a real-complex transition of the eigenenergies
(see Appendix A for details).

Let us focus on the dynamics of the system by following
how an initially localized wave packet evolves in time.
Four panels of Fig. 1 show examples of such dynamics.
We assume that at t = 0 the wave packet is just at an
initial site j = j0;

| (t = 0)i = |j0i. (7)

At time t, the wave packet may evolve as

| (t)i =
X

j

 j(t)|ji

=
X

n

cne
�i✏nt|ni, (8)

where |ni represents the nth single-particle eigenstate of
the Hamiltonian (1) with an eigenenergy ✏n; i.e., H|ni =

✏n|ni, while cn = hhn| (t = 0)i. Here, hhn| represents
the left eigenstate corresponding to the eigenenergy ✏n :
hhn|H = ✏nhhn| and not |ni†; hhn| 6= |ni

†. We make sure
that the left and right eigenstates satisfy the biorthogonal
condition, .i.e, hhn|mi = �n,m. In case of g 6= 0, the
eigenenergy ✏n is typically complex; cf. the free particle
case in Appendix B [see also Eqs. (14), (15)], so that the
time-evolved wave packet | (t)i literally as given in Eq.
(8) tends to grow exponentially; its norm h (t)| (t)i is
not conserved due to the contribution from states with
Im ✏n > 0. In the actual computation, we, therefore,
rescale (renormalize) | (t)i at every interval �t as48

| (t)i ! | ̃(t)i =
| (t)ip

h (t)| (t)i
. (9)

and avoid this computational di�culty.35,36

The four panels of Fig. 1 show the distribution of
| j(t)| in the case of g = 1.4 (L = 601, j0 = 580) for
di↵erent strength of W . At site j (the abscissa) and at
time t (the ordinate), the amplitude of | j(t)| is specified
by a variation of the plot color indicated in the color bar.
The four panels show unlike in the Hermitian case49 that
the wave packet does not di↵use; at least in the regime
of weak W [cases of panels (a-b)],50 but rather slides in
the direction imposed by the non-reciprocity g. In the
non-Hermitian case g 6= 0 the standard cascade-like dif-
fusion as in the Hermitian limit disappears in the regime
of weak W [panels (a-b)] such that W ⌧ Wc,38 but a
similar (cascade-like) behavior reappears in the vicinity
of the localization transition: W ' Wc [panel (c)]. In the
localized phase, the wave packet does not move [panel
(d)]. Comparing the three cases on the delocalized side
[panels (a-c)], one also notices that the “sliding velocity”
of the wave packet; at least the velocity of the wave front
vf , tends to increase as W is increased.38

To understand why in the non-Hermitian system the
wave-packet dynamics becomes very di↵erent from the
standard Hermitian di↵usion case, one may well start
with the clean limit: W = 0. In this limit, the eigenstates
are plane waves hj|ki = e

ikj
/
p
L so that

| (t)i =
X

k

e
�i✏kt|kihk|j0i

 
⌘

X

k

 k(t)|ki

!

=
1

p
L

X

j

X

k

e
�i✏kt+ik(j0�j)

|ji, (10)

i.e., | (t)i is generally expressed as a superposition of
such plane waves; at site j contributions from di↵erent k
add up with a phase factor

e
i�(k) = e

�i✏kt+ik(j0�j)
. (11)

At t = 0 and at j 6= j0, such contributions are out of
phase and cancel each other, while at j = j0 they add
up in phase to form the peak of the initial wave packet.
At t > 0, similarly, the only non-vanishing contributions
[in the summation over k in Eq. (10)] are those from the
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neighborhood of k = k at which the phase �(k) becomes
stationary; i.e., �0(k) = 0, or

2�0 sin k t = j � j0. (12)

Since | sin k|  1, |j � j0| = 2�0t ⌘ vf t defines the po-
sition of the wave front, or a “light cone”.38 Thus, the
initially localized wave packet di↵uses in the Hermitian
limit. Addition of disorder W suppresses the di↵usion;
in Fig. 2 of Ref. 38, the spread of the light cone

�x(t) =

sX

j

j2| j(t)|2, (13)

is plotted as a function of W , and is shown to behave
as �x(t) / t; i.e., �x(t) ⇠ t

� with the exponent � ' 1,
while v = �x(t)/t ⇠ vf decreases linearly with W and
vanishes at W = Wc.

On addition of non-Hermiticity g 6= 0, a di↵erent mech-
anism or a principle sets in to play a role in the wave-
packet dynamics of Eq. (10), since the eigenenergies ✏k
become complex:

✏k = �2�0 cos(k � ig), (14)

which in the complex energy plane, take values on an
ellipse:

⇣ Re ✏k
�0 cosh g

⌘2
+

⇣ Im ✏k

�0 sinh g

⌘2
= 1. (15)

In this case contributions from those k’s which have max-
imal Im ✏k’s become more important in the superposition
(10). In case of Eq. (14) [cf. also Eq. (15)] such k’s are
found at (around)

k = k0 = �⇡/2. (16)

Thus, in the non-Hermitian (free-particle) dynamics, the
initial state (7) dissolves in the course of time evolution
(10) into a Gaussian wave packet:

| (t)i '
X

j

|ji exp

✓
�
((j0 � j) + 2(cosh g)t)2

4(sinh g)t

◆

⇥e
2(sinh g)t

/

p
4(sinh g)t, (17)

which are composed of plane waves with k’s found around
k = k0; as for the derivation of Eq. (B2), see Eq. (17)
and related arguments in Appendix B. Remarkably, the
resulting Gaussian wave packet (17) is a wave packet that
slides in the direction imposed by g, though its expanse
gradually increases as time evolves Since as a guiding
principle,

1. the survival of Max Im ✏k has priority over

2. the stationary phase condition [cf. Eq. (12) in the
Hermitian case],

FIG. 3. Single-particle dynamics; velocity and density fluc-
tuation profiles. Panel (a) represents the sliding velocity
vG = [xG(t) � xG(0)]/t [cf. Eq. (18)] indicated by a vari-
ation of plot colors indicated in the color bar at a given set of
parameters g and W ; its distribution is shown in the (W, g)-
plane. Evaluated at t = t1 = 20. Panel (b) shows a similar
plot for the density fluctuation, enumerated by the quantity:
�(t) = �x(t) � �x(0), also evaluated at t = t1; �x(t) is as
given in Eq. (20). ✓0-averaged.

the non-Hermitian (free-particle) dynamics is fully gov-
erned by the principle 1., unlike in the Hermitian case in
which the principle 2. becomes manifest under the con-
dition that the principle 1. is disabled and masked. In
Fig. 2, panel (a) the distribution of | k(t)| at some fixed
t’s are shown. | k(t)| shows a Gaussian type distribu-
tion centered at k = k0, and its width tends to become
narrower as t evolves [cf. Appendix B].
Panels (b-e) of Fig. 2 show how the addition of disorder

W a↵ects and eventually destroys this peak structure of
 k. In panel (b) two side peaks may be conspicuous at
k = k1, k2; they are associated with the quasi-periodic
nature of the potential (2); Bloch waves of these k’s are
quasi-commensurate with the potential. The complex
energy spectrum ✏k also shows (in the presence ofW 6= 0)
[cf. Eqs. (14), (15) in the potential-free case (W = 0)]
an extremum at theses k’s, showing local maxima of Im
✏k.38 As W is increased, such side peaks multiply [panel
(c)],51 and the system gradually evolves into the cascade
regime represented by panel (d), where the distribution
of | k(t)| is almost uniform, but still there are plenty of
tiny peaks, while in the localized regime [in panel (e)] the
distribution becomes flat and smooth.

To further quantify features specific to the non-
Hermitian wave packet dynamics, it may be natural to
focus on

1. how fast the center of gravity

xG(t) =
X

j

j| j(t)|
2 (18)

of the wave packet moves, and also

2. to what extent the wave packet is spread around
xG(t).

It turns out that xG(t) ' xG(0) + vGt so that 1. can be
measured by the velocity vG. In panel (a) of Fig. 3, the
magnitude of vG is plotted (determined by evaluating

The stationary phase condition:

location of wave front: “light cone”
cf. Lieb-Robinson bound 

- Mechanism underlying 
the spreading of  wave 
packet:



A caveat: 
Specificity of the non-unitary time evolution: 

| (t)i =
X

↵

c↵(t)|↵i,
<latexit sha1_base64="kLL4lEPVPIZz6Js5kwxYARUb+xo="></latexit>

c↵(t) = c↵(0)e
�iE↵t

<latexit sha1_base64="eyFQN1QEzpt+PbWiHiwOut+Dc+s="></latexit>

Hamiltonian: non-Hermitian

time evolution: non-unitary

h (t)| (t)i
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is not conserved

| (t)i ! | ̃(t)i = | (t)ip
h (t)| (t)i

<latexit sha1_base64="6Jy2S0/RRHxvTaf2n07Fvp7ZxYw="></latexit>

by rescaling/(re)normalizing the wave function as: 

c↵(t)
<latexit sha1_base64="P2KxgZls6RFz83NV9OR1EIVleHk="></latexit>

we focus on the relative importance of

- in the expansion:

eigenstates |c↵(t)|2 6= |c↵(0)|2
<latexit sha1_base64="XGJN/0wQudZJCuoMCHyqFkfPvxM="></latexit>

are no longer 
constants

complex: Im E↵ 6= 0
<latexit sha1_base64="z6oxBv1+GF7zNLReahQgk8K2Wxs="></latexit>
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Simulation of the wave-packet dynamics: 
(b) non-Hermitian case

[type of disorder: quasi-periodic potential 
disorder (AA model)]

model: Hatano-Nelson × 
Aubry-Andre model;

2

FIG. 1. Single-particle dynamics; evolution of the initial wave
packet:  j(0) = �j,j0 . The amplitude of the time-evolved
wave function | j(t)| [Eq. (8)] is visualized by a gradation of
plot colors indicated in the color bar. The abscissa represents
time t, and the ordinate the site j. Di↵erent panels (a-d)
correspond to di↵erent values of disorder strength W ; W =
0.4, 3.6, 8.0, 10.0, respectively, for panels (a-d). g is fixed at
g = 1.4. ✓0 also fixed (✓0 = 0); no disorder averaging.

underlying the di↵erence in the behaviors of Stot(t) in the
Hermitian and non-Hermitian systems is a very di↵erent
way how di↵usion occurs in the two systems. It has re-
cently been pointed out38 that di↵usion in non-Hermitian
systems with non-reciprocal hopping shows very di↵er-
ent features. In the presence of a finite non-reciprocity
g in hopping the standard “cascade-like” di↵usion [see
Fig. 1, panel (a)] in the Hermitian limit g = 0 becomes
extinct. It only revives in the vicinity of the localiza-
tion transition: W ' Wc [see Fig. 1, panel (c)]. In the
extended phase: W < Wc, the wave packet does not dif-
fuse, but it only slides in the direction imposed by the
non-reciprocality g. In the body of the paper we show
and study systematically how this drastic change in the
manner of di↵usion caused by the non-reciprocity g is
reflected in the dynamical property of the entanglement
entropy.

As already mentioned in the Hermitian limit, the inter-
particle interaction V plays a non-trivial role in determin-
ing the dynamical property of the entanglement entropy;
especially, its e↵ect is predominant in long time-scale
dynamics. Here, we show in this paper that the inter-
particle interaction V plays also a non-trivial and princi-
pal role in the entanglement dynamics of a non-Hermitian
system with non-reciprocal hopping. The remainder of
the paper is structured as follows. In Sec. II we describe
the model and show the mechanics of unusual dynamics.
In Sec. III we give details of the entanglement dynamics,
highlighting its non-monotonic time evolution. In Sec.
IV we examine the size dependence of the results, pre-
dicting an unusual are-volume-are law crossover of the
maximal entanglement entropy. In Sec. V we point out

FIG. 2. Single-particle dynamics; wave function profile in
k-space. The Fourier transform | k(t)| [Eq. (10)] of the
wave packet is plotted as a function of k at di↵erent time
slices t = 0, 1, 2, 3, 5, 30, 100 as indicated in the inset of panel
(a). Di↵erent panels (a-d) and the inset of panel (d) corre-
spond, respectively, to di↵erent values of disorder strength
W = 0, 0.4, 3.6, 8.0, 12.0. g is fixed at g = 1.4. ✓0 = 0 (no
disorder average).

and visualize the characteristic stages in the evolution of
the reduced density matrix, which underlie the unusual
non-Hermitian entanglement dynamics. Sec. VI is de-
voted to concluding remarks. Some details are left to the
appendices.

II. DIFFUSION IN NON-HERMITIAN
SYSTEMS WITH NON-RECIPROCAL HOPPING

A. Single-particle case: Hatano-Nelson ⇥
Aubry-André model

Let us consider the following one-dimensional tight-
binding model with non-reciprocal hopping amplitudes
�L,�R (Hatano-Nelson model):33

H = �

L�1X

j=0

⇣
�R|j + 1ihj|+ �L|jihj + 1|

⌘

+ Wj

L�1X

j=0

|jihj|, (1)

where �L = e
g�0, �R = e

�g�0 with g being a parameter
quantifying the degree of non-reciprocity. g is also some-
times regarded as an imaginary vector potential.3339 |ji

represents a single-particle state localized at site j. In
the first two (hopping) terms we have chosen the bound-
ary condition to be periodic: |Li ⌘ |0i.40 In the third
term, we have chosen the on-site potential Wj to be
quasi-periodic:41

Wj = W cos(2⇡✓j + ✓0), (2)
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packet:  j(0) = �j,j0 . The amplitude of the time-evolved
wave function | j(t)| [Eq. (8)] is visualized by a gradation of
plot colors indicated in the color bar. The abscissa represents
time t, and the ordinate the site j. Di↵erent panels (a-d)
correspond to di↵erent values of disorder strength W ; W =
0.4, 3.6, 8.0, 10.0, respectively, for panels (a-d). g is fixed at
g = 1.4. ✓0 also fixed (✓0 = 0); no disorder averaging.
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way how di↵usion occurs in the two systems. It has re-
cently been pointed out38 that di↵usion in non-Hermitian
systems with non-reciprocal hopping shows very di↵er-
ent features. In the presence of a finite non-reciprocity
g in hopping the standard “cascade-like” di↵usion [see
Fig. 1, panel (a)] in the Hermitian limit g = 0 becomes
extinct. It only revives in the vicinity of the localiza-
tion transition: W ' Wc [see Fig. 1, panel (c)]. In the
extended phase: W < Wc, the wave packet does not dif-
fuse, but it only slides in the direction imposed by the
non-reciprocality g. In the body of the paper we show
and study systematically how this drastic change in the
manner of di↵usion caused by the non-reciprocity g is
reflected in the dynamical property of the entanglement
entropy.

As already mentioned in the Hermitian limit, the inter-
particle interaction V plays a non-trivial role in determin-
ing the dynamical property of the entanglement entropy;
especially, its e↵ect is predominant in long time-scale
dynamics. Here, we show in this paper that the inter-
particle interaction V plays also a non-trivial and princi-
pal role in the entanglement dynamics of a non-Hermitian
system with non-reciprocal hopping. The remainder of
the paper is structured as follows. In Sec. II we describe
the model and show the mechanics of unusual dynamics.
In Sec. III we give details of the entanglement dynamics,
highlighting its non-monotonic time evolution. In Sec.
IV we examine the size dependence of the results, pre-
dicting an unusual are-volume-are law crossover of the
maximal entanglement entropy. In Sec. V we point out

FIG. 2. Single-particle dynamics; wave function profile in
k-space. The Fourier transform | k(t)| [Eq. (10)] of the
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W = 0, 0.4, 3.6, 8.0, 12.0. g is fixed at g = 1.4. ✓0 = 0 (no
disorder average).
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the reduced density matrix, which underlie the unusual
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voted to concluding remarks. Some details are left to the
appendices.
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FIG. 1. Single-particle dynamics; evolution of the initial wave
packet:  j(0) = �j,j0 . The amplitude of the time-evolved
wave function | j(t)| [Eq. (8)] is visualized by a gradation of
plot colors indicated in the color bar. The abscissa represents
time t, and the ordinate the site j. Di↵erent panels (a-d)
correspond to di↵erent values of disorder strength W ; W =
0.4, 3.6, 8.0, 10.0, respectively, for panels (a-d). g is fixed at
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ent features. In the presence of a finite non-reciprocity
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system with non-reciprocal hopping. The remainder of
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FIG. 2. Single-particle dynamics; wave function profile in
k-space. The Fourier transform | k(t)| [Eq. (10)] of the
wave packet is plotted as a function of k at di↵erent time
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and visualize the characteristic stages in the evolution of
the reduced density matrix, which underlie the unusual
non-Hermitian entanglement dynamics. Sec. VI is de-
voted to concluding remarks. Some details are left to the
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II. DIFFUSION IN NON-HERMITIAN
SYSTEMS WITH NON-RECIPROCAL HOPPING

A. Single-particle case: Hatano-Nelson ⇥
Aubry-André model

Let us consider the following one-dimensional tight-
binding model with non-reciprocal hopping amplitudes
�L,�R (Hatano-Nelson model):33

H = �

L�1X

j=0

⇣
�R|j + 1ihj|+ �L|jihj + 1|

⌘

+ Wj
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j=0

|jihj|, (1)

where �L = e
g�0, �R = e

�g�0 with g being a parameter
quantifying the degree of non-reciprocity. g is also some-
times regarded as an imaginary vector potential.3339 |ji

represents a single-particle state localized at site j. In
the first two (hopping) terms we have chosen the bound-
ary condition to be periodic: |Li ⌘ |0i.40 In the third
term, we have chosen the on-site potential Wj to be
quasi-periodic:41

Wj = W cos(2⇡✓j + ✓0), (2)

- clean limit: W=0

- (weakly) disordered case: W=1.0

pbc
periodic boundary condition14



Non-Hermitian case

- Disorder enhances spreading 
of the wave packet

4

neighborhood of k = k at which the phase �(k) becomes
stationary; i.e., �0(k) = 0, or

2�0 sin k t = j � j0. (12)

Since | sin k|  1, |j � j0| = 2�0t ⌘ vf t defines the po-
sition of the wave front, or a “light cone”.38 Thus, the
initially localized wave packet di↵uses in the Hermitian
limit. Addition of disorder W suppresses the di↵usion;
in Fig. 2 of Ref. 38, the spread of the light cone

�x(t) =

sX

j

j2| j(t)|2, (13)

is plotted as a function of W , and is shown to behave
as �x(t) / t; i.e., �x(t) ⇠ t

� with the exponent � ' 1,
while v = �x(t)/t ⇠ vf decreases linearly with W and
vanishes at W = Wc.

On addition of non-Hermiticity g 6= 0, a di↵erent mech-
anism or a principle sets in to play a role in the wave-
packet dynamics of Eq. (10), since the eigenenergies ✏k
become complex:

✏k = �2�0 cos(k � ig), (14)

which in the complex energy plane, take values on an
ellipse:

⇣ Re ✏k
�0 cosh g

⌘2
+

⇣ Im ✏k

�0 sinh g

⌘2
= 1. (15)

In this case contributions from those k’s which have max-
imal Im ✏k’s become more important in the superposition
(10). In case of Eq. (14) [cf. also Eq. (15)] such k’s are
found at (around)

k = k0 = �⇡/2. (16)

Thus, in the non-Hermitian (free-particle) dynamics, the
initial state (7) dissolves in the course of time evolution
(10) into a Gaussian wave packet:

| (t)i '
X

j

|ji exp

✓
�
((j0 � j) + 2(cosh g)t)2

4(sinh g)t

◆

⇥e
2(sinh g)t

/

p
4(sinh g)t, (17)

which are composed of plane waves with k’s found around
k = k0; as for the derivation of Eq. (B2), see Eq. (17)
and related arguments in Appendix B. Remarkably, the
resulting Gaussian wave packet (17) is a wave packet that
slides in the direction imposed by g, though its expanse
gradually increases as time evolves Since as a guiding
principle,

1. the survival of Max Im ✏k has priority over

2. the stationary phase condition [cf. Eq. (12) in the
Hermitian case],

FIG. 3. Single-particle dynamics; velocity and density fluc-
tuation profiles. Panel (a) represents the sliding velocity
vG = [xG(t) � xG(0)]/t [cf. Eq. (18)] indicated by a vari-
ation of plot colors indicated in the color bar at a given set of
parameters g and W ; its distribution is shown in the (W, g)-
plane. Evaluated at t = t1 = 20. Panel (b) shows a similar
plot for the density fluctuation, enumerated by the quantity:
�(t) = �x(t) � �x(0), also evaluated at t = t1; �x(t) is as
given in Eq. (20). ✓0-averaged.

the non-Hermitian (free-particle) dynamics is fully gov-
erned by the principle 1., unlike in the Hermitian case in
which the principle 2. becomes manifest under the con-
dition that the principle 1. is disabled and masked. In
Fig. 2, panel (a) the distribution of | k(t)| at some fixed
t’s are shown. | k(t)| shows a Gaussian type distribu-
tion centered at k = k0, and its width tends to become
narrower as t evolves [cf. Appendix B].
Panels (b-e) of Fig. 2 show how the addition of disorder

W a↵ects and eventually destroys this peak structure of
 k. In panel (b) two side peaks may be conspicuous at
k = k1, k2; they are associated with the quasi-periodic
nature of the potential (2); Bloch waves of these k’s are
quasi-commensurate with the potential. The complex
energy spectrum ✏k also shows (in the presence ofW 6= 0)
[cf. Eqs. (14), (15) in the potential-free case (W = 0)]
an extremum at theses k’s, showing local maxima of Im
✏k.38 As W is increased, such side peaks multiply [panel
(c)],51 and the system gradually evolves into the cascade
regime represented by panel (d), where the distribution
of | k(t)| is almost uniform, but still there are plenty of
tiny peaks, while in the localized regime [in panel (e)] the
distribution becomes flat and smooth.

To further quantify features specific to the non-
Hermitian wave packet dynamics, it may be natural to
focus on

1. how fast the center of gravity

xG(t) =
X

j

j| j(t)|
2 (18)

of the wave packet moves, and also

2. to what extent the wave packet is spread around
xG(t).

It turns out that xG(t) ' xG(0) + vGt so that 1. can be
measured by the velocity vG. In panel (a) of Fig. 3, the
magnitude of vG is plotted (determined by evaluating
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neighborhood of k = k at which the phase �(k) becomes
stationary; i.e., �0(k) = 0, or

2�0 sin k t = j � j0. (12)

Since | sin k|  1, |j � j0| = 2�0t ⌘ vf t defines the po-
sition of the wave front, or a “light cone”.38 Thus, the
initially localized wave packet di↵uses in the Hermitian
limit. Addition of disorder W suppresses the di↵usion;
in Fig. 2 of Ref. 38, the spread of the light cone

�x(t) =

sX

j

j2| j(t)|2, (13)

is plotted as a function of W , and is shown to behave
as �x(t) / t; i.e., �x(t) ⇠ t

� with the exponent � ' 1,
while v = �x(t)/t ⇠ vf decreases linearly with W and
vanishes at W = Wc.

On addition of non-Hermiticity g 6= 0, a di↵erent mech-
anism or a principle sets in to play a role in the wave-
packet dynamics of Eq. (10), since the eigenenergies ✏k
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✏k = �2�0 cos(k � ig), (14)

which in the complex energy plane, take values on an
ellipse:
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playing e↵ectively the role of a random potential (Aubry-
André model42), where ✓ is an irrational constant, which
we choose to be the so-called (inverse) golden ratio:
✓ = (

p
5 � 1)/2. ✓0 is an additive phase introduced

for the purpose of taking a disorder average; averaging
over ✓0 distributed uniformly in the range 2 [0, 2⇡) plays
e↵ectively the role of averaging over di↵erent disorder
configurations.43

In the Hermitian limit: g = 0, the eigenstates are ex-
tended when W is weak enough (W < Wc), while local-
ized for W > Wc, where

Wc

2�0
= 1. (3)

This may be understood44 from the behavior of localiza-
tion length ⇠ defined in the localized phase;38,45 i.e.,

⇠
�1

' log
W

2�
. (4)

The localization length ⇠ diverges as W approaches the
critical value (3) from above.

In the non-Hermitian case: g 6= 0, the delocalization
point is determined by the condition:34,4647

⇠
�1 = g > 0. (5)

If this is combined with Eq. (4), the delocalization tran-
sition is expected to occur at

W = Wc = 2�0 e
g = 2�L, (6)

where we have assumed �L > �R (g > 0); i.e., Wc in the
non-Hermitian case is found simply by replacing �0 in Eq.
(3) with the right/large hopping amplitude �0. Both in
the Hermitian and non-Hermitian cases, the location of
the mobility edge (6) does not depend on the energy ✏n;
H|ni = ✏n|ni. When g 6= 0, the eigenenergy ✏n becomes
complex in the extended phase (W < Wc = 2�L); cf.
the case of free particle motion described in Appendix B,
while it remains real in the localized phase (W > Wc).
Thus, the localization-delocalization transition is accom-
panied by a real-complex transition of the eigenenergies
(see Appendix A for details).

Let us focus on the dynamics of the system by following
how an initially localized wave packet evolves in time.
Four panels of Fig. 1 show examples of such dynamics.
We assume that at t = 0 the wave packet is just at an
initial site j = j0;

| (t = 0)i = |j0i. (7)

At time t, the wave packet may evolve as

| (t)i =
X

j

 j(t)|ji

=
X

n

cne
�i✏nt|ni, (8)

where |ni represents the nth single-particle eigenstate of
the Hamiltonian (1) with an eigenenergy ✏n; i.e., H|ni =

✏n|ni, while cn = hhn| (t = 0)i. Here, hhn| represents
the left eigenstate corresponding to the eigenenergy ✏n :
hhn|H = ✏nhhn| and not |ni†; hhn| 6= |ni

†. We make sure
that the left and right eigenstates satisfy the biorthogonal
condition, .i.e, hhn|mi = �n,m. In case of g 6= 0, the
eigenenergy ✏n is typically complex; cf. the free particle
case in Appendix B [see also Eqs. (14), (15)], so that the
time-evolved wave packet | (t)i literally as given in Eq.
(8) tends to grow exponentially; its norm h (t)| (t)i is
not conserved due to the contribution from states with
Im ✏n > 0. In the actual computation, we, therefore,
rescale (renormalize) | (t)i at every interval �t as48

| (t)i ! | ̃(t)i =
| (t)ip

h (t)| (t)i
. (9)

and avoid this computational di�culty.35,36

The four panels of Fig. 1 show the distribution of
| j(t)| in the case of g = 1.4 (L = 601, j0 = 580) for
di↵erent strength of W . At site j (the abscissa) and at
time t (the ordinate), the amplitude of | j(t)| is specified
by a variation of the plot color indicated in the color bar.
The four panels show unlike in the Hermitian case49 that
the wave packet does not di↵use; at least in the regime
of weak W [cases of panels (a-b)],50 but rather slides in
the direction imposed by the non-reciprocity g. In the
non-Hermitian case g 6= 0 the standard cascade-like dif-
fusion as in the Hermitian limit disappears in the regime
of weak W [panels (a-b)] such that W ⌧ Wc,38 but a
similar (cascade-like) behavior reappears in the vicinity
of the localization transition: W ' Wc [panel (c)]. In the
localized phase, the wave packet does not move [panel
(d)]. Comparing the three cases on the delocalized side
[panels (a-c)], one also notices that the “sliding velocity”
of the wave packet; at least the velocity of the wave front
vf , tends to increase as W is increased.38

To understand why in the non-Hermitian system the
wave-packet dynamics becomes very di↵erent from the
standard Hermitian di↵usion case, one may well start
with the clean limit: W = 0. In this limit, the eigenstates
are plane waves hj|ki = e

ikj
/
p
L so that

| (t)i =
X

k

e
�i✏kt|kihk|j0i

 
⌘

X

k

 k(t)|ki

!

=
1

p
L

X

j

X

k

e
�i✏kt+ik(j0�j)

|ji, (10)

i.e., | (t)i is generally expressed as a superposition of
such plane waves; at site j contributions from di↵erent k
add up with a phase factor

e
i�(k) = e

�i✏kt+ik(j0�j)
. (11)

At t = 0 and at j 6= j0, such contributions are out of
phase and cancel each other, while at j = j0 they add
up in phase to form the peak of the initial wave packet.
At t > 0, similarly, the only non-vanishing contributions
[in the summation over k in Eq. (10)] are those from the

- in the superposition:

As a result, (in the clean limit)

Orito & Imura, Phys. Rev. B 105, 024303 (2022)

Emergent gaussian diffusion!

wave-packet dynamics
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What about the non-Hermitian case?
In this talk, we aim at addressing the questions such as:
- Do eigenstates still thermalize also in the non-Hermitian 
delocalized regime?

16

Finally, statement of the problem!
cf. in the Hermitian case: ETH vs. MBL

- ETH: eigenstates thermalizes themselves in the presence 
of interaction at sufficiently weak disorder

The interaction also tends to delocalize the wave function
- MBL: a counter example

- What is the (analogue of) ground state in the non-Hermitian 
delocalized regime?

Possibly, a related question:



Oganeysyan & Huse, PRB ’07; Pal & 
Huse, PRB ’10; Luitz et al, PRB ’15

Thiery et al., PRL ’18; Goremykina et 
al., PRB ’19; Morningstar & Huse, 
PRB ‘19

Still many open issues on the ETH-MBL 
transition/crossover; 

KT-like?
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Many-body localization edge in the random-field Heisenberg chain
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We present a large-scale exact diagonalization study of the one-dimensional spin-1/2 Heisenberg model in
a random magnetic field. In order to access properties at varying energy densities across the entire spectrum
for system sizes up to L = 22 spins, we use a spectral transformation which can be applied in a massively
parallel fashion. Our results allow for an energy-resolved interpretation of the many-body localization transition
including the existence of an extensive many-body mobility edge. The ergodic phase is well characterized by
Gaussian orthogonal ensemble statistics, volume-law entanglement, and a full delocalization in the Hilbert space.
Conversely, the localized regime displays Poisson statistics, area-law entanglement, and nonergodicity in the
Hilbert space where a true localization never occurs. We perform finite-size scaling to extract the critical edge
and exponent of the localization length divergence.

DOI: 10.1103/PhysRevB.91.081103 PACS number(s): 75.10.Pq, 05.30.Rt, 72.15.Rn

Introduction. The interplay of disorder and interactions in
quantum systems can lead to several intriguing phenomena,
amongst which the so-called many-body localization has
attracted a huge interest in recent years. Following precursors
works [1–4], perturbative calculations [5,6] have established
that the celebrated Anderson localization [7] can survive
interactions, and that for large enough disorder, many-body
eigenstates can also “localize” (in a sense to be detailed later)
and form a new phase of matter commonly referred to as the
many-body localized (MBL) phase.

The enormous boost of interest for this topic in recent
years can probably be ascribed to the fact that the MBL
phase challenges the very foundations of quantum statistical
physics, leading to striking theoretical and experimental
consequences [8,9]. Several key features of the MBL phase
can be highlighted as follows. It is nonergodic, and breaks the
eigenstate thermalization hypothesis (ETH) [10–12]: A closed
system in the MBL phase does not thermalize solely following
its own dynamics. The possible presence of a many-body
mobility edge (at a finite energy density in the spectrum)
indicates that conductivity should vanish in a finite temperature
range in a MBL system [5,6]. Coupling to an external bath
will eventually destroy the properties of the MBL phase, but
recent arguments show that it can survive and be detected using
spectral signatures for weak bath coupling [13]. This leads to
the suggestion that the MBL phase can be characterized exper-
imentally, using e.g., controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [14–17].
Another appealing aspect (with experimental consequences
for self-correcting memories) is that MBL systems can sustain
long-range, possibly topological, order in situations where
equilibrated systems would not [18–22]. Finally, a striking
phenomenological approach [23] pinpoints that the MBL
phase shares properties with integrable systems, with an
extensive number of local integrals of motion [24–26], and
that MBL eigenstates sustain low (area-law) entanglement.
This is in contrast with eigenstates at finite energy density

*luitz@irsamc.ups-tlse.fr
†laflo@irsamc.ups-tlse.fr
‡alet@irsamc.ups-tlse.fr

in a generic equilibrated system, which have a large amount
(volume law) of entanglement and which are believed to be
well described within a random matrix theory approach.

Going beyond perturbative approaches, direct numerical
simulations of disordered quantum interacting systems provide
a powerful framework to test MBL features in a variety
of systems [14,17,21,27–42]. The MBL transition dealing
with eigenstates at high(er) energy, ground-state methods
are not well adapted. Most numerical studies use full exact
diagonalization (ED) to obtain all eigenstates and energies
and are limited to rather small Hilbert-space sizes dimH ∼
104 [43].

In this Rapid Communication, we present an extensive
numerical study of the periodic S = 1

2 Heisenberg chain in

FIG. 1. (Color online) Disorder (h)—Energy density (ε) phase
diagram of the disordered Heisenberg chain, Eq. (1). The ergodic
phase (dark region with a participation entropy volume law coefficient
a1 " 1) is separated from the localized regime (bright region with
a1 # 1). Various symbols (see legend) show the energy-resolved
MBL transition points extracted from finite-size scaling performed
over system sizes L ∈ {14,15,16,17,18,19,20,22}. Red squares
correspond to a visual estimate of the boundary between volume
and area-law scaling of entanglement entropy SE .

1098-0121/2015/91(8)/081103(5) 081103-1 ©2015 American Physical Society

Luitz et al, PRB ’15
Hermitian case: ETH vs. MBL

strength of disorder

interactions tend to mediate 
eigenstates to thermalize

In the regime of sufficiently weak 
disorder,

Eigenstate thermalization

cf. ETH: eigenstate thermalization 
hypothesis

ETH
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Is this non-equilibrium steady state an analogue of the ground 
state in a Hermitian quantum mechanics?

A non-Hermitian version of Fermi sea?

- inter-particle interactions included 
- focus on the scaling of entanglement entropy 

volume vs. area law

- delocalize the wave function
The interaction (Hermitian case)

Remarks:

- thermalizes the eigenstates

Non-Hermiticity also?

In the wave-packet and 
entanglement dynamics of a non-
Hermitian system

we will see an emergence of non-
equilibrium steady state in the 
asymptotic long time regime 



The entanglement dynamics:
(Hermitian case, g=0)
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FIG. 6. Entanglement dynamics; non-interacting case (V = 0). Three panels (a), (e), (i) in the first column represent the
Hermitian case g = 0, while other panels represent non-Hermitian cases g 6= 0; g = 0.8 for panels (b), (f), (j) in the second
column (in this case, Wc = 2�L = 2�0e

g ' 4.5), g = 1.4 for panels (c), (g), (k) in the third column (Wc ' 8.1), g = 2 for panels
(d), (h), (l) in the fourth column (Wc ' 14.8). Four panels (a), (b), (c), (d) in the first raw represent the evolution of the
total entanglement entropy Stot(t), while panels (e), (f), (g), (h) in the second raw, and panels (i), (j), (k), (l) in the third raw
represent, respectively, the number and configuration entropies, Snum(t) and Sconf(t). The system size is L = 12. ✓0-averaged.

FIG. 7. Distribution of the maximal entanglement entropy,
Max Stot(t) in the (W, g) parameter space. The maximal
value of Stot(t) in the time evolution is plotted (a) non-
interacting case: V = 0 (the corresponding time evolution
is plotted in Fig. 6), (b) interacting case: V = 2 6= 0 (id. in
Fig. 6). The location of the delocalization-localization tran-
sition in the non-interacting case: g = logW/2 [as given in
Eq. (19)] is indicated by a broken white curve as a guide for
the eyes.

length L into two subsystems A and B of length L/2,
where a site j in A satisfies j 2 jA = {1, 2, · · · , L/2},
while in B j satisfies j 2 jB = {L/2+1, L/2+2, · · · , L}.
We then, by tracing out the subsystem B, calculate the
entanglement entropy SA(t) for the subsystem A. To
concretize this procedure, we employ the density matrix,

⌦(t) = | (t)ih (t)|, (27)

and perform its partial trace:

⌦A(t) = TrB ⌦(t), (28)

FIG. 8. Damped oscillatory behavior in the density profile
nj(t). Evolution of the particle density nj(t) = h (t)|n̂j | (t)i
as given in Eq. (24) is plotted for the density-wave type initial
state (26). The magnitude of nj(t) at site j (abscissa) and
at time t (ordinate) is expressed by a variation of plot color
indicated in the color bar.

where in Eq. (27) | (t)i represents a many-body state
at time t evolved from Eq. (26). Then, we introduce the
entanglement entropy:
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Definitions:
Non-interacting case: V=0

Interacting case: V=2 
- Disorder suppresses the 
entanglement growth

- Interacting case: logarithmic 
growth in the localized (MBL) 
regime
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- LIOM: quasi-local integrals of motion

Ros & Mueller, NPB ’12; Serbyn, et al, PRL, ’13; Huse et 
al., PRB ’14; Imbrie et al., AdP ’17 

DAVID A. HUSE, RAHUL NANDKISHORE, AND VADIM OGANESYAN PHYSICAL REVIEW B 90, 174202 (2014)

We expect that in this fully localized regime, we can define
another set of localized Pauli operators {τ i}, that we refer
to as “l-bits” (l = localized) or pseudospins, such that the
Hamiltonian when written in terms of these τ operators takes
the form

H =
∑

i

hiτ
z
i +

∑

i,j

Jijτ
z
i τ z

j +
∞∑

n=1

∑

i,j,{k}
K

(n)
i{k}jτ

z
i τ z

k1
· · · τ z

kn
τ z
j ,

(1)

with the K (n) terms representing (n + 2)-l-bit interactions. The
sums in Eq. (1) are restricted so that each interaction term is
counted only once. Also we have added a constant to shift the
zero of energy (if necessary) so that the trace of H vanishes.
Note that the τ z

i all commute with the Hamiltonian and with
each other, so the eigenstates of H are simultaneous eigenstates
of all the τ z

i , with zero entanglement of these l-bits.
The intuition underlying the Hamiltonian (1) is that since

there is no transport in the localized regime, there should
be a set of localized conserved “charges” (the {τ z

i }), which
are constants of motion of the system. For example, for a
system of noninteracting fermions all localized in a disordered
potential, the {τ z

i } would just be the occupation numbers of
the localized single-particle orbitals. Since these l-bits are
localized, when written in terms of the p-bits they consist
of a sum of terms that are products of p-bit operators on
nearby sites, as we discuss below. These terms have weights
that typically fall off exponentially with the distance to the
farthest p-bit operator involved in the operator product. These
exponential tails mediate the long-range interactions between
l-bits, which thus also fall off exponentially with distance.
The l-bits are thus “dressed” versions of the p-bits, with local
“dressing” that makes each τ z

i conserved; this dressing also
produces the l-bit interactions in H .

We will shortly explain how the l-bit operators τ may be
constructed. However, first we discuss how (1) may be used to
understand the quantum dynamics in the FMBL regime, as has
been explored in Refs. [6,24–27]. These works studied real-
time dynamics of FMBL systems, starting from simple initial
product states of the bare (p-bit) degrees of freedom. When
written in terms of the l-bits, such p-bit product states have
area-law entanglement and thus contain exponentially many
eigenstates of H . Importantly, the presence of interactions
between the l-bits means that such initial states will dephase,
so there will be no local observables that show long-time
persistent oscillations. The dynamics of the l-bits in the
many-body-localized phase is in some sense simple: their z
components are frozen, while their transverse xy components
precess about the z axes of their Bloch spheres. However, the
precession rate depends on the states of all the other τ z’s, due to
the interactions between l-bits. As a result, the xy components
of each l-bit become entangled with the z components of all
the other l-bits, resulting in dephasing and decoherence. But
all the τ z

i ’s are conserved, so there is no “dissipation,” and this
dephasing can be reversed by spin echo procedures [36,37].

Next let us consider the spreading of entanglement within
the FMBL phase. As in Refs. [6,24,25], start with an
initial state that is a pure product state of the p-bits. It
follows from our discussion above that such initial states of
zero p-bit entanglement generically have extensive diagonal

entropy when expressed in terms of the many-body-localized
eigenstates of H and the l-bits. However, this state initially has
no entanglement between p-bits, and is thus a very particular
linear combination of the eigenstates of the Hamiltonian.
The eigenstates of the Hamiltonian each have short-range
“area-law” entanglement between the p-bits, while they are
product states of the l-bits. On a microscopic time scale, this
initial linear combination of the eigenstates of H will dephase,
producing an area-law entanglement between the p-bits with a
magnitude set by the typical entanglement in an eigenstate of
H , as was seen in the early time regime in Refs. [24,25].

After this early time transient, we can discuss what happens
at later times in terms of the l-bits. It is instructive to contrast
with what happens in nonlocalized, thermalizing many-body
systems (see, e.g., [28]). In thermalizing systems, the interac-
tion of spins (p-bits) A and B generates entanglement between
spins A and B. The subsequent interaction of spins B and C
causes C to get entangled not only with B, but also with A.
As a result, entanglement spreads ballistically, at a speed akin
to the Lieb-Robinson speed. However, this ballistic spreading
is absent in the FMBL phase because the interaction between
two spins (now l-bits) B and C depends only on their τ z

values, and the τ z value of the spin B is unaffected by its
interaction with the spin A (since τ z is a constant of motion).
As a result, l-bits can get entangled only through their direct
interaction. An interaction J has an influence on the phase
of a precessing l-bit which becomes significant once J t is of
order one (! = 1). Thus, if J (L) is the effective interaction
at a range L, then l-bits separated by a distance L will grow
entangled with each other (and with all intervening l-bits) after
a time t ∼ 1/J (L). Since the effective l-bit interactions in the
localized phase fall off exponentially with distance, after a
time t , a given l-bit is entangled with all other l-bits within a
volume ∼logd t for a d-dimensional system.

More quantitatively, let us define the effective two l-bit
interaction J eff in a particular many-body eigenstate as

J eff
ij = Jij +

∑

n,{k}
K

(n)
i{k}jτ

z
k1

τ z
k2

· · · τ z
kn

. (2)

We expect this effective interaction to decay with distance r
as J eff(r) ∼ J0 exp(−r/ξ̃ ). This defines an interaction decay
length ξ̃ , which will vary over the eigenstates, as is discussed
below. Note that this effective interaction at distance r is a sum
of ∼2r interaction terms, so clearly the typical individual term
in this sum falls off exponentially in r with a shorter decay
length than ξ̃ . This illustrates that for these systems there are
multiple exponential decay lengths that may behave differently
from one another. The localization length ξ that is expected
to diverge at the phase transition out of the FMBL phase may
differ from this interaction length ξ̃ , as is also discussed below.

Let us consider a generic FMBL spin chain with a nonentan-
gled initial pure product state. If we then consider the long-time
growth of the bipartite entanglement entropy between two
semi-infinite half-chains, the distance x that the entanglement
spreads in time t is set by J eff(x) ∼ 1/t , or x ∼ ξ̃ log (J0t)
for the eigenstates with interaction length ξ̃ . At long time this
initial state dephases to produce diagonal entropy per spin
s(ξ̃ ) from the eigenstates with ξ̃ . The resulting entanglement
entropy thus grows as S ∼ s(ξ̃ )ξ̃ log (J0t), which is dominated

174202-2
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- Logarithmic growth of the 
entanglement entropy in the MBL 
phase: 

- dephasing

- manifestation of the many-body nature

Znidaric, et al. PRB ’08; Bardarson et al., PRL ’12; 
Serbyn et al., PRL ’13 Serbyn et al., PRL ’13

subregions A and B. But the total amount of entanglement
entropy generated remains finite as t ! 1 (Fig. 1), and the
fluctuations of particle number eventually saturate as well
(see below). The entanglement entropy for the pure state
of the whole system is defined as the von Neumann entropy
S ¼ "tr!A log!A ¼ "tr!B log!B of the reduced density
matrix of either subsystem. We always form the two biparti-
tions by dividing the system at the center bond.

The type of evolution considered here can be viewed as a
‘‘global quench’’ in the language of Calabrese and Cardy
[14] as the initial state is the ground state of an artificial
Hamiltonian with local fields. Evolution from an initial
product state with zero entanglement can be studied effi-
ciently via time-dependent matrix product state methods
until a time where the entanglement becomes too large for
a fixed matrix dimension. Since entanglement cannot
increase purely by local operations within each subsystem,
its growth results only from propagation across the

subsystem boundary, even though there is no conserved
current of entanglement.
The first question we seek to answer is whether there is

any qualitatively different behavior of physical quantities
when a small interaction

Hint ¼ Jz
X

i

Szi S
z
iþ1 (2)

is added. With Heisenberg couplings between the spins
(Jz ¼ J?), the model is believed to have a dynamical tran-
sition as a function of the dimensionless disorder strength
"=Jz [4,5,7]. This transition is present in generic eigenstates
of the system and hence exists at infinite temperature at
some nonzero ". The spin conductivity, or equivalently
particle conductivity after the Jordan-Wigner transforma-
tion, is zero in the many-body localized phase and nonzero
for small enough"=Jz. However, with exact diagonalization
the system size is so limited that it has not been possible to
estimate the location in the thermodynamic limit of the
transition of eigenstates or conductivities.
We find that entanglement growth shows a qualitative

change inbehavior at infinitesimalJz. Instead of the expected
behavior that a small interaction strength leads to a small
delay in saturation and a small increase infinal entanglement,
we find that the increase of entanglement continues to times
orders of magnitude larger than the initial localization time
in the Jz ¼ 0 case (Fig. 1). This slowgrowth of entanglement
is consistent with prior observations for shorter times and
larger interactions Jz ¼ 0:5J? and Jz ¼ J? [12,13],
although the saturation behavior was unclear. Note that ob-
serving a sudden effect of turning on interactions requires
large systems, as a small change in the Hamiltonian applied
to the same initial state will take a long time to affect the
behavior significantly. We next explain briefly the methods
enabling large systems to be studied.
Numerical methodology.—To simulate the quench, we

use the time evolving block decimation (TEBD) [15,16]
method which provides an efficient method to perform a
time evolution of quantum states, jc ðtÞi ¼ UðtÞjc ð0Þi, in
one-dimensional systems. The TEBD algorithm can be seen
as a descendant of the density matrix renormalization group
[17] method and is based on a matrix product state (MPS)
representation [18,19] of the wave functions. We use a
second-order Trotter decomposition of the short time propa-
gator Uð!tÞ ¼ expð"i!tHÞ into a product of term which
acts only on two nearest-neighbor sites (two-site gates).After
each application, the dimension of the MPS increases. To
avoid an uncontrolled growth of the matrix dimensions,
the MPS is truncated by keeping only the states which have
the largest weight in a Schmidt decomposition.
In order to control the error, we check that the neglected

weight after each step is small (< 10"6). Algorithms of
this type are efficient because they exploit the fact that the
ground-state wave functions are only slightly entangled
which allows for an efficient truncation. Generally the
entanglement grows linearly as a function of time which

FIG. 1 (color online). (a) Entanglement growth after a quench
starting from a site factorized Sz eigenstate for different inter-
action strengths Jz (we consider a bipartition into two half chains
of equal size). All data are for " ¼ 5 and L ¼ 10, except for
Jz ¼ 0:1 where L ¼ 20 is shown for comparison. The inset
shows the same data but with a rescaled time axis and subtracted
Jz ¼ 0 values. (b) Saturation values of the entanglement entropy
as a function of L for different interaction strengths Jz. The inset
shows the approach to saturation.
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is perhaps the most striking. In the absence of interactions,
V ¼ 0, disorder localizes the single-particle states, with
localization length !, and the many-body eigenstates are
simply states in which a certain number of single-particle
orbitals is occupied. Interactions that are much weaker
compared to the typical level spacing "1=! do not sig-
nificantly modify the many-body eigenstates. We have
explicitly verified this statement for small systems, and
assume it holds in general. However, even though the
eigenstates are not strongly affected by the interactions,
their energies are modified. If we fix the positions of all
particles, except for a pair of particles situated at a distance
x # ! away from each other, the interaction energy of this
pair is "Ve$x=!, and the corresponding dephasing time is
tdeph " @ex=!=V. This gives rise to a hierarchy of dephasing
time scales present in the problem, ranging from the fastest
tmin ¼ @=V to the slowest tmax ¼ tmine

L=!, where L is the
system size.

Generally, the product initial states considered in
Ref. [14], as well as the initial states of other kinds con-
sidered below, are a superposition of many eigenstates. The
interactions introduce a slow dephasing between different
states, and effectively generate entanglement between dif-
ferent remote parts of the system. A subsystem of size x
becomes nearly maximally entangled with the rest of the
system after an exponentially long time tdephðxÞ "@ex=!=V; thus, the bipartite Sent will increase logarithmi-
cally in time.

Two particles.—Let us start with a simple example
which demonstrates that the slow growth of entangle-
ment occurs for just two particles. Consider two distant
particles prepared in an equal-weight superposition of two
neighboring localized orbitals j!0i ¼ 1=2ðcy1 þ cy2 Þðcy3 þ
cy4 Þj0i, where cyi creates an eigenstate localized near site i.
We assume that the distance between the support of the
wave functions 1, 2 and 3, 4 is large (x # !) (see Fig. 1).

In the absence of interactions, no entanglement is gen-
erated during time evolution. Interactions, however, intro-
duce a correction to the energy of the state j"#i ¼
cy"c

y
#j0i, where " ¼ 1, 2, # ¼ 3, 4. In the leading order

of perturbation theory, the energy of this state is given by
E"# ¼ "" þ "# þ $E"#, where "", "# are the single-

particle energies, and the last term $E"# ¼ C"#Ve
$x=!

is due to the interactions, C"# being a constant which
depends only algebraically on x.

The time-evolved state is given by j!ðtÞi ¼
1=2

P
";# expð$iE"#tÞj"#i, and the reduced density

matrix for the first particle reads

%̂ L ¼ 1

2
1 FðtÞ=2

F(ðtÞ=2 1

! "
; (2)

where FðtÞ ¼ e$i"tð1þ e$i$"tÞ, $" ¼ $E14 $ $E24 $
$E13 þ $E23, and " ¼ "1 $ "2 þ $E13 $ $E23. The
eigenstates of %̂L therefore oscillate with a very long period

T ¼ 2&=$"" ð@=VÞex=!. At times t ¼ ð2nþ 1Þ&=$",
the off-diagonal elements vanish, and the eigenvalues
become equal to 1=2. At these times, the particles become
maximally entangled with Sent ¼ ln2. Figure 1 demon-
strates that even weak interactions lead to the entanglement
of the order of Sent ) ln2, and the rate of entanglement
change is inversely proportional to the interaction strength.
In Fig. 1, particles are in a superposition of states which are
not the exact eigenstates; hence, the maximum value of Sent
is slightly below ln2 ) 0:69. Note that no disorder or time
averaging is used.
General case.—Turning to the general many-body case,

let us divide the system into two parts L and R, labeling
the single-particle orbitals that are localized dominantly in
L by index "n, and those residing inR by #n. There may
be some ambiguity for the state residing near the boundary
between L and R, but we will be interested in systems of
size L # !, for which the boundary effects are not very
important.
We consider initial states that are products of some

superposition of states with definite numbers of particles
in L and R:

j!ðt ¼ 0Þi ¼
X

f"g2L

Af"gj"1 . . ."Ki

*
X

f#g2R

Bf#gj#1 . . .#Mi: (3)

Coefficients A, B are chosen such that ! is normalized.
Neglecting the change to the eigenstate due to interac-

tions, the reduced density matrix for L after time
evolution reads %̂L ¼ P

";"0%""0 j"ih"0j, where %""0 ¼
A"A

(
"0
P

#jB#j2eiðE"0#$E"#Þt, and we have used a shorthand

notation " + f"g, # + f#g. It is convenient to define

(a)

(b)

FIG. 1 (color online). (a) Generation of entanglement between
two remote particles, each prepared in an equal superposition of
two eigenstates. Exponentially small overlap of the orbitals leads
to the dephasing time growing exponentially with distance.
(b) Sent as a function of time for a given realization of disorder
and different interaction strengths. When V ¼ 0, Sent " 10$4

and remains small at all times. For V ! 0, values of SentðtÞ
collapse on a single curve when time is scaled by 1=V. System
size is L ¼ 10 sites, and disorder strength is W ¼ 6.
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Nature of MBL

(many-body localization)
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The entanglement dynamics: (non-Hermitian case, g=0.5)
Non-interacting case: V=0

Interacting case: V=2 

disorder enhances the 
entanglement growth

1) As opposed to the Hermitian case

2) Non-monotonic time evolution of 
the entanglement entropy in the 
regime of intermediate disorder

in the delocalized regime (small 
W<W_c), then it suppresses the 
entanglement entropy (W>W_c) 

interacting case
V 6= 0
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Two very characteristic features!
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Nature of the non-monotonic time evolution:

collapse of the superposition

Hamiltonian: non-Hermitian

time evolution: non-unitary

| (t)i =
X

↵

c↵(t)|↵i,
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- in the expansion:
eigenstates

complex: 
Im E↵ 6= 0
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If 
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t!1

| ̃(t)i ⇠ |↵1i
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collapse of the superposition,
evolution to a single eigenstate:

Competition between

spreading of the density/information vs. collapse of the superposition

non-monotonic time evolution of entanglement entropy

in the initial state in the course of non-unitary 
time evolution
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V=0

V=2

Density dynamics in the crystal momentum (k-)space:

non-Hermitian Hermitian
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pbc: complex
obc: real

Recall the (one-body) spectrum:

4

neighborhood of k = k at which the phase �(k) becomes
stationary; i.e., �0(k) = 0, or

2�0 sin k t = j � j0. (12)

Since | sin k|  1, |j � j0| = 2�0t ⌘ vf t defines the po-
sition of the wave front, or a “light cone”.38 Thus, the
initially localized wave packet di↵uses in the Hermitian
limit. Addition of disorder W suppresses the di↵usion;
in Fig. 2 of Ref. 38, the spread of the light cone

�x(t) =

sX

j

j2| j(t)|2, (13)

is plotted as a function of W , and is shown to behave
as �x(t) / t; i.e., �x(t) ⇠ t

� with the exponent � ' 1,
while v = �x(t)/t ⇠ vf decreases linearly with W and
vanishes at W = Wc.

On addition of non-Hermiticity g 6= 0, a di↵erent mech-
anism or a principle sets in to play a role in the wave-
packet dynamics of Eq. (10), since the eigenenergies ✏k
become complex:

✏k = �2�0 cos(k � ig), (14)

which in the complex energy plane, take values on an
ellipse:

⇣ Re ✏k
�0 cosh g

⌘2
+

⇣ Im ✏k

�0 sinh g

⌘2
= 1. (15)

In this case contributions from those k’s which have max-
imal Im ✏k’s become more important in the superposition
(10). In case of Eq. (14) [cf. also Eq. (15)] such k’s are
found at (around)

k = k0 = �⇡/2. (16)

Thus, in the non-Hermitian (free-particle) dynamics, the
initial state (7) dissolves in the course of time evolution
(10) into a Gaussian wave packet:

| (t)i '
X

j

|ji exp

✓
�
((j0 � j) + 2(cosh g)t)2

4(sinh g)t

◆

⇥e
2(sinh g)t

/

p
4(sinh g)t, (17)

which are composed of plane waves with k’s found around
k = k0; as for the derivation of Eq. (B2), see Eq. (17)
and related arguments in Appendix B. Remarkably, the
resulting Gaussian wave packet (17) is a wave packet that
slides in the direction imposed by g, though its expanse
gradually increases as time evolves Since as a guiding
principle,

1. the survival of Max Im ✏k has priority over

2. the stationary phase condition [cf. Eq. (12) in the
Hermitian case],

FIG. 3. Single-particle dynamics; velocity and density fluc-
tuation profiles. Panel (a) represents the sliding velocity
vG = [xG(t) � xG(0)]/t [cf. Eq. (18)] indicated by a vari-
ation of plot colors indicated in the color bar at a given set of
parameters g and W ; its distribution is shown in the (W, g)-
plane. Evaluated at t = t1 = 20. Panel (b) shows a similar
plot for the density fluctuation, enumerated by the quantity:
�(t) = �x(t) � �x(0), also evaluated at t = t1; �x(t) is as
given in Eq. (20). ✓0-averaged.

the non-Hermitian (free-particle) dynamics is fully gov-
erned by the principle 1., unlike in the Hermitian case in
which the principle 2. becomes manifest under the con-
dition that the principle 1. is disabled and masked. In
Fig. 2, panel (a) the distribution of | k(t)| at some fixed
t’s are shown. | k(t)| shows a Gaussian type distribu-
tion centered at k = k0, and its width tends to become
narrower as t evolves [cf. Appendix B].
Panels (b-e) of Fig. 2 show how the addition of disorder

W a↵ects and eventually destroys this peak structure of
 k. In panel (b) two side peaks may be conspicuous at
k = k1, k2; they are associated with the quasi-periodic
nature of the potential (2); Bloch waves of these k’s are
quasi-commensurate with the potential. The complex
energy spectrum ✏k also shows (in the presence ofW 6= 0)
[cf. Eqs. (14), (15) in the potential-free case (W = 0)]
an extremum at theses k’s, showing local maxima of Im
✏k.38 As W is increased, such side peaks multiply [panel
(c)],51 and the system gradually evolves into the cascade
regime represented by panel (d), where the distribution
of | k(t)| is almost uniform, but still there are plenty of
tiny peaks, while in the localized regime [in panel (e)] the
distribution becomes flat and smooth.

To further quantify features specific to the non-
Hermitian wave packet dynamics, it may be natural to
focus on

1. how fast the center of gravity

xG(t) =
X

j

j| j(t)|
2 (18)

of the wave packet moves, and also

2. to what extent the wave packet is spread around
xG(t).

It turns out that xG(t) ' xG(0) + vGt so that 1. can be
measured by the velocity vG. In panel (a) of Fig. 3, the
magnitude of vG is plotted (determined by evaluating
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(periodic boundary condition)

equilibrium 
distribution

occupied
(k<0)

unoccupied
(k>0)
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(a)

(b)

- in the asymptotic regime:

Logarithmic scaling of the entanglement entropy
in the asymptotic regime

Analogy with the Fermi-sea ground 
state:

Logarithmic scaling of the 
entanglement entropy

cf. Carabrese & Cardy, 2005 

(non-interacting case, 
clean limit: V=0, W=0)

chord distance:

l: subsystem size
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Conclusions

2) Entanglement dynamics

- Logarithmic scaling in the asymptotic regime:

- Non-monotonic time evolution of entanglement entropy

1) (Non-Hermitian) wave-packet dynamics

- (Unlike in the Hermitian case) disorder enhances spreading of 
the wave packet 

spreading of information vs. collapse of the superposition

- robust uni-directional dynamics 

analogy with a Fermi sea (many-body) ground state
- (particle-hole/bosonic) excitations: conformal field theory at c=1
- interacting case: effective central charge?

evolution to a single eigenstate with maximal Im E
quasiparticle picture lim

t!1
| ̃(t)i ⇠ |↵1i

<latexit sha1_base64="ABsf/nNTPd96+sVNjExkbbJoxuU="></latexit>

Orito & Imura, Phys. Rev. B 108, 214308 (2023)
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Take-home message

Im E

Re E

(Hermitian) 

Fermi sea

non-Hermitian ver. of 

Fermi sea

non-equilibrium steady state 
emergent in the asymptotic long 
time regime



- in the Non-Hermitian case:

3

playing e↵ectively the role of a random potential (Aubry-
André model42), where ✓ is an irrational constant, which
we choose to be the so-called (inverse) golden ratio:
✓ = (

p
5 � 1)/2. ✓0 is an additive phase introduced

for the purpose of taking a disorder average; averaging
over ✓0 distributed uniformly in the range 2 [0, 2⇡) plays
e↵ectively the role of averaging over di↵erent disorder
configurations.43

In the Hermitian limit: g = 0, the eigenstates are ex-
tended when W is weak enough (W < Wc), while local-
ized for W > Wc, where

Wc

2�0
= 1. (3)

This may be understood44 from the behavior of localiza-
tion length ⇠ defined in the localized phase;38,45 i.e.,

⇠
�1

' log
W

2�
. (4)

The localization length ⇠ diverges as W approaches the
critical value (3) from above.

In the non-Hermitian case: g 6= 0, the delocalization
point is determined by the condition:34,4647

⇠
�1 = g > 0. (5)

If this is combined with Eq. (4), the delocalization tran-
sition is expected to occur at

W = Wc = 2�0 e
g = 2�L, (6)

where we have assumed �L > �R (g > 0); i.e., Wc in the
non-Hermitian case is found simply by replacing �0 in Eq.
(3) with the right/large hopping amplitude �0. Both in
the Hermitian and non-Hermitian cases, the location of
the mobility edge (6) does not depend on the energy ✏n;
H|ni = ✏n|ni. When g 6= 0, the eigenenergy ✏n becomes
complex in the extended phase (W < Wc = 2�L); cf.
the case of free particle motion described in Appendix B,
while it remains real in the localized phase (W > Wc).
Thus, the localization-delocalization transition is accom-
panied by a real-complex transition of the eigenenergies
(see Appendix A for details).

Let us focus on the dynamics of the system by following
how an initially localized wave packet evolves in time.
Four panels of Fig. 1 show examples of such dynamics.
We assume that at t = 0 the wave packet is just at an
initial site j = j0;

| (t = 0)i = |j0i. (7)

At time t, the wave packet may evolve as

| (t)i =
X

j

 j(t)|ji

=
X

n

cne
�i✏nt|ni, (8)

where |ni represents the nth single-particle eigenstate of
the Hamiltonian (1) with an eigenenergy ✏n; i.e., H|ni =

✏n|ni, while cn = hhn| (t = 0)i. Here, hhn| represents
the left eigenstate corresponding to the eigenenergy ✏n :
hhn|H = ✏nhhn| and not |ni†; hhn| 6= |ni

†. We make sure
that the left and right eigenstates satisfy the biorthogonal
condition, .i.e, hhn|mi = �n,m. In case of g 6= 0, the
eigenenergy ✏n is typically complex; cf. the free particle
case in Appendix B [see also Eqs. (14), (15)], so that the
time-evolved wave packet | (t)i literally as given in Eq.
(8) tends to grow exponentially; its norm h (t)| (t)i is
not conserved due to the contribution from states with
Im ✏n > 0. In the actual computation, we, therefore,
rescale (renormalize) | (t)i at every interval �t as48

| (t)i ! | ̃(t)i =
| (t)ip

h (t)| (t)i
. (9)

and avoid this computational di�culty.35,36

The four panels of Fig. 1 show the distribution of
| j(t)| in the case of g = 1.4 (L = 601, j0 = 580) for
di↵erent strength of W . At site j (the abscissa) and at
time t (the ordinate), the amplitude of | j(t)| is specified
by a variation of the plot color indicated in the color bar.
The four panels show unlike in the Hermitian case49 that
the wave packet does not di↵use; at least in the regime
of weak W [cases of panels (a-b)],50 but rather slides in
the direction imposed by the non-reciprocity g. In the
non-Hermitian case g 6= 0 the standard cascade-like dif-
fusion as in the Hermitian limit disappears in the regime
of weak W [panels (a-b)] such that W ⌧ Wc,38 but a
similar (cascade-like) behavior reappears in the vicinity
of the localization transition: W ' Wc [panel (c)]. In the
localized phase, the wave packet does not move [panel
(d)]. Comparing the three cases on the delocalized side
[panels (a-c)], one also notices that the “sliding velocity”
of the wave packet; at least the velocity of the wave front
vf , tends to increase as W is increased.38

To understand why in the non-Hermitian system the
wave-packet dynamics becomes very di↵erent from the
standard Hermitian di↵usion case, one may well start
with the clean limit: W = 0. In this limit, the eigenstates
are plane waves hj|ki = e

ikj
/
p
L so that

| (t)i =
X

k

e
�i✏kt|kihk|j0i

 
⌘

X

k

 k(t)|ki

!

=
1

p
L

X

j

X

k

e
�i✏kt+ik(j0�j)

|ji, (10)

i.e., | (t)i is generally expressed as a superposition of
such plane waves; at site j contributions from di↵erent k
add up with a phase factor

e
i�(k) = e

�i✏kt+ik(j0�j)
. (11)

At t = 0 and at j 6= j0, such contributions are out of
phase and cancel each other, while at j = j0 they add
up in phase to form the peak of the initial wave packet.
At t > 0, similarly, the only non-vanishing contributions
[in the summation over k in Eq. (10)] are those from the
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André model42), where ✓ is an irrational constant, which
we choose to be the so-called (inverse) golden ratio:
✓ = (

p
5 � 1)/2. ✓0 is an additive phase introduced

for the purpose of taking a disorder average; averaging
over ✓0 distributed uniformly in the range 2 [0, 2⇡) plays
e↵ectively the role of averaging over di↵erent disorder
configurations.43

In the Hermitian limit: g = 0, the eigenstates are ex-
tended when W is weak enough (W < Wc), while local-
ized for W > Wc, where

Wc

2�0
= 1. (3)

This may be understood44 from the behavior of localiza-
tion length ⇠ defined in the localized phase;38,45 i.e.,

⇠
�1

' log
W

2�
. (4)

The localization length ⇠ diverges as W approaches the
critical value (3) from above.

In the non-Hermitian case: g 6= 0, the delocalization
point is determined by the condition:34,4647

⇠
�1 = g > 0. (5)

If this is combined with Eq. (4), the delocalization tran-
sition is expected to occur at

W = Wc = 2�0 e
g = 2�L, (6)

where we have assumed �L > �R (g > 0); i.e., Wc in the
non-Hermitian case is found simply by replacing �0 in Eq.
(3) with the right/large hopping amplitude �0. Both in
the Hermitian and non-Hermitian cases, the location of
the mobility edge (6) does not depend on the energy ✏n;
H|ni = ✏n|ni. When g 6= 0, the eigenenergy ✏n becomes
complex in the extended phase (W < Wc = 2�L); cf.
the case of free particle motion described in Appendix B,
while it remains real in the localized phase (W > Wc).
Thus, the localization-delocalization transition is accom-
panied by a real-complex transition of the eigenenergies
(see Appendix A for details).

Let us focus on the dynamics of the system by following
how an initially localized wave packet evolves in time.
Four panels of Fig. 1 show examples of such dynamics.
We assume that at t = 0 the wave packet is just at an
initial site j = j0;

| (t = 0)i = |j0i. (7)

At time t, the wave packet may evolve as

| (t)i =
X

j

 j(t)|ji

=
X

n

cne
�i✏nt|ni, (8)

where |ni represents the nth single-particle eigenstate of
the Hamiltonian (1) with an eigenenergy ✏n; i.e., H|ni =

✏n|ni, while cn = hhn| (t = 0)i. Here, hhn| represents
the left eigenstate corresponding to the eigenenergy ✏n :
hhn|H = ✏nhhn| and not |ni†; hhn| 6= |ni

†. We make sure
that the left and right eigenstates satisfy the biorthogonal
condition, .i.e, hhn|mi = �n,m. In case of g 6= 0, the
eigenenergy ✏n is typically complex; cf. the free particle
case in Appendix B [see also Eqs. (14), (15)], so that the
time-evolved wave packet | (t)i literally as given in Eq.
(8) tends to grow exponentially; its norm h (t)| (t)i is
not conserved due to the contribution from states with
Im ✏n > 0. In the actual computation, we, therefore,
rescale (renormalize) | (t)i at every interval �t as48

| (t)i ! | ̃(t)i =
| (t)ip

h (t)| (t)i
. (9)

and avoid this computational di�culty.35,36

The four panels of Fig. 1 show the distribution of
| j(t)| in the case of g = 1.4 (L = 601, j0 = 580) for
di↵erent strength of W . At site j (the abscissa) and at
time t (the ordinate), the amplitude of | j(t)| is specified
by a variation of the plot color indicated in the color bar.
The four panels show unlike in the Hermitian case49 that
the wave packet does not di↵use; at least in the regime
of weak W [cases of panels (a-b)],50 but rather slides in
the direction imposed by the non-reciprocity g. In the
non-Hermitian case g 6= 0 the standard cascade-like dif-
fusion as in the Hermitian limit disappears in the regime
of weak W [panels (a-b)] such that W ⌧ Wc,38 but a
similar (cascade-like) behavior reappears in the vicinity
of the localization transition: W ' Wc [panel (c)]. In the
localized phase, the wave packet does not move [panel
(d)]. Comparing the three cases on the delocalized side
[panels (a-c)], one also notices that the “sliding velocity”
of the wave packet; at least the velocity of the wave front
vf , tends to increase as W is increased.38

To understand why in the non-Hermitian system the
wave-packet dynamics becomes very di↵erent from the
standard Hermitian di↵usion case, one may well start
with the clean limit: W = 0. In this limit, the eigenstates
are plane waves hj|ki = e

ikj
/
p
L so that

| (t)i =
X

k

e
�i✏kt|kihk|j0i
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 k(t)|ki

!

=
1

p
L

X

j

X

k

e
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|ji, (10)

i.e., | (t)i is generally expressed as a superposition of
such plane waves; at site j contributions from di↵erent k
add up with a phase factor

e
i�(k) = e

�i✏kt+ik(j0�j)
. (11)

At t = 0 and at j 6= j0, such contributions are out of
phase and cancel each other, while at j = j0 they add
up in phase to form the peak of the initial wave packet.
At t > 0, similarly, the only non-vanishing contributions
[in the summation over k in Eq. (10)] are those from the
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xG(t) at t = t1
52 ) as changing the set of parameters

(W, g), and is indicated by a variation of plot color. The
plot shows that vG is finite in the extended phase W <

Wc, while it practically vanishes in the localized phase
W > Wc. The location of the phase boundary (6), or
equivalently,

g = log
W

2
(19)

is indicated by a broken curve in the panel. On the side
of the extended phase W < Wc, vG continues to take a
relatively large value until quite close to the phase tran-
sition; at a fixed value of g, it rather tends to increase as
W increases until an abrupt fall at the phase transition.

Panel (b) shows a similar plot for the quantity: �(t) =
�x(t) � �x(0) at some fixed time t = t0, where �x(t)
has been redefined as

�x(t) =

sX

j

(j � xG(t))2| j(t)|2. (20)

The quantity �(t) = �x(t) ��x(0) is expected to mea-
sure 2. to what extent the density ⇢j(t) is spread around
xG(t) The plot shows that similarly to the behavior of
vG in panel (a), the spread of the wave packet also shows
a sharp distinction in the extended (W < Wc) and local-
ized (W > Wc) phase. Here, in terms of �x(t), not only
it takes a finite value on the side of the extended phase:
W < Wc, but the appearance of a peak may be easily
seen as W is increased toward and close to the localiza-
tion transition (19) at g fixed. We interpret that this
enhancement of �(t) slightly before the localization tran-
sition reflects the the cascade-like explosion of di↵usion
dynamics seen in the density profile of the wave packet
in Fig. 1, panel (c).

B. Case of an interacting system

Here, we consider whether or not/how the presence
of interaction may a↵ect the above non-interacting pic-
ture. As a concrete model, we have employed the follow-
ing bosonic version of the Hatano-Nelson ⇥ Aubry-André
model with a nearest neighbor inter-particle interaction
V :

H = �

L�1X

j=0

⇣
�Lb

†
jbj+1 + �Rb

†
j+1bj

⌘

+
L�1X

j=0

⇣
V n̂j n̂j+1 +Wj n̂j

⌘
, (21)

where b†j (bj) creates (annihilates) a particle (a hard-core

boson) at site j, while n̂j = b
†
jbj is the number operator

at site j.
Fig. 4 shows the examples of multi-particle dynamics

in this system when the initial state is chosen to be the

FIG. 4. Multi-particle dynamics; evolution of the initial wave
packet chosen to be in a domain wall form (22). The eight
panels of Fig. 4 show the evolution of the particle density
nj(t) as given in Eq. (24) at site j and at time t = t1; here t1
is chosen as t1 = 2.2, by a gradation of plot colors indicated
in the color bar. The system size L is set to L = 25. Di↵erent
panels (a-d) correspond to di↵erent values of disorder strength
W ; W = 0.4, 3.6, 8.0, 10.0, respectively, for panels (a-d). g is
fixed at g = 1.4. ✓0 = 0 (no disorder average). The four upper
panel in the case (i) represent the non-interacting case: V = 0,
while those in (ii) represent an interacting case: V = 2 6= 0.

following domain wall state

| (t = 0)i = |00 · · · 011 · · · 1i, (22)

i.e., the last Nb sites are occupied in the local basis;53 Nb

represents the number of particles (bosons) in the system;
in this numerical shown in Fig. 4 it is chosen as Nb = 3.
At time t, the initial state (22) evolves as

| (t)i =
X

µ

cµe
�iEµt|µi, (23)

where µ = {n1, n2, · · · , nL} species a many-body eigen-
state |µi of the Hamiltonian (21); Eµ is the corresponding
eigenenergy: H|µi = Eµ|µi, while cµ = hhµ| (t = 0)i.
Here, hhµ| represents the left eigenstate corresponding to
the eigenenergy Eµ: hhµ|H = Eµhhµ| and not |µi†; hhµ| 6=
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playing e↵ectively the role of a random potential (Aubry-
André model42), where ✓ is an irrational constant, which
we choose to be the so-called (inverse) golden ratio:
✓ = (

p
5 � 1)/2. ✓0 is an additive phase introduced

for the purpose of taking a disorder average; averaging
over ✓0 distributed uniformly in the range 2 [0, 2⇡) plays
e↵ectively the role of averaging over di↵erent disorder
configurations.43

In the Hermitian limit: g = 0, the eigenstates are ex-
tended when W is weak enough (W < Wc), while local-
ized for W > Wc, where

Wc

2�0
= 1. (3)

This may be understood44 from the behavior of localiza-
tion length ⇠ defined in the localized phase;38,45 i.e.,

⇠
�1

' log
W

2�
. (4)

The localization length ⇠ diverges as W approaches the
critical value (3) from above.

In the non-Hermitian case: g 6= 0, the delocalization
point is determined by the condition:34,4647

⇠
�1 = g > 0. (5)

If this is combined with Eq. (4), the delocalization tran-
sition is expected to occur at

W = Wc = 2�0 e
g = 2�L, (6)

where we have assumed �L > �R (g > 0); i.e., Wc in the
non-Hermitian case is found simply by replacing �0 in Eq.
(3) with the right/large hopping amplitude �0. Both in
the Hermitian and non-Hermitian cases, the location of
the mobility edge (6) does not depend on the energy ✏n;
H|ni = ✏n|ni. When g 6= 0, the eigenenergy ✏n becomes
complex in the extended phase (W < Wc = 2�L); cf.
the case of free particle motion described in Appendix B,
while it remains real in the localized phase (W > Wc).
Thus, the localization-delocalization transition is accom-
panied by a real-complex transition of the eigenenergies
(see Appendix A for details).

Let us focus on the dynamics of the system by following
how an initially localized wave packet evolves in time.
Four panels of Fig. 1 show examples of such dynamics.
We assume that at t = 0 the wave packet is just at an
initial site j = j0;

| (t = 0)i = |j0i. (7)

At time t, the wave packet may evolve as

| (t)i =
X

j

 j(t)|ji

=
X

n

cne
�i✏nt|ni, (8)

where |ni represents the nth single-particle eigenstate of
the Hamiltonian (1) with an eigenenergy ✏n; i.e., H|ni =

✏n|ni, while cn = hhn| (t = 0)i. Here, hhn| represents
the left eigenstate corresponding to the eigenenergy ✏n :
hhn|H = ✏nhhn| and not |ni†; hhn| 6= |ni

†. We make sure
that the left and right eigenstates satisfy the biorthogonal
condition, .i.e, hhn|mi = �n,m. In case of g 6= 0, the
eigenenergy ✏n is typically complex; cf. the free particle
case in Appendix B [see also Eqs. (14), (15)], so that the
time-evolved wave packet | (t)i literally as given in Eq.
(8) tends to grow exponentially; its norm h (t)| (t)i is
not conserved due to the contribution from states with
Im ✏n > 0. In the actual computation, we, therefore,
rescale (renormalize) | (t)i at every interval �t as48

| (t)i ! | ̃(t)i =
| (t)ip

h (t)| (t)i
. (9)

and avoid this computational di�culty.35,36

The four panels of Fig. 1 show the distribution of
| j(t)| in the case of g = 1.4 (L = 601, j0 = 580) for
di↵erent strength of W . At site j (the abscissa) and at
time t (the ordinate), the amplitude of | j(t)| is specified
by a variation of the plot color indicated in the color bar.
The four panels show unlike in the Hermitian case49 that
the wave packet does not di↵use; at least in the regime
of weak W [cases of panels (a-b)],50 but rather slides in
the direction imposed by the non-reciprocity g. In the
non-Hermitian case g 6= 0 the standard cascade-like dif-
fusion as in the Hermitian limit disappears in the regime
of weak W [panels (a-b)] such that W ⌧ Wc,38 but a
similar (cascade-like) behavior reappears in the vicinity
of the localization transition: W ' Wc [panel (c)]. In the
localized phase, the wave packet does not move [panel
(d)]. Comparing the three cases on the delocalized side
[panels (a-c)], one also notices that the “sliding velocity”
of the wave packet; at least the velocity of the wave front
vf , tends to increase as W is increased.38

To understand why in the non-Hermitian system the
wave-packet dynamics becomes very di↵erent from the
standard Hermitian di↵usion case, one may well start
with the clean limit: W = 0. In this limit, the eigenstates
are plane waves hj|ki = e

ikj
/
p
L so that

| (t)i =
X

k

e
�i✏kt|kihk|j0i

 
⌘

X

k

 k(t)|ki

!

=
1

p
L

X

j

X

k

e
�i✏kt+ik(j0�j)

|ji, (10)

i.e., | (t)i is generally expressed as a superposition of
such plane waves; at site j contributions from di↵erent k
add up with a phase factor

e
i�(k) = e

�i✏kt+ik(j0�j)
. (11)

At t = 0 and at j 6= j0, such contributions are out of
phase and cancel each other, while at j = j0 they add
up in phase to form the peak of the initial wave packet.
At t > 0, similarly, the only non-vanishing contributions
[in the summation over k in Eq. (10)] are those from the
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where we have assumed �L > �R (g > 0); i.e., Wc in the
non-Hermitian case is found simply by replacing �0 in Eq.
(3) with the right/large hopping amplitude �0. Both in
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the case of free particle motion described in Appendix B,
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phase and cancel each other, while at j = j0 they add
up in phase to form the peak of the initial wave packet.
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Comparison of periodic vs. open 
boundary conditions

- clean limit: W=0

- case of weak disorder: W=1.0

case of obc: 

the open boundary conditions



pbc vs. obc 
(continued)

Simulation of the wave-packet dynamics: 

(b) non-Hermitian casecase of pbc: 


the periodic boundary conditions

- Case of stronger disorder: W=3.0 (still in the extended phase)

- Case of even stronger disorder: W=4.0 (localized phase)



pbc vs. obc 
(continued)

Simulation of the wave-packet dynamics: 

(b) non-Hermitian casecase of obc: 


the open boundary conditions

- Case of stronger disorder: W=3.0 (still in the extended phase)

- Case of even stronger disorder: W=4.0 (localized phase)




