Weak-coupling bound states in semi-infinite topological waveguide QED

> Savannah Garmon (she/her) Osaka Metropolitan University

Collaborators: Gonzalo Ordonez and Kenichi Noba

Funding: KAKENHI grants JP18K03466 and JP22K03473

Background: environmental engineering

Cavity QED: the emission properties of an atom can be modified by placing it inside a cavity or a waveguide

$$
\omega \left\{ \begin{array}{c} -|e\rangle \rightarrow \Gamma \\ |g\rangle \end{array} \right\} \qquad \qquad \boxed{\longrightarrow} \qquad \Gamma'
$$

Dynamical properties of a system are modified by the environment into which a system decays

Background: environmental engineering

We can generalize from this picture in a variety of ways.

One can consider the interaction of qubits and atom-like states with a variety of artificial environments (photonic lattices, etc.)

- atom-photon bound states
- environments that behave as a topological insulator with topologically-protected surface states

E. Kim, et al, PRX **11**, 011015 (2021)

S. G. and K. Noba, PRA **104**, 062215 (2021)

H. Zhang, et al, PRA **105**, 053703 (2022)

Quantum optics with topological baths

SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICS

Unconventional quantum optics in topological waveguide QED

M. Bello¹, G. Platero¹, J. I. Cirac², A. González-Tudela^{2,3*}

Bound states in a 2-D topological ring resonator array with quantum emitter

FIG. 1. (a) Scheme of the two-dimensional coupled ring resonator array. The orange dot represents the QE, which is placed

Bound states in a 2-D topological ring resonator array with quantum emitter

Weak-coupling bound states - 1-D topological model

In this study, we consider a quantum emitter coupled to a topological 1-D reservoir (the SSH model)

The SSH model is often used to illustrate the concept of bulk-boundary correspondence…

Bulk-boundary correspondence

A key property of topological insulator models is the socalled bulk-boundary correspondence

Su-Schrieffer-Heeger (SSH) model

SSH gives a simple prototype of a 1-D topological insulator

These are zero-energy modes $E \approx 0$

J. K. Asbóth, L. Oroszlány, and A. Pályi, Lecture Notes in Physics **919** (Springer International Publishing, Switzerland 2016).

Edge states in the SSH model: spectrum

Bulk-boundary correspondence in SSH model

$$
E(k) = \left| v + e^{-ik}w \right| = \sqrt{v^2 + w^2 + 2vw\cos k}.
$$
 (1.15)

We show this dispersion relation for five choices of the parameters in Fig. $[1.2]$

 $W = J_1$ $v = J_2$ figure borrowed from:

J. K. Asbóth, L. Oroszlány, and A. Pályi, Lecture Notes in Physics **919** (Springer International Publishing, Switzerland 2016).

SSH model as topological structured reservoir

We first consider SSH under semi-infinite extension:

We then attach a quantum emitter to the semi-inf chain:

Standard SSH notation: A and B sites

Standard SSH notation: A and B sites

First step: infinite SSH chain

We first diagonalize an infinite SSH chain, and then build solutions to the semi-infinite chain.

$$
H_{\infty} = \sum_{n=-\infty}^{\infty} [J_1(|n, B\rangle\langle n+1, A| + |n+1, A\rangle\langle n, B|) + J_2(|n, B\rangle\langle n, A| + |n, A\rangle\langle n, B|)]
$$

Eigenstate ansatz:
$$
|k, \pm\rangle = \sum_{n=-\infty}^{\infty} [C_{A,\pm}(k)|n, A\rangle + C_{B,\pm}(k)|n, B\rangle]e^{ikn}
$$

Then we find effective eigenvalue equation:

$$
\begin{pmatrix} 0 & J_2 + J_1 e^{-ik} \\ J_2 + J_1 e^{ik} & 0 \end{pmatrix} \begin{pmatrix} C_{A,\pm} \\ C_{B,\pm} \end{pmatrix} = \pm E_k \begin{pmatrix} C_{A,\pm} \\ C_{B,\pm} \end{pmatrix}
$$

Infinite SSH chain: continuum eigenstates

We find solutions for the infinite chain of the form

$$
|k, \pm\rangle = \frac{1}{\sqrt{2}} \sum_{n=-\infty}^{\infty} [f_k | n, A \rangle \pm |n, B \rangle] e^{ikn}
$$

with $f_k = \sqrt{\frac{J_2 + J_1 e^{-ik}}{J_2 + J_1 e^{ik}}}$

And
$$
E_{k,\pm} = \pm \sqrt{(J_2 + J_1 e^{ik})(J_2 + J_1 e^{-ik})}
$$

Semi-infinite SSH chain: Hamiltonian

We turn now to our original goal: semi-infinite SSH chain

$$
H = \sum_{n=1}^{\infty} [J_1(|n, B\rangle\langle n+1, A| + |n+1, A\rangle\langle n, B|) + J_2(|n, B\rangle\langle n, A| + |n, A\rangle\langle n, B|)]
$$

Semi-infinite SSH chain: Solution

Eigenstates of semi-infinite SSH chain: written as a linear combination of solutions from the infinite case, satisfying appropriate boundary conditions.

$$
|\phi_k, \pm\rangle = \frac{1}{i\sqrt{2}} (|k, \pm\rangle - |-k, \pm\rangle)
$$

=
$$
\sum_{n=1}^{\infty} \left(\frac{f_k e^{ikn} - f_k^* e^{-ikn}}{2i} |n, A\rangle \pm \sin k n |n, B\rangle \right)
$$

with the key property:

 $f_k =$ $J_2 + J_1 e^{-ik}$ $J_2 + J_1 e^{ik}$

 $\langle 0, B | \phi_k, \pm \rangle = \sin 0 = 0$

(decouples from sites to the left of $|1, A\rangle$)

Diagonalized SSH semi-infinite model

Our eigenstates indeed diagonalize H as expected

$$
H = \int_{-\pi}^{\pi} \frac{dk}{2\pi} \sum_{s=\pm} E_{k,s} |\phi_k, s\rangle \langle \phi_k, s|
$$

$$
E_{k,\pm} = \pm \sqrt{(J_2 + J_1 e^{ik})(J_2 + J_1 e^{-ik})}
$$

$$
|\phi_k, \pm\rangle = \sum_{n=1}^{\infty} \left(\frac{f_k e^{ikn} - f_k^* e^{ikn}}{2i} |n, A\rangle \pm \sin k n |n, B\rangle \right)
$$

$$
f_k = \sqrt{\frac{J_2 + J_1 e^{-ik}}{J_2 + J_1 e^{ik}}}
$$
 factor f_k introduces edge
state winding number

Winding number properties

 $f_k =$ $J_2 + J_1 e^{-ik}$ **••** parametrize according to $\lambda = e^{ik}$ Edge state revealed in the resolution of unity

If we assume the resolution of unity is given by

$$
1 = \int_{-\pi}^{\pi} \frac{dk}{2\pi} \sum_{s=\pm} |\phi_k, s\rangle \langle \phi_k, s|
$$

We find

$$
\langle n, A | n', A \rangle = \int_{-\pi}^{\pi} \frac{dk}{2\pi} \left[\frac{f_k e^{ikn} - f_k^* e^{-ikn}}{2i} \right] \left[\frac{f_k^* e^{-ikn'} - f_k e^{ikn'}}{-2i} \right]
$$

$$
= \delta_{n,n'} - \int_{-\pi}^{\pi} \frac{dk}{2\pi} \frac{J_2 + J_1 e^{-ik}}{J_2 + J_1 e^{ik}} e^{ik(n+n')}
$$

missing state is revealed
in "topological" case

Resolution of unity in the topological case

For $J_1 > J_2$ we must include the (left) edge state

$$
1 = \int_{-\pi}^{\pi} \frac{dk}{2\pi} \sum_{s=\pm} |\phi_k, s\rangle \langle \phi_k, s| + |\phi_e\rangle \langle \phi_e|
$$

$$
|\phi_e\rangle = \frac{\sqrt{J_1^2 - J_2^2}}{J_1} \sum_{n=1}^{\infty} |n, A\rangle \left(-\frac{J_2}{J_1}\right)^{n-1}
$$

eigenvalue: $E_e = 0$

$$
= \frac{\sqrt{J_1^2 - J_2^2}}{J_1} \sum_{n=1}^{\infty} (-1)^{n-1} |n, A\rangle e^{-(n-1)/\xi} \qquad \qquad \xi \equiv \frac{1}{\log(J_1/J_2)}
$$

exponentially localized and sublattice localized

Energy spectrum and quantum emitter

Edge state is exact, but isolated:

Energy spectrum and quantum emitter

Edge state is exact, but isolated:

Emitter acts as a probe of the topological properties of the system

Chiral sublattice symmetry

$$
|1, A\rangle
$$
 $|2, A\rangle$ $|3, A\rangle$
 $|q\rangle$ $|1, B\rangle$ $|2, B\rangle$

Sublattice operator:

 $\Sigma_z = P_A - P_B$

Sublattice projectors:

$$
P_A = \sum_{j=1}^{N} |j, A\rangle\langle j, A|
$$

$$
|j, A\rangle\langle j, A| \qquad P_B = |q\rangle\langle q| + \sum_{j=1}^{\infty} |j, B\rangle\langle j, B|
$$

Chiral sublattice symmetry

$$
|1, A\rangle
$$
 $|2, A\rangle$ $|3, A\rangle$
 $|q\rangle$ $|1, B\rangle$ $|2, B\rangle$

Sublattice operator:

$$
\Sigma_z = P_A - P_B
$$

Chiral symmetry:

$$
\Sigma_z H \Sigma_z = -H
$$

Chiral sublattice symmetry: zero energy state

$$
|1, a\rangle \qquad |2, a\rangle \qquad |3, a\rangle
$$

\n
$$
|q\rangle \qquad |1, b\rangle \qquad |2, b\rangle
$$

\n
$$
\det H = (-)^n \det H \qquad \text{implies} \qquad \det H = 0
$$

\nsetting $E = 0 = \sqrt{J_1^2 + J_2^2 + 2J_1J_2 \cos k}$
\nyields the condition $e^{ik} = -\frac{J_1}{J_2}$ { $\begin{cases} \text{localized} & J_1 < J_2 \\ \text{anti-localized} & J_1 > J_2 \end{cases}$
\n $\psi_{n,B} \sim e^{ikn}$

 \angle /

Green's function: ordinary discrete eigenstates

$$
|1, a\rangle \qquad |2, a\rangle \qquad |3, a\rangle
$$

$$
|q\rangle \qquad |1, b\rangle \qquad |2, b\rangle
$$

We can obtain the remaining discrete energy solutions from the Green's function at the quantum emitter

$$
\left\langle q \left| \frac{1}{z - H} \right| q \right\rangle = \frac{1}{z - \Sigma(z)} = \frac{2z}{z^2 - J_1^2 + J_2^2 \pm \sqrt{z^4 - 2z^2 (J_1^2 + J_2^2) + (J_1^2 - J_2^2)^2}}
$$

$$
z_{\pm} = \pm g \sqrt{\frac{g^2 - (J_1^2 - J_2^2)}{g^2 - J_1^2}}
$$

$$
k_+ = k_- = -i \log \frac{J_1 J_2}{g^2 - J_1^2}
$$

Spectrum: $J_2 > J_1$ case

I Region IV: two inner gap virtual states

> Region V: two inner gap bound states

> > (anti-localized) zero-energy mode

I Region IV: two inner gap virtual states

> Region V: two inner gap bound states

> > (anti-localized) zero-energy mode

Reg. V bound states:

$$
\left|\psi_{\pm}\right\rangle \approx \frac{1}{\sqrt{2}}\big(\left|q\right\rangle \pm \left|\phi_{e}\right\rangle\big)
$$

I Region IV: two inner gap virtual states

> Region V: two inner gap bound states

> > (anti-localized) zero-energy mode

 inherited topological phase

Region V dynamics

Region V dynamics (non-Markovian, non-dissipative) are totally distinct from uniform chain (Markovian decay)

Region V dynamics

Region V dynamics (non-Markovian, non-dissipative) are totally distinct from uniform chain (Markovian decay)

Conclusions (1/2)

Semi-infinite extension of the SSH model:

- left edge state becomes exact zero mode (right state vanishes)
- "in-house bulk-boundary correspondence"
	- continuum winding number predicts edge state under the *same* B.C.'s

Semi-infinite SSH model with attached quantum emitter

- non-trivial Regions IV and V appear in the topological case of the bare chain
- weak-coupling bound states in Region V are hybridizations between the quantum emitter and edge state

Numerical study (2-D model): H. Zhang, et al, PRA **105**, 053703 (2022)

Conclusions (2/2)

Non-Markovian Dynamics at the EP:

- early time behavior: $P(t) \sim (1 C_2 t + C_3 t^2)^2$
- late time: $P(t) \sim 1/t^3$

previous paper: S. G. and K. Noba, PRA **104**, 062215 (2021)

(Reveals that the edge state can influence PT-symmetry breaking in a model with a local PT-symmetric potential)