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Background: environmental engineering

2/27

Cavity QED: the emission properties of an atom can be
modified by placing it inside a cavity or a waveguide

Dynamical properties of a system are modified by the 
environment into which a system decays

𝜔
| ⟩𝑒
| ⟩𝑔{ → Γ → Γ′



Background: environmental engineering
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We can generalize from this picture in a variety of ways.

One can consider the interaction of qubits and atom-like
states with a variety of artificial environments (photonic
lattices, etc.)

• atom-photon bound states

• environments that behave as a topological insulator
    with topologically-protected surface states

H. Zhang, et al, PRA 105, 053703 (2022)
S. G. and K. Noba, PRA 104, 062215 (2021)

E. Kim, et al, PRX 11, 011015 (2021)



Quantum optics with topological baths
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Bound states in a 2-D topological 
ring resonator array with quantum emitter

5H. Zhang, et al, PRA 105, 053703 (2022)



Bound states in a 2-D topological 
ring resonator array with quantum emitter

6H. Zhang, et al, PRA 105, 053703 (2022)

weak-coupling
bound state



Weak-coupling bound states -
1-D topological model
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In this study, we consider a quantum emitter coupled to a
topological 1-D reservoir (the SSH model)

The SSH model is often used to illustrate the concept of
bulk-boundary correspondence… 



Bulk-boundary correspondence
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A key property of topological insulator models is the so-
called bulk-boundary correspondence

Hamiltonian 𝐻 
(periodic boundary conditions)

Hamiltonian 𝐻 
(open boundary conditions)

winding number 
𝑤 ≠ 0

number of surface states
𝑁! = 	𝑤



J. K. Asbóth, L. Oroszlány, and A. Pályi,
Lecture Notes in Physics 919 (Springer
International Publishing, Switzerland 2016).

Su-Schrieffer-Heeger (SSH) model

SSH gives a simple prototype of a 1-D topological insulator

J2J2 J1 J2J1
J1 < J2 dimers
(trivial)

J1 > J2
(topological)

J2J2 J1 J2J1
edge states

Left-hand
state

Right-hand
state

These are zero-energy modes  E ≈ 0



Edge states in the SSH model: spectrum
E

J1

J1 = J2

edge states with
E ≈ 0 split off from
SSH bands for J1 > J2

Most SSH energy levels are
organized into two bands

10

𝐸" = ± 𝐽#$ + 𝐽$$ + 2𝐽#𝐽$ cos 𝑘



Bulk-boundary correspondence in SSH model

J. K. Asbóth, L. Oroszlány, and A. Pályi,
Lecture Notes in Physics 919 (Springer
International Publishing, Switzerland 2016).

𝑤 = 𝐽!	
𝑣 = 𝐽"	

figure borrowed from:



g J2 J1 J2 J1

SSH model as topological structured reservoir

We first consider SSH under semi-infinite extension:

S. G. and K. Noba, Phys. Rev A 104, 062215 (2021)

SSH reservoir

quantum
emitter

N pairs

n = 2N+1 sites
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𝑁 → ∞

{SSH pair

J2 J1 J2 J1

We then attach a quantum emitter to the semi-inf chain:



Standard SSH notation: 𝐴 and 𝐵	sites
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N pairs

𝑁 → ∞

{SSH pair

J2 J1 J2 J1



Standard SSH notation: 𝐴 and 𝐵	sites
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⟩|1, 𝐴

⟩|1, 𝐵

⟩|2, 𝐴

⟩|2, 𝐵

⟩|3, 𝐴



First step: infinite SSH chain
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𝐻# = '
$%&#

#

𝐽! ⟩|𝑛, 𝐵 ⟨ |𝑛 + 1, 𝐴 + ⟩|𝑛 + 1, 𝐴 ⟨ |𝑛, 𝐵 + 𝐽" ⟩|𝑛, 𝐵 ⟨ |𝑛, 𝐴 + ⟩|𝑛, 𝐴 ⟨ |𝑛, 𝐵

We first diagonalize an infinite SSH chain, and then build
solutions to the semi-infinite chain.

Eigenstate ansatz: ⟩|𝑘, ± = '
!"#$

$

𝐶%,± 𝑘 ⟩|𝑛, 𝐴 + 𝐶(,±(𝑘) ⟩|𝑛, 𝐵 𝑒)*!

0 𝐽" + 𝐽!𝑒&'(

𝐽" + 𝐽!𝑒'( 0
𝐶),±
𝐶,,±

= ±𝐸(
𝐶),±
𝐶,,±

Then we find effective eigenvalue equation:



Infinite SSH chain: continuum eigenstates
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We find solutions for the infinite chain of the form

⟩|𝑘, ± =
1
2
5
%&'(

(

𝑓" ⟩|𝑛, 𝐴 ± ⟩|𝑛, 𝐵 𝑒)"%

𝑓( =
𝐽" + 𝐽!𝑒&'(

𝐽" + 𝐽!𝑒'(with

𝐸",± = ± 𝐽$ + 𝐽#𝑒)" 𝐽$ + 𝐽#𝑒')"And



Semi-infinite SSH chain: Hamiltonian
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𝐻 = '
$%!

#

𝐽! ⟩|𝑛, 𝐵 ⟨ |𝑛 + 1, 𝐴 + ⟩|𝑛 + 1, 𝐴 ⟨ |𝑛, 𝐵 + 𝐽" ⟩|𝑛, 𝐵 ⟨ |𝑛, 𝐴 + ⟩|𝑛, 𝐴 ⟨ |𝑛, 𝐵

⟩|1, 𝐴

⟩|1, 𝐵

⟩|2, 𝐴

⟩|2, 𝐵

⟩|3, 𝐴

We turn now to our original goal: semi-infinite SSH chain



Semi-infinite SSH chain: Solution
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= 5
%&#

(
𝑓" 𝑒)"% − 𝑓*∗𝑒')"%

2𝑖
| ⟩𝑛, 𝐴 ± sin 𝑘	𝑛 | ⟩𝑛, 𝐵

𝑓* =
𝐽, + 𝐽-𝑒#)*

𝐽, + 𝐽-𝑒)*

Eigenstates of semi-infinite SSH chain: written as a linear 
combination of solutions from the infinite case, satisfying
appropriate boundary conditions.

| ⟩𝜙" , ± =
1
𝑖 2

| ⟩𝑘, ± −| ⟩−𝑘, ±

with the key property:

⟨0, 𝐵| ⟩𝜙" , ± = sin 0 = 0

(decouples from sites to the left of | ⟩1, 𝐴 )



Diagonalized SSH semi-infinite model
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| ⟩𝜙" , ± = 5
%&#

(
𝑓" 𝑒)"% − 𝑓*∗𝑒)"%

2𝑖
| ⟩𝑛, 𝐴 ± sin 𝑘	𝑛 | ⟩𝑛, 𝐵

𝑓* =
𝐽, + 𝐽-𝑒#)*

𝐽, + 𝐽-𝑒)*

𝐻 = 7
&-

- 𝑑𝑘
2𝜋

'
.%±

𝐸(,. ⟩|𝜙( , 𝑠 ⟨ |𝜙( , 𝑠

Our eigenstates indeed diagonalize 𝐻 as expected

𝐸!,± = ± 𝐽$ + 𝐽%𝑒&! 𝐽$ + 𝐽%𝑒'&!

factor 𝑓!  introduces edge
state winding number



Winding number properties
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𝑓* =

𝐽, + 𝐽-𝑒#)*

𝐽, + 𝐽-𝑒)* parametrize according to λ = 𝑒"!

-1 -0.5 0.5 1 Re λ

-1

-0.5

0.5

1

Im λ

-1 -0.5 0.5 1 Re λ

-1

-0.5

0.5

1

Im λ

Winding number is zero Non-vanishing winding number

𝑤 = 0 𝑤 = 1

𝐽! = 0.6, 	 𝐽"= 0.8

“trivial case”

𝐽! = 0.6, 	 𝐽"= 0.4
“topological case”

𝐽! < 𝐽" 𝐽! > 𝐽"



Edge state revealed in the resolution of unity
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If we assume the resolution of unity is given by

1 = 7
&-

- 𝑑𝑘
2𝜋

'
.%±

⟩|𝜙( , 𝑠 ⟨ |𝜙( , 𝑠

= 𝛿$,$/ −7
&-

- 𝑑𝑘
2𝜋

𝐽" + 𝐽!𝑒&'(

𝐽" + 𝐽!𝑒'(
𝑒'(($1$!)

missing state is revealed
in “topological” case

𝑛, 𝐴 𝑛/, 𝐴 = 7
&-

- 𝑑𝑘
2𝜋

𝑓(𝑒'($ − 𝑓(∗𝑒&'($

2𝑖
𝑓(∗𝑒&'($

! − 𝑓( 𝑒'($
!

−2𝑖

We find



For 𝐽# > 𝐽$ we must include the (left) edge state

1 = 7
&-

- 𝑑𝑘
2𝜋

'
.%±

⟩|𝜙( , 𝑠 ⟨ |𝜙( , 𝑠 + GH𝜙4 ⟨ |𝜙4

Resolution of unity in the topological case
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23𝜙. =
𝐽-, − 𝐽,,

𝐽-
'
!"-

$

⟩|𝑛, 𝐴 −
𝐽,
𝐽-

!#-

𝜉 ≡
1

log(𝐽-/𝐽,)
=

𝐽-, − 𝐽,,

𝐽-
'
!"-

$

−1 !#- ⟩|𝑛, 𝐴 	𝑒# !#- /0

eigenvalue:  𝐸. = 0

exponentially localized and sublattice localized



Energy spectrum and quantum emitter
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𝑁 → ∞
J2 J1 J2 J1

Edge state is exact, but isolated:

𝐸%

𝐸&

𝐸'



g J2 J1 J2 J1

Energy spectrum and quantum emitter

quantum
emitter
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𝑁 → ∞

Edge state is exact, but isolated:

𝐸%

𝐸&

𝐸'

Emitter acts as a probe
of the topological
properties of the system



Chiral sublattice symmetry

Sublattice operator:

⟩|1, 𝐴

⟩|1, 𝐵

⟩|2, 𝐴

⟩|2, 𝐵

⟩|3, 𝐴

Σ( = 𝑃) − 𝑃*

Sublattice projectors:

𝑃) =6
+,#

-

⟩|𝑗, 𝐴 ⟨𝑗, 𝐴| 𝑃* = ⟩|𝑞 ⟨𝑞| +6
+,#

.

⟩|𝑗, 𝐵 ⟨𝑗, 𝐵| 

⟩|𝑞
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Chiral sublattice symmetry

Sublattice operator:

⟩|1, 𝐴

⟩|1, 𝐵

⟩|2, 𝐴

⟩|2, 𝐵

⟩|3, 𝐴

Σ( = 𝑃) − 𝑃*

Σ!𝐻 Σ! = −𝐻

Chiral symmetry:

⟩|𝑞

26



Chiral sublattice symmetry: zero energy state

implies

yields the condition

⟩|1, 𝑎

⟩|1, 𝑏

⟩|2, 𝑎

⟩|2, 𝑏

⟩|3, 𝑎

det 𝐻 	= (−)/det 𝐻 det 𝐻 	= 0

setting 𝐸 = 0 = 𝐽#$ + 𝐽$$ + 2𝐽#𝐽$ cos 𝑘

𝑒"! = −
𝐽#
𝐽$

localized{
anti-localized

𝐽# < 𝐽$

𝐽# > 𝐽$

⟩|𝑞

𝜓/,* 	~	𝑒"!/
27



Green’s function: ordinary discrete eigenstates

We can obtain the remaining discrete energy solutions from the
Green’s function at the quantum emitter

⟩|1, 𝑎

⟩|1, 𝑏

⟩|2, 𝑎

⟩|2, 𝑏

⟩|3, 𝑎

𝑧± = ±𝑔
𝑔" − 𝐽#" − 𝐽""

𝑔" − 𝐽#"
𝑘$ = 𝑘% = −𝑖	log

𝐽#𝐽"
𝑔" − 𝐽#"

⟩|𝑞

𝑞 1
𝑧 − 𝐻 𝑞 =

1
𝑧 − Σ(𝑧)

=
2𝑧

𝑧" − 𝐽#" + 𝐽"" ± 𝑧& − 2𝑧" 𝐽#" + 𝐽"" + 𝐽#" − 𝐽"" "

28



Spectrum: J2 > J1 case

two bound statesI

and (localized) 
zero-energy mode
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Spectrum: J2 > J1 case

two virtual states

and (localized) 
zero-energy mode

II
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Spectrum: J2 > J1 case

and (localized) 
zero-energy mode

resonance/anti-res pair
z = E ± i Γ

III
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Spectrum: J2 > J1 case

I

and (localized) 
zero-energy mode

IIIII

for J2 —> J1, this reduces
to the uniform chain in an
obvious way

32



Spectrum: J1 > J2 case

I Region IV: two inner 
gap virtual states

IIIIIIVV

Region V: two inner 
gap bound states

(anti-localized) 
zero-energy mode



Spectrum: J1 > J2 case

I Region IV: two inner 
gap virtual states

IIIIIIVV

Region V: two inner 
gap bound states

(anti-localized) 
zero-energy mode

DE𝜓± ≈
1
2

⟩|𝑞 ± 23𝜙'

Reg. V bound states:



Spectrum: J1 > J2 case

I Region IV: two inner 
gap virtual states

IIIIIIVV

Region V: two inner 
gap bound states

trivial regime{
inherited

topological phase

(anti-localized) 
zero-energy mode



Spectrum: J1 > J2 case

I Region IV: two inner 
gap virtual states

IIIIIIVV

Region V: two inner 
gap bound states

{
inherited

topological phase topological exceptional point

(anti-localized) 
zero-energy mode

𝑧EP = 0 𝑔 = 𝑔EP ≡ 𝐽#" − 𝐽""
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Region V dynamics
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Region V dynamics (non-Markovian, non-dissipative) 
are totally distinct from uniform chain (Markovian decay)

uniform chain:
Markovian decay
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Region V dynamics (non-Markovian, non-dissipative) 
are totally distinct from uniform chain (Markovian decay)

wide-band case:
nearly perfect
subradiance

uniform chain:
Markovian decay



Conclusions (1/2)

Semi-infinite extension of the SSH model:
• left edge state becomes exact zero mode (right state vanishes)
• “in-house bulk-boundary correspondence”

– continuum winding number predicts edge state under the same B.C.’s

Semi-infinite SSH model with attached quantum emitter
• non-trivial Regions IV and V appear in the topological case
     of the bare chain
• weak-coupling bound states in Region V are hybridizations
     between the quantum emitter and edge state

39
Numerical study (2-D model):   H. Zhang, et al, PRA 105, 053703 (2022)



Conclusions (2/2)

Non-Markovian Dynamics at the EP:
• early time behavior: 𝑃 𝑡 	~ 1 − 𝐶$𝑡 + 𝐶1𝑡$ $

• late time: 𝑃 𝑡 	~	1/𝑡1

previous paper:   

40

S. G. and K. Noba, PRA 104, 062215 (2021)

(Reveals that the edge state can influence PT-symmetry breaking in a
model with a local PT-symmetric potential)


