

Symmetry classification of non-Hermitian random matrices and open quantum systems

Kohei Kawabata

(Institute for Solid State Physics, University of Tokyo)

Collaborators

University of Tokyo

Ryusuke Hamazaki

Naoto Kura

Tokiro Numasawa

Masahito Ueda

Kyoto University

Masatoshi Sato Ken Shiozaki

Sophia University

Tomi Ohtsuki

Peking University

Xunlong Luo Ryuichi Shindou Zhenyu Xiao

Princeton University

Ze Chen Anish Kulkarni Jiachen Li Shinsei Ryu

Random matrix theory

☆ Random matrix theory has various applications in physics.

Quantum chaos

Electronic transport phenomena

Beenakker, RMP 69, 731 (1997)

• Quantum dynamics Fisher *et al.*, Ann. Rev. Condens. Matter Phys. **14**, 335 (2023)

Altland-Zirnbauer symmetry

☆ Random matrices are classified by the tenfold AZ symmetry.

time reversal
$$\mathcal{T}H^*\mathcal{T}^{-1} = H$$

particle hole $\mathcal{C}H^*\mathcal{C}^{-1} = -H$
chiral $\mathcal{S}H\mathcal{S}^{-1} = -H$

Altland & Zirnbauer, PRB **55**, 1142 (1997)

e.g., Tenfold symmetry classification of the SYK model symmetry-enriched behavior of quantum chaos

\Rightarrow AZ symmetry is also relevant to the physics of free fermions.

- Anderson localization and transition
- Topological insulators and superconductors

You *et al.*, PRB **95**, 115150 (2017) Cotler *et al.*, JHEP **2017**, 118

Periodic table for TIs and TSCs

General and comprehensive theoretical framework of TIs and TSCs: Periodic table based on spatial dimension and symmetry

AZ Symmetry					Dimension							
Class	TRS	PHS	\mathbf{CS}	0	1	2	3	4	5	6	7	
Α	0	0	0	\mathbb{Z}	0	\mathbb{Z}	Q	uant	um	Hal	lins	ulator
AIII	0	0	1	0	\mathbb{Z}	0	Z	0	\mathbb{Z}	0	Ш	
AI	+1	0	0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
BDI	+1	+1	1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
D	0	+1	0	\mathbb{Z}_2	\mathbb{Z}_2	Kit	aev,	/Ma	jora	na c	hair	า
DIII	-1	+1	1	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	
AII	-1	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	Qu	anti	um s	spin	Hall	l insulator
CII	-1	-1	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
C	0	-1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
CI	+1	-1	1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	

Schnyder, Ryu, Furusaki & Ludwig, PRB **78**, 195125 (2008)

Kitaev, AIP Conf. Proc. **1134**, 22 (2009)

Non-Hermitian physics

Despite the enormous success, the existing framework of condensed matter physics is **confined to Hermitian systems at equilibrium**.

Richer properties appear in non-Hermitian systems!

☆ Non-Hermiticity arises from **dissipation**, i.e., exchanges of energy or particles with an environment.

Photonic lattices with gain/loss

Finite-lifetime quasiparticles

Bulk Fermi arc due to non-Kozii & Fu, arXiv:Hermitian self-energy1708.05841

Dissipative quantum chaos

Characterization of quantum chaos is confined to closed quantum systems.

Can we characterize chaos in open quantum systems?

A Dissipative quantum chaos is captured by non-Hermitian random matrices!

Grobe, Haake & Sommers, PRL 61, 1899 (1988)

Level-spacing distribution of periodically kicked tops with damping:

Integrable: complex (2D) Poisson

Chaotic: non-Hermitian random matrix (Ginibre ensembles)

Ginibre, J. Math. Phys. 6, 440 (1965)

- Different types of open quantum systems (many-body, Lindbladians, ...)

Hamazaki, Kawabata et al., PRL 123, 090603 (2019); Akemann et al., PRL 123, 254101 (2019)

- Different quantitative measures of dissipative quantum chaos

Sá et al., PRX 10, 021019 (2020); Li et al., PRL 127, 170602 (2021); Cipolloni & Kudler-Flam, PRL 130, 010401 (2023)

Motivation

Non-Hermitian random matrices are relevant to the physics of open systems, including **dissipative quantum chaos**.

However, the **role of symmetry in non-Hermitian random matrices** has yet to be understood clearly.

How can we classify non-Hermitian random matrices with symmetry?

Results

We develop the **symmetry classification of non-Hermitian random matrices**.

We show that non-Hermiticity changes the nature of symmetry and leads to the **38-fold symmetry classification**.

Using symmetry, we classify the **universal spectral statistics of non-Hermitian random matrices** in the spectral bulk, around the real and imaginary axes, and around the spectral origin.

We also find **symmetry-enriched dissipative chaos** in various open quantum systems.

Outline

1. Introduction

- 2. 38-fold symmetry classification
- **3. Spectral statistics in the bulk**
- 4. Spectral statistics around the real axis
- **5. Spectral statistics around the origin**
- 6. Singular-value statistics

Symmetry classification of **non-Hermitian systems**

Kawabata, Higashikawa, Gong, Ashida & Ueda, Nat. Commun. 10, 297 (2019)

Kawabata, Shiozaki, Ueda & Sato, PRX **9**, 041015 (2019)

10-fold symmetry class

• Universality

Random matrix theory, Anderson transitions, topological phases,

Symmetry ramification (1)

☆ Symmetry **ramifies (bifurcates)** in non-Hermitian systems.

Kawabata, Shiozaki, Ueda & Sato, PRX **9**, 041015 (2019).

Two types of symmetry appear due to the **distinction of complex conjugation and transpose operation** in non-Hermitian systems!

Symmetry ramification (2)

☆ Symmetry **ramifies (bifurcates)** in non-Hermitian systems.

Kawabata, Shiozaki, Ueda & Sato, PRX **9**, 041015 (2019).

Two types of symmetry appear due to the **distinction of complex conjugation and transpose operation** in non-Hermitian systems!

Symmetry unification (1)

 \Rightarrow Antiunitary symmetries distinct in Hermitian systems are **unified** in non-Hermitian systems. <u>Kawabata</u> e

<u>Kawabata</u> *et al.*, Nat. Commun. **10**, 297 (2019)

$$\mathcal{T}H^*\mathcal{T}^{-1} = H$$
$$\mathcal{C}H^*\mathcal{C}^{-1} = -H$$

Two antiunitary symmetries are distinct for Hermitian ${\cal H}$

If we allow **non-Hermitian** *H*, they are equivalent!

$$\mathcal{T}H^*\mathcal{T}^{-1} = H \longleftrightarrow \mathcal{T}[iH]^*\mathcal{T}^{-1} = \underline{-}[iH]$$

one-to-one mapping (wavefunctions are invariant)

Symmetry unification (2)

 \Rightarrow Antiunitary symmetries distinct in Hermitian systems are **unified** in non-Hermitian systems. <u>Kawabata</u> e

<u>Kawabata</u> *et al.*, Nat. Commun. **10**, 297 (2019)

15/

Symmetry	Hermitian	Non-Hermitian
\mathcal{T}	no constraints	$E \in \mathbb{R} \text{ or } (E, E^*)$
\mathcal{C}	E = 0 or (E, -E)	$E \in i\mathbb{R} \text{ or } (E, -E^*)$

Symmetry unification (2)

 \Rightarrow Antiunitary symmetries distinct in Hermitian systems are **unified** in non-Hermitian systems. <u>Kawabata</u> e

<u>Kawabata</u> *et al.*, Nat. Commun. **10**, 297 (2019)

Symmetry	Hermitian	Non-Hermitian
\mathcal{T}	no constraints	$E \in \mathbb{R} \text{ or } (E, E^*)$
\mathcal{C}	E = 0 or (E, -E)	$E \in i\mathbb{R} \text{ or } (E, -E^*)$

38-fold symmetry class

- Hermitian case: **10 classes** (AZ symmetry class)
 time reversal, particle hole, and chiral (=sublattice)
- Non-Hermitian case: 38 classes

Kawabata, Shiozaki, Ueda & Sato, PRX **9**, 041015 (2019) cf. Bernard & LeClair, arXiv:cond-mat/0110649

10-fold non-Hermitian AZ symmetry class

 $\mathcal{T}H^*\mathcal{T}^{-1} = H, \quad \mathcal{C}H^T\mathcal{C}^{-1} = -H, \quad \Gamma H^\dagger \Gamma^{-1} = -H$

10-fold non-Hermitian AZ⁺ symmetry class

$$\mathcal{T}H^T\mathcal{T}^{-1} = H, \quad \mathcal{C}H^*\mathcal{C}^{-1} = -H, \quad \Gamma H^{\dagger}\Gamma^{-1} = -H$$

(Hermitian conjugate of the AZ class)

22-fold non-Hermitian AZ symmetry class with **sublattice symmetry** $SHS^{-1} = -H$ (**NOT** equivalent to chiral symmetry) **10 + 10 + 22 - 4 = 38 symmetry classes**

unification

19) 549

New symmetry classes lead to new physics:

- Non-Hermitian random matrix theory and dissipative quantum chaos [this talk!]
- Non-Hermitian Anderson transitions

<u>Kawabata</u> & Ryu, PRL **126**, 166801 (2020) Luo, Xiao, <u>Kawabata</u>, Ohtsuki & Shindou, PRR **4**, L022035 (2022)

Non-Hermitian topological phases

<u>Kawabata</u>, Shiozaki, Ueda & Sato, PRX 9, 041015 (2019)
 <u>Kawabata</u>, Bessho & Sato, PRL 123, 066405 (2019)
 Okuma, <u>Kawabata</u>, Shiozaki & Sato, PRL 124, 086801 (2020)

10 + 10 + 22 - 4 = 38 symmetry classes

unification

Level statistics in the spectral bulk of non-Hermitian systems

Hamazaki, Kawabata, Kura & Ueda, PRR 2, 023286 (2020)

Threefold way

19/40

☆ Threefold universality classes of Hermitian random matrices

Gaussian unitary ensemble (GUE; class A): no symmetry

Gaussian orthogonal ensemble (GOE; class AI): TRS with +1

Gaussian symplectic ensemble (GSE; class AII): TRS with -1

Wigner (1959) Dyson, J. Math. Phys. **3**, 1199 (1962)

Atas *et al.*, PRL **110**, 084101 (2013)

TRS changes the bulk spectral correlations.

$$\beta = 1, 2, 4$$

★ The threefold way is also fundamental in condensed matter physics

Ginibre ensembles

☆ Ginibre ensembles: a non-Hermitian extension of the threefold way

Ginibre unitary ensemble (GinUE; class A): no symmetry

Ginibre, J. Math. Phys. 6, 440 (1965)

Ginibre orthogonal ensemble (GinOE; class AI): TRS with +1

Ginibre symplectic ensemble (GinSE; class AII): TRS with -1

TRS changes the spectral correlations around the real axis, but **does NOT change the spectral correlations in the bulk**.

Universal cubic eigenvalue repulsion in contrast to the Hermitian case (β =1,2,4)

Grobe & Haake, PRL 62, 2893 (1989)

Luo et al., PRR 4, L022035 (2022)

☆ Can we have threefold universal spectral correlations also in non-Hermitian random matrices?

Threefold way in non-Hermitian RMT 21/40

☆ Two types of time-reversal symmetry

TRS: $\mathcal{T}H^*\mathcal{T}^{-1} = H$ (Ginibre's threefold way) **TRS[†]:** $\mathcal{T}H^T\mathcal{T}^{-1} = H$

\Rightarrow We show that TRS⁺ leads to the threefold level statistics in the bulk!

Level spacing for complex eigenvalues: $s_{\alpha} := \min_{\beta} |E_{\beta} - E_{\alpha}|$

The other symmetries are irrelevant to the bulk level statistics

(numerical results for 2000 × 2000 non-Hermitian random matrices in the Gaussian ensembles)

Threefold way in non-Hermitian RMT 22/40

Hamazaki, **Kawabata**, Kura & Ueda, PRR **2**, 023286 (2020)

Wigner surmise

☆ We analytically derive the threefold level-spacing distributions for
 2 × 2 or 4 × 4 non-Hermitian random matrices (like Wigner surmise).

$$p_{\text{small}}(s) = \frac{(C_f s)^3}{\mathcal{N}_f} \underbrace{K_{\frac{f-2}{2}}\left[(C_f s)^2\right]}_{\text{modified Bessel function}} \begin{cases} 2C_3^4 s^3 e^{-C_3^2 s^2} & (\text{class A}; f = 3) \\ 2C_2^4 s^3 K_0 \left(C_2^2 s^2\right) & (\text{class AI}^{\dagger}; f = 2) \\ 2C_5^4 / 3 \cdot s^3 \left(1 + C_5^2 s^2\right) e^{-C_5^2 s^2} & (\text{class AII}^{\dagger}; f = 5) \end{cases}$$

The level repulsion is universally cubic: $p_{\text{small}}(s) \propto s^3$ $(s \ll 1)$ (with a logarithmic correction for class Al[†])

Qualitatively similar behavior to the large-N results (not quantitative, though)

Dissipative quantum chaos

Random-matrix behavior appears despite the sparsity of the matrices. Signature of dissipative quantum chaos!

Level statistics of real eigenvalues in non-Hermitian systems

Xiao, Kawabata, Luo, Ohtsuki & Shindou, PRR 4, 043196 (2022)

Time-reversal symmetry

☆ Ginibre ensembles: a non-Hermitian extension of the threefold way

Ginibre unitary ensemble (GinUE; class A): no symmetry

Ginibre orthogonal ensemble (GinOE; class AI): TRS with +1

Ginibre symplectic ensemble (GinSE; class AII): TRS with -1

- Density of states decays toward the real axis (GinOE) $\rho \propto |\text{Im } E|$ (GinSE) $\rho \propto |\text{Im } E|^2$
- Real eigenvalues

(GinOE) Present $(\bar{N}_{real} \propto \sqrt{N})$

(GinSE) Absent

Ginibre, J. Math. Phys. **6**, 440 (1965)

Pseudo-Hermicity (chiral symmetry) 26/40

Can other symmetries change the level statistics around the real axis?

Pseudo-Hermiticity (pH) is also relevant!

$$\eta H^{\dagger} \eta^{-1} = H$$

(unitary & Hermitian)

Symmetry unique to non-Hermitian systems

Leading to various nonequilibrium phenomena

cf. PT-symmetry breaking Bender & Boettcher, PRL **80**, 5243 (1998)

Equivalent to chiral symmetry $\eta (iH)^{\dagger} \eta^{-1} = -(iH)$

☆ TRS and pH are only possible symmetries that can change the spectral statistics around the real axis.

Mostafazadeh, J. Math. Phys. **43**, 205 (2002)

Tenfold way: AZ⁺ classification

27/40

☆ Tenfold AZ⁺ classification

TRS:
$$\mathcal{T}H^*\mathcal{T}^{-1} = H$$

pH: $\eta H^{\dagger}\eta^{-1} = H$

Combined symmetry gives TRS^+ : $\mathcal{T}H^T\mathcal{T}^{-1} = H$

Tenfold universal spectral statistics on and around the real axis

symmetry class	symmetry class (equiv)	$ ext{TRS} (ext{PHS}^{\dagger})$	TRS^\dagger	pH (CS)	soft gap	$\delta(y)$	$\langle r angle$	χ
A	А							
$A + \eta$	AIII				y		0.4194(4)	0.83
AI	D^{\dagger}	+1		·	y		0.4858(3)	0.59
AII	C^{\dagger}	-1			$ y ^2$			
AI^{\dagger}	AI^\dagger		+1					
AII^\dagger	AII^\dagger		-1					
$AI + \eta_+$	BDI^\dagger	+1	+1	\checkmark	$ - y \log(y)$		0.4451(4)	0.73
$AI + \eta_{-}$	DIII^\dagger	+1	-1		y		0.4943(4)	0.58
$AII + \eta_+$	CII^\dagger	-1	-1		y		0.3708(7)	1.11
$AII + \eta_{-}$	CI^\dagger	-1	+1	\checkmark				

Xiao, Kawabata, Luo, Ohtsuki & Shindou, PRR 4, 043196 (2022)

Density of states around the real axis 28/40

☆ The density of states decays differently toward the real axis.

 $\rho(E) \propto \begin{cases} |\operatorname{Im} E| & (A + \eta, AI, AI + \eta_{-}, AII + \eta_{\pm}) \\ - |\operatorname{Im} E| \log |\operatorname{Im} E| & (AI + \eta_{+}) \\ |\operatorname{Im} E|^{2} & (AII) \end{cases}$

Level statistics of real eigenvalues

Five symmetry classes accompany a subextensive number of real eigenvalues $(\bar{N}_{\rm real} \propto \sqrt{N})$

Five universal level statistics of real eigenvalues!

Not identical to any level statistics of Hermitian random matrices

Dissipative free fermions

★ Level statistics of real eigenvalues capture dissipative quantum chaos!

e.g., non-Hermitian 3D Anderson model

$$H = \sum_{i} \left(c_{i}^{\dagger} \left(\varepsilon_{i} \sigma_{0} + \varepsilon_{i}^{\prime} \sigma_{z} \right) c_{i} + \mathrm{i} \omega_{i} c_{i}^{\dagger} \sigma_{y} c_{i} \right) + t \sum_{\langle i,j \rangle} c_{i}^{\dagger} \sigma_{0} c_{j}$$

class AI + η_{+} : (TRS) $H^{*} = H$, (pH) $\sigma_{z} H^{\dagger} \sigma_{z} = H$

Random-matrix behavior appears even in this physical model!

Universal hard-edge statistics of non-Hermitian systems

Xiao, Shindou & Kawabata, PRR 6, 023303 (2024)

Particle-hole and sublattice symmetries 31/40

[Level statistics in the spectral bulk]

$$\mathsf{TRS}^{\dagger}: \ \mathcal{T}H^T\mathcal{T}^{-1} = H$$

[Level statistics around the real and imaginary axes]

TRS:
$$\mathcal{T}H^*\mathcal{T}^{-1} = H$$

pH: $\eta H^{\dagger}\eta^{-1} = H$

The two remaining symmetries:

particle-hole symmetry (PHS): $CH^T C^{-1} = -H$ (e.g., dissipative superconductors) sublattice symmetry (SLS): $SHS^{-1} = -H$ (e.g., QCD with nonzero chemical potential) Akemann & Wettig, PRL 92, 102002 (2004) Osborn, PRL 93, 222001 (2004)

These symmetries are respected only for zero eigenvalue. How do they change the level statistics around the spectral origin?

Tenfold way: AZ₀ classification

32/40

☆ Tenfold AZ₀ classification

PHS: $CH^TC^{-1} = -H$ SLS: $SHS^{-1} = -H$ cf. Splittorff & Verbaarschot, Nucl. Phys. B **683**, 467 (2004) cf. Akemann *et al.*, PRE **80**, 065201(R) (2009) cf. García-García *et al.*, PRX **12**, 0121040 (2022)

Combined symmetry gives TRS^{\dagger} : $TH^{T}T^{-1} = H$

T C L L	•						
lentold	universal	spectral	statistics	on and	around	the spectral	origin
	anversar	spectral	Statistics		arouna	the spectru	

Class	Equivalent class	TRS^\dagger	PHS	SLS	$ ho(z)$ and $p_r(z)$	$\langle r angle$	$\langle \cos \theta \rangle$
A	-	0	0	0	-	-	-
AI^\dagger	-	+1	0	0	-	-	-
AII^\dagger	-	-1	0	0	-	-	-
$\operatorname{AIII}^\dagger$	A + S	0	0	1	$- z ^3\ln z $	0.6357(5)	0.5391(7)
$\mathrm{BDI}_{\mathrm{0}}$	$D + S_+, AI^{\dagger} + S_+$	+1	+1	1	z	0.5778(6)	0.5681(7)
CII_0	$C + \mathcal{S}_+, AII^{\dagger} + \mathcal{S}_+$	-1	-1	1	$ z ^3$	0.6623(5)	0.5147(7)
D	-	0	+1	0	z	0.5411(6)	0.5524(7)
\mathbf{C}	-	0	-1	0	$ z ^3$	0.6746(5)	0.5343(7)
CI_0	$\mathrm{C}+\mathcal{S}_{-},\mathrm{AI}^{\dagger}+\mathcal{S}_{-}$	+1	-1	1	$- z ^3\ln z $	0.6708(5)	0.5589(7)
$\mathrm{DIII}_{\mathrm{0}}$	$\mathrm{D} + \mathcal{S}_{-}, \mathrm{AII}^{\dagger} + \mathcal{S}_{-}$	-1	+1	1	$- z ^3\ln z $	0.5950(6)	0.5252(7)

Xiao, Shindou & Kawabata, PRR 6, 023303 (2024)

Density of states

☆ The density of states decays differently toward the spectral origin.

Complex level ratio

A new measure to quantify the level repulsion around the origin: $re^{i\theta} := z_1/z_2 \quad (|z_1| \le |z_2| \le \cdots)$

Both *r* and θ detect the level repulsion and depend on symmetry!

General classification

More generic symmetry classes are characterized by all the symmetries.

Class	Class	TDS	DUS	TPS	DHS	CS	SIS	ъЧ	$[\Gamma, S] = 0$	//~ . ² \	$Pr(z \in \mathbb{R})$	$Pr(iz \in \mathbb{P})$
(H)	(iH)	110	1 115	110	1 115	05	515	pn	$[1, \mathcal{O}] \pm -0$	\ ≁min /	$11(2\min \in \mathbb{N})$	$11(12\min \in \mathbb{N})$
N = 0												
$AIII + S_+$	$\mathbf{AIII} + \boldsymbol{\mathcal{S}}_+$	0	0	0	0	1	1	1	+	1.1680(9)	0.2279(5)	0.2280(5)
$\mathbf{AIII} + \boldsymbol{\mathcal{S}}_{-}$	$\mathbf{AIII} + \boldsymbol{\mathcal{S}}_{-}$	0	0	0	0	1	1	1	_	1.2707(12)	0.3336(5)	0.3334(5)
N=2												
BDI	$\mathrm{D}+\eta_+$	+1	$^{+1}$	0	0	1	0	0		1.4488(6)	0.5373(2)	0.1960(2)
\mathbf{CI}	C + η_{-}	$^{+1}$	-1	0	0	1	0	0		1.2223(4)	0.4247(2)	0.2732(2)
DIII	D + η_{-}	-1	+1	0	0	1	0	0		1.3390(13)	0	0.5419(5)
CII	C + η_+	-1	-1	0	0	1	0	0		1.0926(7)	0	0.2531(5)
$\mathbf{AI} + \boldsymbol{\mathcal{S}}_+$	$\mathbf{AI} + oldsymbol{\mathcal{S}}_+$	+1	0	0	+1	0	1	0		1.3094(14)	0.3885(5)	0.3894(5)
AI + S	$\mathrm{AII} + \mathcal{S}_{-}$	+1	0	0	-1	0	1	0		1.2055(10)	0.5788(5)	0
$\mathbf{AII} + \boldsymbol{\mathcal{S}}_+$	$\mathbf{AII} + \boldsymbol{\mathcal{S}}_+$	-1	0	0	-1	0	1	0		1.0623(2)	0	0
N = 4												
$BDI + S_{++}$	$ extbf{BDI} + oldsymbol{\mathcal{S}}_{++}$	+1	+1	$^{+1}$	$^{+1}$	1	1	1	+	1.4387(17)	0.3502(5)	0.3504(5)
$BDI + S_{}$	$DIII + S_{}$	+1	+1	$^{-1}$	$^{-1}$	1	1	1	+	1.2097(10)	0.5293(5)	0.0823(3)
$\mathbf{DIII} + \boldsymbol{\mathcal{S}}_{++}$	$\mathbf{DIII} + \boldsymbol{\mathcal{S}}_{++}$	-1	$^{+1}$	$^{+1}$	-1	1	1	1	+	1.1071(7)	0	0
$\mathbf{CI} + \boldsymbol{\mathcal{S}}_{++}$	$\mathbf{CI} + \boldsymbol{\mathcal{S}}_{++}$	$^{+1}$	-1	-1	+1	1	1	1	+	1.2134(10)	0.3655(5)	0.3661(5)
$CI + S_{}$	$CII + S_{}$	+1	-1	+1	$^{-1}$	1	1	1	+	1.1692(9)	0.4193(5)	0
$\mathbf{CII} + oldsymbol{\mathcal{S}}_{++}$	$\mathbf{CII} + oldsymbol{\mathcal{S}}_{++}$	-1	-1	-1	-1	1	1	1	+	1.0648(6)	0.1022(4)	0.1025(4)
$\mathbf{BDI} + \boldsymbol{\mathcal{S}}_{+-}$	$ extbf{BDI} + oldsymbol{\mathcal{S}}_{+-}$	+1	+1	-1	+1	1	1	1	_	1.3162(14)	0.3878(5)	0.3881(5)
$BDI + S_{-+}$	$DIII + S_{-+}$	+1	+1	+1	-1	1	1	1	_	1.4015(16)	0.6190(5)	0
$\mathbf{DIII} + \boldsymbol{\mathcal{S}}_{+-}$	$ ext{DIII} + oldsymbol{\mathcal{S}}_{+-}$	$^{-1}$	$^{+1}$	-1	-1	1	1	1	_	1.2328(11)	0.2797(5)	0.2802(5)
$\mathbf{CI} + \boldsymbol{\mathcal{S}}_{+-}$	$\mathbf{CI} + \boldsymbol{\mathcal{S}}_{+-}$	+1	$^{-1}$	$^{+1}$	$^{+1}$	1	1	1	_	1.2929(13)	0.3684(5)	0.3692(5)
$\mathrm{CI} + \mathcal{S}_{-+}$	$ ext{CII} + \mathcal{S}_{-+}$	+1	$^{-1}$	-1	-1	1	1	1	_	1.1840(9)	0.4316(5)	0.2140(5)
$\mathbf{CII} + \boldsymbol{\mathcal{S}}_{+-}$	$\mathbf{CII} + \boldsymbol{\mathcal{S}}_{+-}$	-1	-1	+1	-1	1	1	1	—	1.0795(6)	0	0

Xiao, Shindou & Kawabata, PRR 6, 023303 (2024)

Quadratic Lindbladians

★ Level statistics around the origin capture dissipative quantum chaos!

e.g., Lindblad master equation for free fermions

$$\frac{d\rho}{dt} = -\mathrm{i}\left[H,\rho\right] + \sum_{n} \left(L_{n}\rho L_{n}^{\dagger} - \frac{1}{2}\left\{L_{n}^{\dagger}L_{n},\rho\right\}\right)$$

H: disordered free fermions in chiral symmetry classes L_n : linear dissipators in chiral symmetry classes

Symmetry-enriched random-matrix behavior appears even in the quantum master equation!

Singular-value statistics of non-Hermitian systems

Kawabata, Xiao, Ohtsuki & Shindou, PRX Quantum 4, 040312 (2023)

Singular values

So far, we have focused on complex eigenvalues.

Eigenvalues of $\sqrt{H^{\dagger}H}~~{\rm or}~\sqrt{HH^{\dagger}}$

Always nonnegative even for non-Hermitian matrices

Physical relevance to open systems

e.g., amplification in photonics Porras & Fernández-Lorenzo, PRL **122**, 143901 (2019) e.g., random nonunitary quantum dynamics Bulchandani *et al.*, J. Stat. Phys. **191**, 55 (2024)

How can we classify the statistics of singular values? Are they relevant to chaotic behavior in open quantum systems?

Hermitization

H: non-Hermitian matrix

Girko, Theory Probab. Appl. **29**, 694 (1985) Feinberg & Zee, Nucl. Phys. B **504**, 579 (1997)

- Hermitized matrix:
$$ilde{H} := egin{pmatrix} 0 & H \\ H^\dagger & 0 \end{pmatrix}$$

 \bigstar Singular values of non-Hermitian matrices H coincide with nonnegative eigenvalues of Hermitized matrices \tilde{H}

Hermitization leads to additional chiral symmetry: $\sigma_z \tilde{H} \sigma_z = -\tilde{H}$

e.g., real non-Hermitian random matrix (Ginibre orthogonal ensemble; class AI)

Hermitian random matrix with time-reversal and chiral symmetries (class BDI)

Classification

39/40

☆ Using Hermitization, we classify the singular-value statistics of non-Hermitian random matrices in all the 38 symmetry classes!

 β = 1, 2, 4: level statistics in the spectral bulk (Wigner-Dyson)

α = 0, 1, 2, 3: level statistics around the spectral origin (chiral & BdG)

Clas	s	\mathbf{CS}	SLS	Classifying space	Hermitization	β	α	Class	Classifying space	Hermitization	eta	α
Α		0	0	\mathcal{C}_1	AIII	2	1	$\overline{\text{BDI} + \mathcal{S}_{++}}$	\mathcal{R}_1	BDI	1	0
AIII = A	$\Lambda + \eta$	1	0	\mathcal{C}_0	Α	N/A(A)	N/A (A)	$DIII + \mathcal{S}_{} = BDI + \mathcal{S}_{}$	\mathcal{R}_3	DIII	4	1
AIII +	\mathcal{S}_+	1	1	\mathcal{C}_1	AIII	2	1	$ ext{CII} + \mathcal{S}_{++}$	\mathcal{R}_5	CII	4	3
A + S =	AIII [†]	0	1	$\mathcal{C}_1 imes \mathcal{C}_1$	$AIII \times AIII$	N/A(A)	1	$\mathrm{CI} + \mathcal{S}_{} = \mathrm{CII} + \mathcal{S}_{}$	\mathcal{R}_7	CI	1	1
AIII +	S_{-}	1	1	$\mathcal{C}_0 \times \mathcal{C}_0$	$\mathbf{A} \times \mathbf{A}$	N/A (A)	N/A (A)	$AI + S_{-} = AII + S_{-}$	\mathcal{C}_1	AIII	2	1
						/ (/	/ (/	$BDI + S_{-+} = DIII + S_{-+}$	\mathcal{C}_0	Α	N/A (A)	N/A (A)
Class	TRS	PHS	\mathbf{CS}	Classifying space	Hermitization	β	α	$\mathrm{D}+\mathcal{S}_+$	\mathcal{C}_1	AIII	2	1
$AI = D^{\dagger}$	+1	0	0	\mathcal{R}_1	BDI	1	0	$DIII + \mathcal{S}_{-+} = BDI + \mathcal{S}_{-+}$	\mathcal{C}_0	Α	N/A (A)	N/A (A)
BDI	+1	+1	1	\mathcal{R}_2	D	2	0	$AII + S_{-} = AI + S_{-}$	\mathcal{C}_1	AIII	2	1
D	0	+1	0	\mathcal{R}_3	DIII	4	1	$\mathrm{CII} + \mathcal{S}_{-+} = \mathrm{CI} + \mathcal{S}_{-+}$	\mathcal{C}_0	А	N/A (A)	N/A (A)
DIII	-1	+1	1	\mathcal{R}_4	AII	N/A (AII)	N/A (AII)	$\mathrm{C}+\mathcal{S}_+$	\mathcal{C}_1	AIII	2	1
$AII = C^{\dagger}$	-1	0	0	\mathcal{R}_5	CII	4	3	$\mathrm{CI} + \mathcal{S}_{-+} = \mathrm{CII} + \mathcal{S}_{-+}$	\mathcal{C}_0	А	N/A (A)	N/A(A)
CII	-1	-1	1	\mathcal{R}_6	C	2	2	$\overline{\text{BDI} + S} = \overline{\text{DIII} + S}$	$\frac{\mathcal{R}_{2}}{\mathcal{R}_{2}}$	DIII	4	1
C	0	-1	0	\mathcal{R}_7	CI		1	$DIII + S_{++}$	\mathcal{R}_{5}	CII	4	3
CI	+1	-1	1	\mathcal{R}_0	Al	N/A (AI)	N/A (AI)	$\operatorname{CII} + \mathcal{S}_{} = \operatorname{CI} + \mathcal{S}_{}$	\mathcal{R}_7	CI	1	1
Class	TBS^{\dagger}	PHS^{\dagger}	CS	Classifying space	Hermitization	β	α	$CI + S_{++}$	\mathcal{R}_1	BDI	1	Ō
AI [†]	+1	0	0	R ₇	CI	1	1	$AI + S_+$	$\mathcal{R}_1 imes \mathcal{R}_1$	$BDI \times BDI$	N/A (AI)	0
BDI [†]	+1	+1	1	\mathcal{R}_0	AI	N/A (AI)	N/A (AI)	$BDI + S_{+-}$	$\mathcal{R}_2 imes \mathcal{R}_2$	$D \times D$	N/A (A)	0
$D^{\dagger} = AI$	0	+1	0	\mathcal{R}_1	BDI	1	0	$\mathrm{D}+\mathcal{S}_{-}$	$\mathcal{R}_3^- imes \mathcal{R}_3^-$	$DIII \times DIII$	N/A (ÀIÍ)	1
DIII [†]	-1	+1	1	\mathcal{R}_2	D	$\frac{1}{2}$	0	$\mathrm{DIII} + \mathcal{S}_{+-}$	$\mathcal{R}_4 imes \mathcal{R}_4$	$AII \times AII$	N/A (AII)	N/A (AII)
AII^\dagger	-1	0	0	\mathcal{R}_3	DIII	4	1	$AII + S_+$	$\mathcal{R}_5 imes \mathcal{R}_5$	$CII \times CII$	N/A (AII)	´´
CII^\dagger	-1	-1	1	\mathcal{R}_4	AII	N/A (AII)	N/A (AII)	$ ext{CII} + \mathcal{S}_{+-}$	$\mathcal{R}_6 imes \mathcal{R}_6$	$C \times C$	Ń/A (A)	2
$C^{\dagger} = AII$	0	-1	0	\mathcal{R}_5	CII	4	3	$\mathrm{C}+\mathcal{S}_{-}$	$\mathcal{R}_7 imes \mathcal{R}_7$	$CI \times CI$	N/A (AÍ)	1
CI^\dagger	+1	-1	1	$\mathcal{R}_6^{'}$	\mathbf{C}	2	2	$ ext{CI} + \mathcal{S}_{+-}$	$\mathcal{R}_0 imes \mathcal{R}_0$	$AI \times AI$	N/A (AI)	N/A (AI)

Kawabata, Xiao, Ohtsuki & Shindou, PRX Quantum 4, 040312 (2023)

Many-body Lindbladians

☆ Singular-value statistics also capture dissipative quantum chaos!

e.g., Lindblad master equation for interacting spins

$$\begin{aligned} \frac{d\rho}{dt} &= -i \left[H, \rho \right] + \sum_{n} \left(L_n \rho L_n^{\dagger} - \frac{1}{2} \left\{ L_n^{\dagger} L_n, \rho \right\} \right) \\ \text{Ising model:} \quad H &= -J \sum_{n=1}^{L-1} \left(1 + \varepsilon_n \right) \sigma_n^z \sigma_{n+1}^z - \sum_{n=1}^{L} \left(h_x \sigma_n^x + h_z \sigma_n^z \right) \\ \text{damping:} \quad L_n &= \sqrt{\gamma} \sigma_n^- \quad \text{(class Al)} \\ \text{dephasing:} \quad L_n &= \sqrt{\gamma} \sigma_n^z \quad \text{(class BDI)} \end{aligned}$$

Level-spacing-ratio distributions of singular values follow the random-matrix behavior in the chaotic regime!

Summary

• We develop the 38-fold symmetry classification of non-Hermitian random matrices and classify their universal spectral statistics.

- Symmetry can manifest itself in the spectral bulk, real and imaginary axes, and spectral origin in different manners.
- The level statistics characterize dissipative quantum chaos.

