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Rat hepatocytes stimulated with (A) 2μM phenylephrine, (B) 1.2 μM ATP 

Simple oscillations (spiking) (A) (B) Complex oscillations (bursting) 

How do intrinsic fluctuations interact 
with the “complexity” of intracellular 

Ca2+ dynamics?
dx

dt
= V0 + V1β − V2 + V3 + kfy − kx
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Intracellular Calcium (Ca2+) dynamics

Stochastic modelling
with Chemical Langevin 
Equation:
System size (    )
Intrinsic fluctuation∼

1
√

V
(1)

Ø Permutation Entropy  
Ø Statistical Complexity

(a)

(c)

(b)

V=10⁶

V=10²

V=10⁴

ATHOKPAM Langlen Chanu
Asia Pacific Center for Theoretical Physics, Pohang, South Korea

Complexity, Fluctuations and Dissipation in Nonlinear, Non-equilibrium models

Kummer, U., et al. (2000). Biophysical journal, 79(3), 1188-1195.
Houart, G., Dupont, G., & Goldbeter, A. (1999).  Bulletin of mathematical biology, 61(3), 507-530.
Gillespie, D. T. (2000). The Journal of Chemical Physics, 113(1), 297-306. 
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Coupled, non-linear ODEs
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Regular (Periodic) RandomChaotic

Permutation Entropy - a complexity measure for time series

Bandt, C., & Pompe, B. (2002) Physical review letters, 88(17), 174102.
Lopez-Ruiz, R., Mancini, H. L., & Calbet, X. (1995). Physics letters A, 209(5-6), 321-326.
Chanu, A.L., Singh, R.K.B., Jeon, & J.-H. (2024) Chaos, Solitons & Fractals, 185, 115138.
Chanu, A.L., Mishra, P., Kumar, S., & Singh, R.K.B. (2024) arXiv preprint arXiv:2406.06019.

Statistical Complexity

(a) (b) 

Non-Equilibrium Chemical Reaction System

(a) Intracellular Ca2+ oscillation (b) Hindmarsh-Rose neuron model  

Chemical Langevin Equation:

Investigate dissipation in 
stochastic complex 

oscillations

Stochastic thermodynamics 
Ø Non-Equilibrium Steady State 
Ø Total Entropy Production Rate 

Poster #3

Complexity-Entropy Plane

time (t)

X(
t)

V=10⁶

V=10²

V=10⁵
V=10⁴

S[P ] = −

r!∑

j=1

ρj(πj) log ρj(πj)
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Skin effect and the bulk-boundary correspondence

Shunyu Yao and Zhong Wang Phys. Rev. Lett. 121, 086803 (2018). 32

Hatano-Nelson model

H =
∑L−1

n=1

(
tRc

†
n+1

cn + tLc
†
ncn+1

)

tR tL

tR tL

Localized 
eigenstates

for OBC

HSSH
targ =

∑
j

(
t1c

†
A,jcB,j + t2c

†
B,jcA,j+1 + h.c.

)
SSH model

cj
J1 + γ/2

J2cj+1 cj+2 cj+3· · · · · ·
J1 − γ/2

OBC spectrum

J1

Zero 
energy 
for PBC!

TrivialTrivial
Topological



(b) Phase diagram
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ξk =
1

eϵk+1

ξCmn : Tr[ρ(t)c†ncm]



Jaka Fajar Fatriansyah1, Anggit Driasaditya2
Departemen of Metallurgical and Materials Engineering


Universitas Indonesia

Machine Learning Utilization to Predict Quinazoline Derivatives

as Hepatitis B Virus Inhibitors  


Liver cancer, especially hepatocellular carcinoma (HCC), is an increasing global health challenge, with 
more than 1 million new cases estimated annually by 2025. Hepatitis B virus (HBV) is a major risk factor 
for the development of HCC, accounting for approximately 50% of total cases.

This study aims to evaluate the interaction of quinazoline compounds with VEGFR-2 receptors using in 
silico and machine learning approaches to accelerate the drug discovery process. The ML models used to 
improve the efficiency of predicting the tethering value are K-Nearest Neighbor, Extra Trees, Extreme 
Gradient Boosting, and Artificial Neural Network.

In Indonesia, the prevalence of chronic HBV infection is very high, making it one of the countries with the 
highest number of patients in Asia. One of the mechanism of HCC development involves protein 
signaling pathways such as VEGFR-2, which is often the target of antiangiogenic treatment.



BACKGROUND

METHODS

sTUDY

CASE

cONC

LUSION

GOALS
Two types of input data were compared: SMILES, which represents the molecular structure linearly, and 
AlvaDesc descriptors, which provide physicochemical information and also determine the most effective 
input method to predict the tetheringh score of quinazoline’s compounds on VEGFR-2 DNA targets, so as 
to optimize the drug discovery process with higher time and cost efficiency.

Collecting the quinazoline’s derivative compounds from PubChem website using the substructure 
option

Molecular docking study to investigate compounds and protein target relative binding affinities and 
binding interactions. Docking study was performed using AutoDock Vina.

SMILES and Alvadesc are used as descriptors, where SMILES is converted by one-hot coding and 
Alvadesc is obtained through its software to obtain the descriptor.

The 4 model of machine learning utilized the descriptor that used to predict the docking score

1

2

3

4

5

F01[C-C]


This descriptor measures the number of inter-carbon bonds (adjacent carbons) 
in a molecule, indicating the frequency of direct bonds between carbon atoms.


F01[C-C] has a clear correlation with the docking value; the higher the F01[C-
C] variable, the better the docking value. This is consistent with Pearson 
correlation analysis, which shows a large absolute value.

F01 [C-C]

nCsp2


P1v

CATS2D 02 DA


R6v

0.10253943

0.02967717

0.02392009

0.01502753

0.01141004

-0.634501714

-0.596003663

-0.461895856

-0.166060624

0.103887489

Feature Importance Correlation

Uses the number of 
nearest data points (K) to 
predict characteristics, 
influenced by the closest 
neighbors.

A decision tree algorithm that 
selects split points randomly 
from a subset of features to 
enhance randomness and model 
performance.

Uses neurons in multiple layers to predict 
outcomes, with tunable hyperparameters 
like batch size, epoch, learning rate, 
activation function, optimizer, and 
network structure.

R2 Score: 72,92% R2 Score: 62,48%

R2 Score: 64,81% R2 Score: 76,61%

KNN ANN XTRATREE XGB
An advanced version of random forest and gradient 
boosting, designed for faster computation and higher 
accuracy. Applicable for regression and classification. 
of the model. XG Boost can be used for regression or 
classification problems. 

RESULT �� Model comparison using Alvadesc descriptors

Artifiicial Neural Network/ ANN Extra Trees

XGBoost
K-Nearest Neighbor / KNN

�� Feature Importance
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[C-C]

Creating a new dataset as an input which consist of affinity, compound id, and descriptors.

Accurate predictions of molecular 
tethering values were achieved 
using three machine learning 
models: K-Nearest Neighbor 
(64.81%), Extra Trees (62.48%), and 
Extreme Gradient Boosting (76.6%), 
as well as a deep learning model: 
Artificial Neural Network (72.96%). 
The XGB model produced the 
highest accuracy.


The study case suggests that there is an inverse relationship between the 
actual score and the F01[C-C] value. Higher F01[C-C] values, are associated 
with lower (more negative) actual scores. This imply that molecules with more 
inter-carbon bonds tend to have better binding affinities (lower actual scores).





Quantum jumps in driven-dissipative disordered
many-body systems

Sparsh Gupta

In collaboration with Hari Kumar Yadalam, Manas Kulkarni and Camille Aron
Phys. Rev. A 109, L050201 (2024)
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Setup

Deformed Lindblad Equation:

d

dt
ρ(t) = Lζρ(t), (1)

where the ζ-deformed Liouvillian is

Lζ⋆ = −i [H, ⋆]+
M∑

α=1

[
ζOα ⋆ O†

α −
1

2

{
O†

αOα, ⋆
}]
(2)

H =
L∑

i=1

hini − J

L−1∑
i=1

(
b†
i bi+1+H.c.

)
+ U

L−1∑
i=1

nini+1,

(3)

Oi =

{√
2γ b†

i if i is odd√
2γ bi if i is even .

(4)

Trace Preserving Evolution equation for density matrix
ρζ(t):

∂tρζ(t) =
(
Lζ − Tr [Lζρζ(t)]

)
ρζ(t) . (5)

Disordered gain-loss model with hardcore
bosons.
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Results

Initial state ρ(0) = |1, 0, · · · , 1, 0⟩⟨1, 0, · · · , 1, 0|

Complex Spacing Ratios Imbalance Rate of Dynamical Activity

ξk =
zNNk − zk

zNNNk − zk
= rke

iθk , I(t) =
NO − NE

NO + NE
, Ȧ(t) =

1

ζ
∂t⟨n(t)⟩ζ

(6)
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Conclusion: Reducing the number of quantum jumps/Postselection can promote the
emergence of the localized phase.
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Selective decision making and collective motion
of fish via visual attention

Susumu Ito and Nariya Uchida Dept. of Phys., Tohoku Univ.
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Stability of V-formation of birds by aerodynamic interaction

Motivation Model

Hui Jiang, Nariya Uchida

Department of Physics, Tohoku University

Induced drag:
�� =− 2����
�:upwash velocity

Biot-Savart law

�(��, ��)

Result 

• � −dependence (Rectangle model)

Angular pertubation stable for 
� = �

4
, �� > 2�  (no crossing vortex)

• Optimal wingtip spacing • Optimal distance (Ellipse model)

�� = 0, �� = 2�

Visual communication 
necessary for �� > 0 ?

Rectangle:  

Ellipse: 

���� = (
�
4 − 1)�

���� = 0

• Rectangle model • Ellipse model

exploit 
upwash
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Prediction of Tensile Strength, Hardness, and Melting 

Point of Nickel Superalloys Based on Composition Using 

Machine Learning

Jaka Fajar Fatriansyah1, Rio Sudwitama Persadanta Kaban2

• Superalloys are a class of materials renowned for retaining mechanical 
properties at elevated temperatures.

• Extreme operating temperature conditions impact the tensile strength, 
hardness, and melting point properties

• Three machine learning models which are KNN, ANN, and SVR are used 
in this study to predict properties based on composition (C2P) and 
composition based on properties (P2C)



A definition of quantum asymptotic phase function for analyzing quantum synchronization 

from the Koopman operator viewpoint 

Yuzuru Kato, Future University Hakodate 

In this poster, we propose a fully quantum-mechanical definition of the asymptotic phase for 
quantum nonlinear oscillators, a fundamental quantity in the theory of classical nonlinear 
oscillations.  

Synchronization of rhythmic dynamical systems is ubiquitously observed in science and 
technology, including chemical oscillations, biological rhythms, electrical oscillations, and 
mechanical vibrations. Recent developments in experimental methodologies have already 
reached micro- and nano-scales and will soon enter the quantum regime, and the demand for 
theoretical studies of quantum synchronization is rapidly growing [1]. Several novel features in 
quantum synchronization have been theoretically analyzed recently, such as multiple-phase 
locking [2], which are explicit quantum effects arising from the discrete nature of the energy 
spectrum. 

In analyzing synchronization properties of classical nonlinear oscillators, the asymptotic 
phase of the oscillator is essentially important. It provides the basis for phase reduction, a 
standard theoretical method for analyzing systems of nonlinear oscillators. It enables us to 
describe the nonlinear multi-dimensional dynamics of the oscillator by a simple phase equation 
and has been extensively used to unveil universal synchronization properties of coupled 
oscillator systems. The collective synchronization transition in a population of coupled 
oscillators (the Kuramoto model) is the most prominent result predicted by the theory, and the 
wobbling of the Millennium footbridge in London caused by synchronization of many 
pedestrians is a well-known real-world example of this universal phenomenon [3].  

In our previous study [4], we formulated the phase reduction theory for quantum nonlinear 
oscillators in the semiclassical regime where the system is represented by a phase-space state 
fluctuating along a classical trajectory due to small quantum noise. However, this theory is not 
applicable in the strong quantum regime, because we cannot define the asymptotic phase of the 
system by using the classical deterministic trajectory. In this study, to overcome this 
fundamental difficulty, we introduce the asymptotic phase of quantum nonlinear oscillators in a 
fully quantum-mechanical way, thereby extending its applicability to the strong quantum regime 
and enabling analysis of nontrivial quantum synchronization phenomena. 

We propose a fully quantum-mechanical definition of the asymptotic phase for quantum 
nonlinear oscillators, a fundamental quantity in the theory of classical nonlinear oscillations. 
Our definition of the asymptotic phase is based on the eigenoperator of the adjoint Liouville 
superoperator of the open quantum system. It is inspired by the study on the asymptotic phase of 
classical stochastic oscillators by Thomas and Lindner [5], which is also natural from the 



recently developing Koopman-operator viewpoint on dynamical systems. We analyze a 
quantum van der Pol oscillator with the Kerr effect and show that our quantum asymptotic 
phase yields appropriate results in both semiclassical and strong quantum regimes [6, 7]. 

Quantum synchronization, a burgeoning topic at the boundary between quantum physics and 
nonlinear physics, is attracting much attention not only in pure and applied physics but also in 
information science, applied mathematics, and various engineering fields. The quantum 
asymptotic phase proposed in this study is generally applicable in the strong quantum regime 
and will serve as a fundamental quantity for characterizing quantum nonlinear oscillators and 
provide new insights into future applications of quantum synchronization in the evolving field 
of quantum technologies. 
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Fig. 1 Quantum limit-cycle oscillators and quantum asymptotic phase 



Field Disorder and Universality Classes in the Transverse-Field Ising Ferromagnet:  
A Two-Dimensional Investigation

Heejeong Kim , Seung Ki Baek  
 1 Department of Physics, Pukyong National University, Busan, 48513, Korea  

2 Department of Scientific Computing, Pukyong National University, Busan, 48513, Korea

1 2

2D TFIF with Field Disorder

Hamiltonian

H = − J∑
⟨ij⟩

σz
i σz

j − ∑
i

Γiσx
i

with probability distribution

P(Γi) = {Γ−1
max, for 0 < Γi < Γmax

0, otherwise

on the  square latticesL × L

Γi

J

i j

Fig 1. Schematic representation

• Performed quantum Monte-Carlo simulation with path-integral representation in the 
continuous-time limit.

• We currently estimate critical point, , and dynamic critical exponent, .Γc ≈ 13.7 z ≃ 2



2 min. preview talk 

P23   Quantum chaos and Bifurcation in billiard systems 
Hironori Makino 

Dept. of Human & Info. Sci. at TOKAI Univ. 
 

  

Is it possible to detect bifurcation points of 

classical dynamical system from quantum 

mechanical data? 

→  Yes, it is!  

 
 

 Fig.1 Bifurcation diagram of the Lemon Billiard system. 

They can be detected by analysing the energy levels and 

energy eigenfunction of the corresponding quantum system. 

 The energy levels at the bifurcation points show a strong 

accumulation on the energy axis with a certain period P2, 

and this period is well predicted by the Gutzwillerʼs 

semiclassical theory (see Fig.2). 

 By observing this accumulation 

quantitatively, we can obtain predicted values 

of the bifurcation parameters (red marks ● 

in Fig. 3), which are in good agreement with 

the bifurcation points of the classical 

dynamical system (blue lines in Fig. 3). 
Fig.3  Degree of energy level accumulation χ 2 vs 
the bifurcation parametersδ(Blue lines). Isʼs quantum 
mechanical predictions are plotted by the red marks●. 

Fig.2 Integrated density of 
states. P2 is the accumulation 
period. 
 



2 min. preview talk 

We also analyse the energy eigenfunctions at the bifurcation points of Fig.3(at the 

red marks), and observed the eigenfunction scarring. 

 The energy eigenfunctions at each accumulation point are strongly amplified 

along the bifurcating orbits (Fig.4), and always be the eigenfunction scarring. T 

This phenomenon also occurs periodically along the energy axis with the period 

P2 (see Fig.5). 

 By observing this phenomenon quantitatively, we attempt to estimate the 

position of a fixed point on the Poincaré surface of section. 

 

 

 

 

 

 

Summary 

I. By observing the accumulation of quantal energy levels, one can predict the 

bifurcation parameters of classical dynamical system. 

II. The eigenfunction scarring is induced frequently at the bifurcation points and 

it is associated with the periodic accumulation of quantal levels. However, itʼs 

mechanism is not obvious. 

Fig.4 Typical eigenfunction scarrings at the 
bifurcation points, strongly amplified along 
the bifurcating orbits. 

Fig.5  Amplitudes | ψ n |2 of energy 
eigenfunctions on bifurcated orbits. 



Stochastic fluctuating model for two cilia synchronization
Qin Jing, Department of Physics, Tohoku University

Energy dissipation in a noise synchronizing system?
in the weak coupling & weak noise approximation

Model:

dϕ1

dt
= ωt + Kωsin(ϕ2 − δ) sinϕ1 +

√
2D

√
ωξ1

dϕ2

dt
= ωt + Kωsin(ϕ1 − δ) sinϕ2 +

√
2D

√
ωξ2

Results:

▶ The synchronized state maximizes the heat dissipation related
to the detail of trajectory.

▶ Computed the heat release specifically on the first order
approximation and found it’s time-dependence.



Boltzmann-Ginzburg-Landau theory for active particles
with chemotaxis and orientational interaction

Shun Sakurai and Nariya Uchida
 (Dept. of Phys., Tohoku Univ.)

Self-propelled rods ＋ chemotaxis

rotational chemotaxis

translational chemotaxis

𝜻𝒓𝒐𝒕𝜻𝒕𝒓
∇𝑐

attractant 
gradient 

nematic interaction



Boltzmann equation

With the assumption it is dilute, derive the Boltzmann equation 
of the probability distribution 𝑓 𝐫, 𝜃, 𝑡

Linear stability analysis

Instability region of the uniform steady state

We obtained the additional instability 
region caused by chemotaxis. 

Perform linear stability analysis of 
the uniform steady solutions of the 
Boltzmann equation 

no
is

e

density



厦门大学物理科学与技术学院
College of Physical Science and Technology, Xiamen University

References: [1] V. Cavina, A. Mari, and V. Giovannetti, Phys. Rev. Lett. 119, 050601 (2017).

[2] J. Y. Chen, S. H. Xia,  J. C. Chen, and S. H. Su, Performance optimization of the finite-time quantum tricycle[J]. (Under review)

Acknowledgments: The National Natural Science Foundation of China (Grant No. 11805159 and 12075197)

Optimal figure of merit of low-dissipation quantum refrigerators
Jingyi Chen, Youlin Wang, Jincan Chen, and Shanhe Su

Department of Physics, Xiamen University

∗ sushanhe@xmu.edu.cn Abstract

We establish a finite-time external field-driven quantum tricycle model. Within the framework 

of slow driving perturbation, the perturbation expansion of heat in powers of time can be 

derived during the heat exchange processes. Employing the method of Lagrange multiplier, we 

optimize the cooling performance of the tricycle by considering the cooling rate and the figure 

of merit, which is the product of the coefficient of performance and cooling rate, as objective 

functions. Our findings reveal the optimal operating region of the tricycle, shedding light on its 

efficient performance.

1. The control protocol of a finite-time quantum tricycle

Fig.1. (a) Schematic representation of a quantum tricycle. (b) The temperature-entropy 

diagram of a FTQTC. (c) The temperature-entropy diagram of a reversible quantum tricycle.

The working substance is a two level system (TLS) with 

time-dependent Hamiltonian                            ,where       is 

the energy splitting at time   . A weak coupling between 

the system and reservoir  is considered. The density 

operator      of the TLS evolves according to the 

Markovian master equation, i,e.,

where the generator       represents the quantum 

Liouvillian superoperator. By introducing the 

dimensionless time-rescaled parameter           , the 

equation can be rewritten as[1]

where           is the Drazin inverse of           . By applying 

Alicki’s definition of heat and the first order perturbation,  

the amount of heat entering the system from bath  during 

the interval  would be

where the first order irreversible corrections of heat can be 

written by
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The detail of the control protocols of the quantum tricycle 

are designed as follows:

A→B: Heat exchange with reservoir

B→C: Diabatic expansion

C→D: Heat exchange with reservoir

D→E: First diabatic expansion

E→F: Heat exchange with reservoir

F →A: Second diabatic expansion

c
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2. The relationships between the amplitude and the 
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Fig.2. The curves of the sum of the zeroth order 

approximation of heat varying with the amplitude 

frequency.

3. Performance optimization in the slow-driving regime

Fig.3. Plot of the cooling rate     with 

respect to time    and      . 
R


c 

p

4. Result

The figure of merit               can be commonly employed as 

a target function for optimizing the performance of 

refrigerators 

Fig.4. (a) Plot of the cooling rate and figure of merit varying with the COP. (b) Plot of the 

cooling rate and figure of merit varying with the     . (c) The optimum characteristic curves of 

the cooling rate and the figure of merit varying with COP . 



We can generate the optimal 

curve of the cooling rate 

varying with the COP for 

given frequency exponent  . 

The frequency exponent   

determines the spectral 

density





( ) ( ), , ,

.
/ /


 


= −

 + +  + + 

h h
h

p eq p p p c eq c c c h eq h

T

T S T S T S

,

,

/
,

/






  + = =
  + 

c eq c c cc

h h eq h h h

T SQ

Q T S

, /
.



     

  + = =
+ + + +

c eq c c cc

c h p c h p

T SQ
R

( ) ( )1 2, , ,    = + + + +c h p c h pL R Q Q Q

( ), , , 2 0.

22 2 
   +  +  + + + =

  

ph c
eq h eq p eq c c h p

h p c

S S S



Bifurcation analysis of spatiotemporal dynamics in 

the one-dimensional non-reciprocal Swift-Hohenberg model (P37.)

Yuta Tateyama¹, Hiroaki Ito¹, Shigeyuki Komura², and Hiroyuki Kitahata¹ (¹Chiba Univ., ²WIUCAS)

“Spurious” gradient dynamics

gradient dynamics + non-reciprocity

Prey

Predator

Non-reciprocal interaction system

inhibition

activation

Non-reciprocal Swift-Hohenberg (NRSH) model 

inhibition

activation

Swift-Hohenberg equation + non-reciprocity

Spatiotemporal patterns of 1D NRSH model

M. Fruchart et al., Nature, 2021.



Bifurcation analysis of spatiotemporal dynamics in 

the one-dimensional non-reciprocal Swift-Hohenberg model (P37.)

Yuta Tateyama¹, Hiroaki Ito¹, Shigeyuki Komura², and Hiroyuki Kitahata¹ (¹Chiba Univ., ²WIUCAS)

Phase diagram of the 1D NRSH model

⇦ wave

⇧ Turing

⇧ saddle-node

Hopf ⇩

pitchfork⇩

Connection of branches for the reduced ODE

Reduced ODE system for spatial Fourier mode

Bifurcation analysis of the reduced ODE system explains

the spatiotemporal patterns of the 1D NRSH model.



#39: Tracking Chemical Reaction Networks Driven Time-
Periodically from the Viewpoint of Condensed Matter Physics

M. Doi, J. Phys. A: Math. Gen. 9, 1465 (1976).
L. Peliti, J. Phys. France. 46, 1469-83 (1985).

Master equation

2nd quantization

Schrödinger equation (imaginary time) of 
open quantum system

Example of a chemical reaction network (Signaling from G protein-
coupled receptors to MAPK/Erk) 2023 © Cell Signaling Technology.

,

Chemical Reaction Network
= Open Quantum System

Yuki WatanabeA, Zoé JeandupeuxB, Yuki IshiguroC,D, Masafumi UdagawaE, Shintaro TakayoshiF, Takashi OkaD

Univ. TokyoA, EPFLB, Tokyo PolytechC, ISSPD, Gakushuin Univ.E, Konan Univ.F

S. B. Nicholson and T. R. Gingrich (2023)



#39: Tracking Chemical Reaction Networks Driven Time-
Periodically from the Viewpoint of Condensed Matter Physics

Yuki WatanabeA, Zoé JeandupeuxB, Yuki IshiguroC,D, Masafumi UdagawaE, Shintaro TakayoshiF, Takashi OkaD

Univ. TokyoA, EPFLB, Tokyo PolytechC, ISSPD, Gakushuin Univ.E, Konan Univ.F

+A B A
B

k1
k2

+A B A
B

+A B A
B

Chemical Reaction Network
= Open Quantum System (OQS)

Can the state within a living organism 
be controlled?

Can the sate of OQS be controlled?
→ Floquet Engineering of OQS

=

The Result for simple association-
dissociation reaction + diffusion



Manami Yamagishi 1 , Naomichi Hatano 2 , Hideaki Obuse 2, 3
1 Dept. of Phys. and 2 IIS, U Tokyo, 3 Dept. of Appl. Phys., Hokkaido U

Decoherence in quantum active particles:
towards classical active particles?

How to define
active matter (well 
studied in classical 
systems) in a 
quantum system?

? In a quantum system,
ü Obtain similar results 

with a previous research 
in a classical system

ü Observe unique features

!

Keyword:
  *Non-equilibrium
    *Quantum walk
       *Active matter

Our “Quantum active matter”
1. System without energy
      nor momentum conservation
2. Particle moves depending on
      its internal state

Systems w/o energy conservation

Momentum conserved Momentum not conserved

Classical Dissipative system Active matter

Quantum Non-Hermitian physics Quantum active matter

Ordinary

Active

New research field
Previous
research

F. Schweitzer et al., PRL. 80,
5044-5047 (1998).



• M. Yamagishi, N. Hatano                 
and H. Obuse,                 
arXiv:2305.15319 (2023).

ØUsing non-unitary quantum walks…

(a)&(b): Ordinary 𝑔 = 0 ,
(c)&(d): Active 𝑔 = 1

Under effective harmonic potential

🤔 Classical limit?
ØNumerically introduce 

decoherence in the form 
of

𝜌!"# = 1 − 𝑝 𝑈𝜌𝑈$

                  +𝑝	diag 𝑈𝜌𝑈$
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Discontinuous codimension-two bifurcation in a Vlasov system

Y. Y. Yamaguchi (Kyoto Univ) & J. Barré (Univ Orléans)

What is the Vlasov (collisionless Boltzmann) system?

= Dynamics of long-range Hamiltonian system by 1-body dist

Examples:

Self-gravitating systems Plasmas

2D Euler fluids Ising/XY spins

Bifurcation in Vlasov: Assume the position q is periodic

1-body dist Fini(q, p) : Non-clusterd state is stationary×

−3 −2 −1 0 1 2 3

q

−3

−2

−1

0

1

2

3

p

if unstable−−−−−−→
t→∞

−3 −2 −1 0 1 2 3

q

−3

−2

−1

0

1

2

3

p

Final Cluster size C
for unstable Fini(p)?



Knowns and Questions (K: coupling strength)

⇒ ⇒

⇓

?
Continuous Discontinuous

Q1 Where is the boundary of flatness?

Q2 For two-peak distributions?

Q3 How can we unify them?

We answer them via codim-2 bifurcation (tuning of 2 params)



UTokyo Nonlinear Physics Lab

Nice to meet you!

Yoshiki Kuramoto
(Nonlinear science)

Hiroshi Kori
(Synchronization etc.)

Ryota Kobayashi
(Data science etc.)

Taichi Yamamoto (M2)
yamamoto-taichi913@g.ecc.u-tokyo.ac.jp
Interests:
・Dynamics Reduction Theory
・Artificial Intelligence
・Koopman Operator
・Natural Computing

Supervisor Relation

mailto:yamamoto-taichi913@g.ecc.u-tokyo.ac.jp


Estimating Asymptotic Phase Function
of Limit-cycle Oscillators
using Gaussian Process Regression

⇨ ⇨

Time series data → Phase function Hodgkin-Huxley model (4D)

Robust against observation noise Predicting nonlinear phase response



 Fermi‐Pasta‐Ulam‐Tsingou (FPUT) ‐ lattice

・・・

♦ Anomalous heat transport

,  

・Mechanism

M. Takatsu et al., J. Phys. Soc. Jpn. 93, 053001 (2024)

Attenuation of soliton by thermal vibration and 
anomalous heat transport in the FPUT lattice

Kazuyuki Yoshimura*, Masaki Takatsu （Tottori Univ, Japan.）

・ Soliton dynamics



 Numerical experiment

 Soliton transport theory

,   

・ Power law of soliton energy decay rate:

,

・ Scaling law of anomalous transport:

thermally excited

soliton
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