Surprising aspects of Lagrangian dispersion in supersonic turbulence

Sadhitro De

Department of Physics Indian Institute of Science (IISc), Bangalore

July 3, 2024

Dynamic Days Asia Pacific 13

sadhitrode@iisc.ac.in

Richardson's Law

$$
\left\langle R^2(t)\right\rangle \sim t^3
$$

• Derivable from Kolmogorov's simple scaling arguments.

L. F. Richardson

What about $\langle R^p(t) \rangle$ *for any* p *?*

Taylor's Diffusion

$$
MSD(t) \sim \begin{cases} t^2 & \text{for} \quad t \ll T_{\text{L}}, \\ t & \text{for} \quad t > T_{\text{L}}. \end{cases}
$$

G. I. Taylor

• Good evidence from experiments and DNS's in *incompressible turbulence.*

Two (of many) pillars of turbulence

Types of supersonic turbulence

Burgers turbulence **Shock-dominated Navier-Stokes turbulence**

Shock-Dominated — Net kinetic energy in the irrotational modes ≫ solenoidal modes

Vorticity-Dominated — Net kinetic energy in the irrotational modes ≪ solenoidal modes

-
-

1. Validity of Taylor's conjecture in shock-dominated turbulence

2. Multifractality of pair-dispersion in shock-dominated turbulence

1. Validity of Taylor's conjecture in shock-dominated turbulence

2. Multifractality of pair-dispersion in shock-dominated turbulence

- **Shock-dominated turbulence Transport is clearly superdiffusive at late times**
	- $-$ persists upto $t \gg T_E$
	- $-MSD(t) \sim t^{\gamma}$; $\gamma \approx 4/3$ in both Burgers and Navier-Stokes

• **Vorticity-dominated supersonic turbulence** — No superdiffusion; qualitatively agrees with Taylor.

- Shocks dynamics \rightarrow large-scale velocity
	- — *mainly determined by χ ->* ratio of solenoidal to net KE

- Shocks dynamics \rightarrow large-scale velocity
	- — *mainly determined by χ ->* ratio of solenoidal to net KE
- **Shock-dominated turbulence** —
- Small *shock dynamics largely irrotational. χ* →
- $-$ *Burgers ->* $\gamma \approx 4/3$ *follows from a simple scaling analysis.*
- *Navier-Stokes -> Shock dynamics similar to Burgers;* Fastest
- tracers preferentially sample shocks.

- Large *shocks advected by predominantly solenoidal flow χ* →
- Akin to incompressible turbulence
- *Hence no anomalous diffusion*

• **Vorticity-dominated turbulence** —

- Shocks dynamics \rightarrow large-scale velocity
	- — *mainly determined by χ ->* ratio of solenoidal to net KE
- **Shock-dominated turbulence** —
- Small *shock dynamics largely irrotational. χ* →
- $-$ *Burgers ->* $\gamma \approx 4/3$ *follows from a simple scaling analysis.*
- *Navier-Stokes -> Shock dynamics similar to Burgers;* Fastest
- tracers preferentially sample shocks.

- Large *shocks advected by predominantly solenoidal flow χ* →
- Akin to incompressible turbulence
- *Hence no anomalous diffusion*

- Shocks dynamics \rightarrow large-scale velocity
	- — *mainly determined by χ ->* ratio of solenoidal to net KE
- **Shock-dominated turbulence** —
- Small *shock dynamics largely irrotational. χ* →
- $-$ *Burgers ->* $\gamma \approx 4/3$ *follows from a simple scaling analysis.*
- *Navier-Stokes -> Shock dynamics similar to Burgers;* Fastest
- tracers preferentially sample shocks.

• **Vorticity-dominated turbulence** —

ξ → fraction of solenoidal power in the external force

1. Validity of Taylor's conjecture in shock-dominated turbulence

2. Multifractality of pair-dispersion in shock-dominated turbulence

Clear suppression of Richardson's scaling due to clustering of tracers on shocks.

Richardson's Law?

[[De et al, Phys. Rev. Research 6 \(2024\)\]](https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.6.L022032)

 $\left\langle T_{\rm H}^{-p} \right\rangle \sim R_0^{-\chi_p^{\rm H}}$ $\begin{pmatrix} -\chi^{\rm H}_p \\ 0 \end{pmatrix} \sim R_0^{-\chi^{\rm D}_p}$ *p*

[[De et al, Phys. Rev. Research 6 \(2024\)\]](https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.6.L022032)

 $\begin{pmatrix} -\chi_p^{\text{D}} \\ 0 \end{pmatrix} \sim R_0^{\kappa_p^{\text{H}}}$ $p^{\kappa_p^{\text{H}}}$ $\left\langle T_{\text{D}}^p \right\rangle \sim R_0^{\kappa_p^{\text{D}}}$ *p* 0

 $\chi^{\rm H}_p = \chi^{\rm D}_p$

Multifractal Model -> $\chi_p^H = \chi_p^D = p - \zeta_p$ Multifractal Model -> $\kappa_p^H = \kappa_p^D = p + \zeta_{-p}$

Our theory
$$
\rightarrow
$$
 $\kappa_p^H = p/3$

 $\chi^{\rm H}_p = \chi^{\rm D}_p$

 α Our theory -> $\chi_p^D = 2p/3$ α α α α β α β α β β β

Multifractal Model -> $\chi_p^H = \chi_p^D = p - \zeta_p$ Multifractal Model -> $\kappa_p^H = \kappa_p^D = p + \zeta_{-p}$

Beyond Richardson's Law Incorporate shocks

• Pair-diffusivity: $K(R) \sim (\delta_R V)^2 \tau_R$ – Physics-based modelling

Beyond Richardson's Law

— Depends on whether the pair of tracers *(a) lie away from shocks, (b) lie across a shock, or (c) straddle a shock*

 $\overline{2}$ $\overline{0}$

 -2

Incorporate shocks

• Pair-diffusivity: $K(R) \sim (\delta_R V)^2 \tau_R$ – Physics-based modelling

Beyond Richardson's Law

- Pair-diffusivity: $K(R) \sim (\delta_R V)^2 \tau_R$ Physics-based modelling
	- Depends on whether the pair of tracers *(a) lie away from shocks, (b) lie across a shock, or (c) straddle a shock*
- Solve the corresponding first-passage time problem

$$
\partial_t W = \frac{1}{R} \partial_R [RK(R) \partial_R W]
$$
 Survival prob:

Moments of exit times
 Exit-time distribution

3

 $\mathcal{X}% _{M_{1},M_{2}}^{\alpha,\beta}(\varepsilon)$

 $\overline{2}$ Ω

 -2

Incorporate shocks

Beyond Richardson's Law Compressible Navier-Stokes turbulence

Purely solenoidal forcing Purely compressive forcing

Beyond Richardson's Law Compressible Navier-Stokes turbulence

Purely solenoidal forcing Purely compressive forcing

Summary

- Large-scale transport is superdiffusive over a significant range of time-scales in shock-dominated turbulence; not so in vorticity-dominated supersonic turbulence.
- Attributable to the differences in the shock dynamics in these two types of flows.
- Different pair exit times in shock-dominated flows exhibit different scaling properties *— multifractality of pair dispersion.*
- Our theoretical insights capture these differences in Burgers turbulence. *[[S. De, D. Mitra, and R. Pandit, Phys. Rev. Research 6 \(2024\)\]](https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.6.L022032)*
- Supersonic Navier-Stokes turbulence Pair dispersion and exit time statistics depend on both Mach number and the nature of external force —> *determined by the small-scale structures of the underlying vorticity and velocity fields.*