Surprising aspects of Lagrangian dispersion in supersonic turbulence

Sadhitro De

Department of Physics Indian Institute of Science (IISc), Bangalore

Dynamic Days Asia Pacific 13

sadhitrode@iisc.ac.in

July 3, 2024

Two (of many) pillars of turbulence

Taylor's Diffusion

G. I. Taylor

 $MSD(t) \sim \begin{cases} t^2 & \text{for } t \ll T_{\rm L}, \\ t & \text{for } t > T_{\rm I}. \end{cases}$

• Good evidence from experiments and DNS's in incompressible turbulence.

Richardson's Law

$$\left< R^2(t) \right> \sim t^3$$

• Derivable from Kolmogorov's simple scaling arguments.

L. F. Richardson

What about $\langle R^p(t) \rangle$ for any p?

Types of supersonic turbulence

Shock-Dominated — Net kinetic energy in the irrotational modes \gg solenoidal modes

Vorticity-Dominated — Net kinetic energy in the irrotational modes \ll solenoidal modes

 $\nabla \cdot \mathbf{u}$

Burgers turbulence

Shock-dominated Navier-Stokes turbulence

1. Validity of Taylor's conjecture in shock-dominated turbulence

2. Multifractality of pair-dispersion in shock-dominated turbulence

1. Validity of Taylor's conjecture in shock-dominated turbulence

2. Multifractality of pair-dispersion in shock-dominated turbulence

- Shock-dominated turbulence Transport is clearly superdiffusive at late times
 - persists upto $t \gg T_E$
 - $-MSD(t) \sim t^{\gamma}$; $\gamma \approx 4/3$ in both Burgers and Navier-Stokes

 Vorticity-dominated supersonic turbulence — No superdiffusion; qualitatively agrees with Taylor.

- Shocks dynamics —> large-scale velocity
 - mainly determined by χ -> ratio of solenoidal to net KE

- Shocks dynamics —> large-scale velocity
 - mainly determined by χ -> ratio of solenoidal to net KE
- Shock-dominated turbulence —
- Small $\chi \rightarrow$ shock dynamics largely irrotational.
- Burgers -> $\gamma \approx 4/3$ follows from a simple scaling analysis.
- Navier-Stokes -> Shock dynamics similar to Burgers; Fastest
- tracers preferentially sample shocks.

- Shocks dynamics —> large-scale velocity
 - mainly determined by χ -> ratio of solenoidal to net KE
- Shock-dominated turbulence —
- Small $\chi \rightarrow$ shock dynamics largely irrotational.
- Burgers -> $\gamma \approx 4/3$ follows from a simple scaling analysis.
- Navier-Stokes -> Shock dynamics similar to Burgers; Fastest
- tracers preferentially sample shocks.

Vorticity-dominated turbulence —

- Large $\chi \rightarrow$ shocks advected by predominantly solenoidal flow
- Akin to incompressible turbulence
- Hence no anomalous diffusion

- Shocks dynamics —> large-scale velocity
 - mainly determined by χ -> ratio of solenoidal to net KE
- Shock-dominated turbulence —
- Small $\chi \rightarrow$ shock dynamics largely irrotational.
- Burgers -> $\gamma \approx 4/3$ follows from a simple scaling analysis.
- Navier-Stokes -> Shock dynamics similar to Burgers; Fastest
- tracers preferentially sample shocks.

Vorticity-dominated turbulence —

- Large $\chi \rightarrow$ shocks advected by predominantly solenoidal flow
- Akin to incompressible turbulence
- Hence no anomalous diffusion

$\xi \rightarrow$ fraction of solenoidal power in the external force

1. Validity of Taylor's conjecture in shock-dominated turbulence

2. Multifractality of pair-dispersion in shock-dominated turbulence

Richardson's Law?

Clear suppression of Richardson's scaling due to clustering of tracers on shocks.

[De et al, Phys. Rev. Research 6 (2024)]

 $\left\langle T_{\rm H}^{-p} \right\rangle \sim R_0^{-\chi_p^{\rm H}} \qquad \left\langle T_{\rm D}^{-p} \right\rangle \sim R_0^{-\chi_p^{\rm D}}$

[De et al, Phys. Rev. Research 6 (2024)]

 $\left\langle T_{\rm H}^p \right\rangle \sim R_0^{\kappa_p^{\rm H}} \qquad \left\langle T_{\rm D}^p \right\rangle \sim R_0^{\kappa_p^{\rm D}}$

Multifractal Model -> $\chi_p^{\rm H} = \chi_p^{\rm D} = p - \zeta_p$

Multifractal Model -> $\kappa_p^{\rm H} = \kappa_p^{\rm D} = p + \zeta_{-p}$

Multifractal Model -> $\chi_p^{\rm H} = \chi_p^{\rm D} = p - \zeta_p$

Our theory -> $\chi_p^{\rm D} = 2p/3$

Multifractal Model -> $\kappa_p^{H} = \kappa_p^{D} = p + \zeta_{-p}$

Our theory -> $\kappa_p^{\rm H} = p/3$

Beyond Richardson's Law Incorporate shocks

• Pair-diffusivity: $K(R) \sim (\delta_R V)^2 \tau_R$ — Physics-based modelling

Beyond Richardson's Law

Incorporate shocks

• Pair-diffusivity: $K(R) \sim (\delta_R V)^2 \tau_R$ — Physics-based modelling

Depends on whether the pair of tracers
(a) lie away from shocks,
(b) lie across a shock, or
(c) straddle a shock

2 1 0 -1 -2

.3

Beyond Richardson's Law

Incorporate shocks

- Pair-diffusivity: $K(R) \sim (\delta_R V)^2 \tau_R$ Physics-based modelling
 - Depends on whether the pair of tracers (a) lie away from shocks, (b) lie across a shock, or (c) straddle a shock
- Solve the corresponding first-passage time problem

$$\partial_t W = \frac{1}{R} \partial_R [RK(R)\partial_R W]$$
 Survival proba

Moments of exit times

3

 ${\boldsymbol{\mathcal{X}}}$

2 -2

Beyond Richardson's Law Compressible Navier-Stokes turbulence

Purely solenoidal forcing

Purely compressive forcing

Beyond Richardson's Law Compressible Navier-Stokes turbulence

Purely solenoidal forcing

Purely compressive forcing

Summary

- Large-scale transport is superdiffusive over a significant range of time-scales in shock-dominated turbulence; not so in vorticity-dominated supersonic turbulence.
- Attributable to the differences in the shock dynamics in these two types of flows.
- Different pair exit times in shock-dominated flows exhibit different scaling properties - multifractality of pair dispersion.
- Our theoretical insights capture these differences in Burgers turbulence. [S. De, D. Mitra, and R. Pandit, Phys. Rev. Research 6 (2024)]
- Supersonic Navier-Stokes turbulence Pair dispersion and exit time statistics depend on both Mach number and the nature of external force -> determined by the small-scale structures of the underlying vorticity and velocity fields.