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Richardson’s Law

⟨R2(t)⟩ ∼ t3

• Derivable from Kolmogorov’s 
simple scaling arguments.

L. F. Richardson

Taylor’s Diffusion

MSD(t) ∼ {t2 for t ≪ TL ,
t for t > TL .

G. I. Taylor

• Good evidence from 
experiments and DNS’s in 
incompressible turbulence.

What about  for any ?⟨Rp(t)⟩ p

Two (of many) pillars of turbulenceTwo (of many) pillars of turbulence



Types of supersonic turbulence
Shock-Dominated — Net kinetic energy in the irrotational modes  solenoidal modes≫

∇ ⋅ u log10 ρ ω = ∇ × u

Burgers turbulence Shock-dominated Navier-Stokes turbulence

Vorticity-Dominated — Net kinetic energy in the irrotational modes  solenoidal modes≪



1. Validity of Taylor’s conjecture in 
shock-dominated turbulence

2. Multifractality of pair-dispersion 
in shock-dominated turbulence
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Beyond Taylor’s Diffusion
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Large-eddy turnover timeTE →
• Shock-dominated turbulence — Transport 

is clearly superdiffusive at late times

— persists upto  
— ;  in both Burgers and 
Navier-Stokes

t ≫ TE

MSD(t) ∼ tγ γ ≈ 4/3

• Vorticity-dominated supersonic turbulence — 
No superdiffusion; qualitatively agrees with Taylor.



• Shocks dynamics —> large-scale velocity 
— mainly determined by  -> ratio of solenoidal to net KEχ
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• Shock-dominated turbulence —

• Shocks dynamics —> large-scale velocity 
— mainly determined by  -> ratio of solenoidal to net KEχ

— Small shock dynamics largely irrotational. 
— Burgers ->  follows from a simple scaling analysis.

— Navier-Stokes -> Shock dynamics similar to Burgers; Fastest 
tracers preferentially sample shocks.  

χ →
γ ≈ 4/3
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— Small shock dynamics largely irrotational. 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• Shocks dynamics —> large-scale velocity 
— mainly determined by  -> ratio of solenoidal to net KEχ
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fraction of solenoidal power in the external forceξ →



1. Validity of Taylor’s conjecture in 
shock-dominated turbulence

2. Multifractality of pair-dispersion 
in shock-dominated turbulence



Clear suppression of Richardson’s scaling due to clustering of tracers on shocks.

Richardson’s Law?



Beyond Richardson’s Law
Doubling and Halving times in Burgers turbulence

[De et al, Phys. Rev. Research 6 (2024)]

https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.6.L022032
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Beyond Richardson’s Law

χH
p = χD

p = p − ζp κH
p = κD

p = p + ζ−pMultifractal Model ->Multifractal Model ->
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Beyond Richardson’s Law

χD
p = 2p/3 κH

p = p/3Our theory ->Our theory ->
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— Depends on whether the pair of tracers 
    (a) lie away from shocks, 
    (b) lie across a shock, or 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Beyond Richardson’s Law

• Pair-diffusivity:  — Physics-based modellingK(R) ∼ (δRV)2τR

• Solve the corresponding first-passage time problem

∂tW =
1
R

∂R[RK(R)∂RW]

— Depends on whether the pair of tracers 
    (a) lie away from shocks, 
    (b) lie across a shock, or 
    (c) straddle a shock

Exit-time distributionMoments of exit times

Survival probability from W(R, t)

Incorporate shocks



Beyond Richardson’s Law
Compressible Navier-Stokes turbulence
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Purely solenoidal forcing Purely compressive forcing

Ma = 2.5 ± 0.5 Ma = 2.0 ± 0.3
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Compressible Navier-Stokes turbulence

Purely solenoidal forcing Purely compressive forcing
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Summary
• Large-scale transport is superdiffusive over a significant range of time-scales in shock-dominated 

turbulence; not so in vorticity-dominated supersonic turbulence.

• Attributable to the differences in the shock dynamics in these two types of flows.

• Different pair exit times in shock-dominated flows exhibit different scaling properties 
— multifractality of pair dispersion.

• Our theoretical insights capture these differences in Burgers turbulence.
[S. De, D. Mitra, and R. Pandit, Phys. Rev. Research 6 (2024)]

• Supersonic Navier-Stokes turbulence — Pair dispersion and exit time statistics depend on both Mach 
number and the nature of external force —> determined by the small-scale structures of the 
underlying vorticity and velocity fields.

https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.6.L022032

