Activity driven energy transport

S. N. Bose National Centre for Basic Sciences, Kolkata

Dynamic Days Asia Pacific 13 Yukawa Institute for Theoretical Physics, Kyoto July 1-5, 2024

Urna Basu

Joint works with Ritwick Sarkar & Ion Santra

I. R. Sarkar, I. Santra, and UB, arXiv 2404.00615

2. R. Sarkar, I. Santra, and UB, Phys. Rev. E 107, 014123 (2023)

3. I. Santra and UB, SciPost Phys. 13, 041 (2022)

Energy transport in thermally driven harmonic chain Active reservoir model: harmonic chain of RTP oscillators Effective probe dynamics: violation of FDT Activity driven harmonic chain Characterisation of the NESS Spatio-temporal correlations Energy current Conclusions

Outline

Energy transport in one dimension

- Macroscopic system subjected to temperature difference: energy transport
- Fluctuation-Dissipation Theorem
- Relevant questions:
 - Energy current thermal conductivity? Fourier Law?
 - Local temperature?
 - Velocity / position fluctuations?
- temperatures

Theoretical model: Oscillator chain connected to equilibrium thermal reservoirs, satisfy

Paradigmatic example (in 1D): Harmonic chain connected to Langevin baths with different

Rieder, Lebowitz, Lieb, J Math Phys 1967

Harmonic chain under temperature gradient

- Chain of N harmonically coupled identical oscillators with displacement $\{x_l\}$
- Boundary oscillators l = 1, N coupled to reservoirs with temperatures T_{1}, T_{N}
- Reservoirs exerting forces: 'thermal noise' and 'dissipation'
- Equilibrium reservoirs: Fluctuation-dissipation theorem (FDT) relates noise and dissipation

Langevin Bath

Simple model — Constant dissipation and Gaussian white noise at boundary

$$m\ddot{x}_{1} = -k(2x_{1} - x_{2}) - \gamma_{1}x_{1}$$
$$m\ddot{x}_{l} = -k(2x_{l} - x_{l-1} + x_{l+1})$$
$$m\ddot{x}_{N} = -k(2x_{N} - x_{N-1}) - k(2x_{N} - x_{N-1}) - k(2x_{$$

Mass m Coupling constant k

 $T_1 \qquad m m m m m m m m m T_N$

 $\dot{x_1} + \sqrt{2\gamma_1 T_1} \,\xi_1(t),$ $(-1), \quad \forall l \in [2, N-1],$ $\gamma_N \dot{x_N} + \sqrt{2\gamma_N T_N \xi_N(t)}$

Rieder, Lebowitz, Lieb, J Math Phys 1967 Dhar, Phys Rev Lett 2001

Linearity and Gaussianity allow exact solution Current carrying Gaussian nonequilibrium stationary state • In the thermodynamic limit $N \rightarrow \infty$ constant energy current $J_{\text{th}} \propto (T_1 - T_N)$ flows through the system

$$J_{\rm th} = \frac{k(T_1 - T_N)}{2\gamma} \left[1 + \frac{mk}{2\gamma^2} - \frac{mk}{2\gamma^2} \sqrt{1 + \frac{4\gamma^2}{mk}} \right].$$

Uniform temperature at the bulk $T = \frac{1}{2}(T_1 + T_N)$

Rieder, Lebowitz, Lieb J Math Phys 1967, Dhar, Phys Rev Lett. 2001

Correlated bath Rubin, J Math Phys 1961 Rubin & Greer J Math Phys 1971 Rubin-Greer model: Semi-infinite chain of harmonic oscillators at

Rubin-Greer model: Semi-infinite of temperature T

Generalised Langevin equations

Dissipation kernel $\gamma(t)$

• FDT demands $\langle \tilde{\eta}_i(\omega)\tilde{\eta}_i(\omega')\rangle = 4\pi i$

• Stationary current $\propto (T_1 - T_N)$ \Rightarrow What happens when reservoirs are away from equilibrium?

$$\begin{split} m\ddot{x}_{1} &= k(x_{2} - x_{1}) - \int_{-\infty}^{t} ds \, \dot{x}_{1}(s) \, \gamma(t - s) + \eta_{1}(t), \\ m\ddot{x}_{l} &= k(x_{l-1} + x_{l+1} - 2x_{l}), \quad \forall l \in [2, N - 1], \\ m\ddot{x}_{N} &= k(x_{N-1} - x_{N}) - \int_{-\infty}^{t} ds \, \dot{x}_{N}(s) \, \gamma(t - s) + \eta_{N}(t) \end{split}$$

 $\langle \tilde{\eta}_i(\omega)\tilde{\eta}_i(\omega')\rangle = 4\pi k_B T_i \operatorname{Re}[\gamma(\omega)]\delta(\omega + \omega')$

- Medium consisting of self-propelled active particles
- Active Particles: Generate directed motion consuming energy from environment at individual level
- Inherently nonequilibrium in nature
- Examples: at all scales
 - In nature: Bacteria, Bird flocks, Fish schools...
 - Artificial: Micro/nano swimmers, Janus particles...

Active Reservoir

Bechinger et al, RMP 2016 Ramaswamy 2017, ...

Motion of single probe particle in active reservoirs: theoretical and experimental studies

Intriguing features:

Emergence of memory,

Modification of equipartition theorem,

Negative friction

Maggi et al., PRL 2014, Maes, PRL 2020, Seyforth et al., PRR 2022, Granek et al., PRL 2022,...

Seyforth et al., PRR 2022

We have transport properties of extended systems affected when connected to active reservoirs?

Ion Santra, Raman Research Institute StatPhys Kolkata XI

Courtesy: Ion Santra

Simple, linear model: Activity driven harmonic chain

Set-up: Model

Simple model of active reservoir: chain of identical Run-and-Tumble Particles (RTP) Passive chain

- Rubin-Greer like set-up
- Activity' of the reservoir : persistence time of constituents
- active reservoirs

Conducting system — chain of passive oscillators — connected to two

Characterise the active reservoir Breaking of FDT? Effective temperature? Characterise the nonequilibrium stationary state (NESS) of the passive chain Velocity/position fluctuations? Spatio-temporal correlations? Energy current flowing through the system

Objective

Characterisation of the active reservoir

- Active reservoir: Chain of harmonically coupled active particles
- Probe particle coupled to one end
- Reservoir particle dynamics: overdamped Langevin equation for $\{y_l\}$ $\nu \dot{y}_l = \begin{cases} \lambda (y_{l+1} + y_{l-1} - 2y_l) + f_l(t), & \forall l \in [1, M-1], \\ \lambda (x_1 + y_{M-1} - 2y_M) + f_M(t), & \text{when } l = M, \end{cases}$
 - Fixed boundary at one end $(y_0 = 0)$

• Probe particle (x_1) attached at the other end

friction ν and Coupling strength λ

• Stochastic dynamics with active noise $f_l(t)$: memory • Stationary auto-correlation—persistence time-scale τ

$$\langle f(t)f(t')\rangle = h\left(\frac{|t-t'|}{\tau}\right)$$

Unrelated to dissipation — no fluctuation-dissipation relation

Probe particle dynamics

measure of activity No detailed balance

$$n\ddot{x}_1 = \lambda(y_M - x_1),$$

Effective description?

• Integrate out the bath degrees of freedom
• Linear: exact solution of bath particles Langevin equations for gives

$$x_1(t)$$

 $y_M(t) = \frac{\lambda}{\nu} \int_{-\infty}^t ds \, x_1(s) \Lambda_{MM}(t-s) + \frac{1}{\nu} \int_{-\infty}^t ds \sum_{j=1}^M \Lambda_{Mj}(t-s) \, f_j(t),$

• $M \times M$ matrix $\Lambda(z)$ with elements

$$\Lambda_{j\ell}(z) = \frac{2}{M+1} \sum_{k=1}^{M} \sin \frac{jk\pi}{M+1} \sin \frac{\ell k\pi}{M+1} e^{-\mu_k z/\nu} \quad \text{with} \quad \mu_k = 4\lambda \sin^2 \left(\frac{k\pi}{2(M+1)} + \frac{1}{2(M+1)} + \frac{1}{$$

Generalised Langevin equation for probe dynamics (in a correlated bath)

Use this effective description to study the extended system Properties in thermodynamic limit $M \rightarrow \infty$

Dissipation kernel Dissipation kernel

$$\gamma(t) = \lambda e^{-\frac{2\lambda t}{\nu}} \left[I_0 \left(\frac{2\lambda t}{\nu} \right) + I_1 \left(\frac{2\lambda}{\nu} \right) \right]$$

• At long-times $t \gg \nu/\lambda$: algebraic decay $t^{-1/2}$

- Irrespective of active nature, property of the chain structure
- Appears in various contexts including active baths

Granek et al., PRL 2022, Lizana et al., PRE 2010... • Spectral function $\tilde{\gamma}(\omega) = \int_0^\infty dt dt$ Symmetry properties $\operatorname{Re}[\tilde{\gamma}(-\omega)] = \operatorname{Re}[\tilde{\gamma}(\omega)]$ and $\operatorname{Im}[\tilde{\gamma}(-\omega)] = -\operatorname{Im}[\tilde{\gamma}(\omega)]$. • For $\omega > 0$

$$\tilde{\gamma}(\omega) = -\frac{\nu}{2} \left[1 - \left(\sqrt{\frac{1}{4} + \frac{4\lambda^2}{\nu^2 \omega^2}} + \frac{1}{2} \right)^{1/2} \right] + i\frac{\nu}{2} \left(\sqrt{\frac{1}{4} + \frac{4\lambda^2}{\nu^2 \omega^2}} + \frac{1}{2} \right)^{1/2} \right]$$

Asymptotic behaviour for small and large ω ...

$$e^{-i\omega t}\gamma(t)$$

Effective noise

- Effective noise acting on the probe
- Auto-correlation in the frequency

 $\langle \tilde{\Sigma}(\omega)\tilde{\Sigma}(\omega')\rangle = 2\pi\delta(\omega+\omega')\,\tilde{g}(\omega)$

- Combination of active force $\tilde{h}(\omega)$ and chain structure through $\tilde{\gamma}(\omega)$
- Breaking of fluctuation-dissipation relation in a specific way

 $\langle \tilde{\eta}_i(\omega)\tilde{\eta}_i(\omega')\rangle = 4\pi k_B T_i \operatorname{Re}[\gamma(\omega)]\delta(\omega+\omega')$ Reminder: for equilibrium baths

$$\langle f(t)f(t')\rangle = h\left(\frac{|t-t'|}{\tau}\right)$$

space

$$\Sigma(t) = \frac{\lambda}{\nu} \int_{-\infty}^{t} ds \sum_{j=1}^{M} \Lambda_{Mj}(t-s) f_j(s),$$
with

$$\tilde{g}(\omega) = \frac{1}{\nu} \tilde{h}(\omega) \operatorname{Re}[\tilde{\gamma}(\omega)]$$

Active noise: example

- Active noise $f_l(t)$: independent, run-and-tumble like process
- Dichotomous noise in $ID f_l(t) = v_0 \sigma_l(t)$
- Intermittent 'tumbles' $\sigma \rightarrow -\sigma$ with constant rate
- Waiting time between consecutive tumbling events drawn from exponential distribution
- $h_1(z) = v_0^2 e^{-z}$ and frequency spectra $\tilde{h}_1(\omega, \tau) = \frac{2v_0^2 \tau}{1 + \omega^2 \tau^2}$
- Auto-correlation Other dynamics: ABP, AOUP etc equivalent

Characteristic time τ

Modification of FDT

• Equilibrium thermal baths: FDT $\tilde{g}(\omega) \propto k_B T \operatorname{Re}[\tilde{\gamma}(\omega)]$ Presence of active force modifies FDT $\tilde{g}(\omega) = \frac{1}{\nu} \tilde{h}(\omega) \operatorname{Re}[\tilde{\gamma}(\omega)]$

Effective temperature in passive limit $\tau \to 0$, $h(\omega) \propto v_0^2 \tau$

• Effect of active bath on extended system?

Passive conducting harmonic chain connected to two active reservoirs

Reservoirs differ only in persistence times

Activity driven harmonic chain

$$= k(x_{2} - x_{1}) - \int_{-\infty}^{t} ds \,\dot{x}_{1}(s) \,\gamma(t - s) + \Sigma_{1}(t),$$

$$= k(x_{l-1} + x_{l+1} - 2x_{l}), \quad \forall l \in [2, N - 1],$$

$$= k(x_{N-1} - x_{N}) - \int_{-\infty}^{t} ds \,\dot{x}_{N}(s) \,\gamma(t - s) + \Sigma_{N}(t).$$

thermally driven scenario?

Local velocity fluctuations

Temperature profile

Spatio-temporal correlations

Average energy current

Objectives

How is the nonequilibrium stationary state (NESS) different from the

- Linearity allows exact computation of certain observables
- 200I
- In the stationary state

$$x_l(t)$$
 :

with,

$$G(\omega) = \begin{bmatrix} -m\omega^2 + k - i\omega\tilde{\gamma} \\ -k & -m\omega^2 \\ \vdots \end{bmatrix}$$

U

NESS

Use Fourier transform and matrix method introduced in Dhar, PRL

 $= \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{i\omega t} [G_{l1}(\omega)\tilde{\Sigma}_{1}(\omega) + G_{lN}(\omega)\tilde{\Sigma}_{N}(\omega)]$

-k $\omega\omega^2 + 2k$

• • •

$$-m\omega^2 + k - i\omega\tilde{\gamma}$$

• • •

• • •

Effective noise

Kinetic temperature

Average kinetic energy of oscillators $\hat{T}_l = \langle v_l^2 \rangle$ Uniform at the bulk in thermodynamic limit, contribution from both reservoirs

$$\hat{T}_{l} = \sum_{i=1,N} \frac{v_{0}^{2} \tau_{i}}{2\nu \sqrt{1 + \frac{4k}{m}\tau_{i}^{2}}}$$

Exponentially decaying boundary layer

Typical velocity fluctuations: Gaussian both in bulk and at boundary

Velocity fluctuations

Similar to thermally driven scenario

M = N = 256 $m = k = 1, \nu_1 = \nu_N = 1, \lambda_1 = \lambda_N = 1$

Spatial correlation

- Stationary correlation $Q(l, l') \equiv \langle v_l v_{l'} \rangle$ in the bulk (in thermodynamic limit)
- Active reservoirs: new emergent length-scales

$$\mathcal{Q}(l-l') = \frac{v_0^2}{\nu\sqrt{8km}} \sum_{i=1,N} \exp\left(-\frac{|l-l'|}{\ell_i}\right)$$

Origin: Driving activity τ_1, τ_N $\frac{2k}{2}$ Characteristic frequency $\omega_c = 1$ M

> Correlated over a distance controlled by higher activity reservoir

Temporal correlation

- Two-time correlation $\langle v_l(0)v_l(t)\rangle$ of bulk oscillator velocity in NESS
- For activity driven chain

$$\langle v_l(t)v_l(0)\rangle = \sum_{i=1,N} \int_0^{\omega_c} \frac{d\omega}{2\pi} \frac{\cos\omega t}{\sqrt{m(4k-m\omega^2)}}$$

Asymptotic behaviour: •Signature of activity at short-times •Thermal-like decay at late times oscillations with $t^{-1/2}$ envelop

Energy current

time through the system

 $\mathcal{J}_1 = \lambda(y_M^L -$

Same for all oscillators (no source/dissipation in bulk)

$$J_{\text{act}} = \langle J_1 \rangle = \cdots = \langle \mathcal{J}_l \rangle = \cdots = -\langle \mathcal{J}_{N+1} \rangle$$

• Finite current in thermodynamic limit $N \to \infty$, analytically computable

- Energy current: average energy flowing (from the reservoirs) per unit
 - $\mathcal{J}_{l} = \frac{k}{2} \langle (v_{l} + v_{l-1})(x_{l} x_{l-1}) \rangle$

$$-x_1)\dot{x}_1 \qquad \qquad \mathcal{J}_{N+1} = \lambda(y_1^R - x_N)\dot{x}_N$$

Landauer-like formula for stationary current

$$J_{\rm act} = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \omega^2 |G_{1N}|^2 \operatorname{Re}[$$

Transmission coefficient

• Depends on τ through reservoir spectra $\tilde{g}(\omega, \tau)$ Additive contribution from both reservoirs

 $[ilde{\gamma}(\omega)] \Big(ilde{g}(\omega, au_1) - ilde{g}(\omega, au_N) \Big)$

Reservoir spectra

• In the thermodynamic limit $J_{act} = \mathcal{J}_1 - \mathcal{J}_N$,

$$\mathcal{J}_i = \int_0^{\omega_c} \frac{d\omega}{4\pi} \frac{\sqrt{m(4k - m\omega^2)}}{mk + |\tilde{\gamma}|^2 - \operatorname{Im}[\tilde{\gamma}]^2}$$

No closed form, can be numerically evaluated • No generic effective temperature description $m = k = 1, \nu_1 = \nu_N = 1, \lambda_1 = \lambda_N = 1$ Effective temperature picture emerges in the passive limit

 $\frac{\partial}{\partial m\omega} \tilde{g}(\omega, \tau_i).$

M = N = 256

Intriguing features : Negative differential conductivity-

> J_{act} changes non-monotonically with activity drive

• Maximum at intermediate τ_m

© Current reversal ~

J_{act} changes direction at $\tau_1^* \neq \tau_N$ (additionally)

Differential conductivity $\frac{dJ_{act}}{d\tau_i} < 0 \text{ in certain parameter regime}$

- NDC is a counterintuitive phenomenon, possible only away from equilibrium
- Known examples are in non-linear systems: rotor chain, presence of obstacles, kinetic constraints
- Activity drive leads to NDC in this linear system!
- Physical origin?

Negative differential conductivity

Barma & Dhar JPhysA 1984 Iacobucci et. al., PRE 2011 Leitmann & Franosch, PRL 2013 Baerts et. al., PRE 2013 Chatterjee et al, PRE 2018 ...

System frequency spectrum is peaked near the characteristic frequency $\omega_c = 2\sqrt{k/m}$

- Each reservoir spectrum is peaked at $\omega = 0$
- to NDC

Winning reservoir decides direction of current ...

Overlap changes non-monotonically as activity is changed leading

Conclusions

Characterisation of active bath modelled by harmonic chain of RTPs
Dissipation and noise kernels — modification of FDT
NESS of harmonic chain driven by active reservoirs
Emergent finite correlation length due to activity driving
Transport properties: energy current reversal, NDC

Open questions

What decides the direction? Thermodynamic understanding? Do the NDC and current reversal survive in higher dimensions? Effect of disorder? Effect of anharmonicity — what happens for FPUT chain? Coupling with thermal current?

Ribwick Sarkar SNBose National Centre For Basic Sciences, Kolkata, India

Ion Santra Georg-August-Universität Göttingen, Germany

Acknowledgements

Joint works with **Ritwick Sarkar** & **Ion Santra**

I. R. Sarkar, I. Santra, and UB, arXiv 2404.00615 Harmonic chain driven by active Rubin bath: transport properties and steady-state correlations 2. R. Sarkar, I. Santra, and UB, Phys. Rev. E 107, 014123 (2023) Stationary states of activity driven harmonic chains 3. I. Santra and UB, SciPost Phys. 13, 041 (2022) Activity driven transport in harmonic chains

Thank you!

