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Energy transport in one dimension
Macroscopic system subjected to temperature difference: energy transport 

Theoretical model: Oscillator chain connected to equilibrium thermal reservoirs, satisfy 
Fluctuation-Dissipation Theorem

 Relevant questions: 

Energy current — thermal conductivity? Fourier Law?

Local temperature? 

Velocity/position fluctuations?

Paradigmatic example (in 1D): Harmonic chain connected to Langevin baths with different 
temperatures Rieder, Lebowitz, Lieb, J Math Phys 1967



Harmonic chain under temperature gradient

Chain of N harmonically coupled identical  
oscillators with displacement 

Boundary oscillators  coupled to reservoirs with temperatures 

Reservoirs exerting forces: 'thermal noise' and ‘dissipation’ 

Equilibrium reservoirs: Fluctuation-dissipation theorem (FDT) 
relates noise and dissipation 

{xl}

l = 1,N
T1, TN



Langevin Bath
Simple model — 
           constant dissipation and Gaussian white noise at boundary 
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mẍ1 = �k(2x1 � x2)� �1 ẋ1 +
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p
2�1T1 ⇠1(t) + f1(t),
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Linearity and Gaussianity allow exact solution 

Current carrying Gaussian nonequilibrium stationary state

In the thermodynamic limit  constant energy current 
 flows through the system 

Uniform temperature at the bulk 

N → ∞
Jth ∝ (T1 − TN)

T = 1
2 (T1 + TN)

Rieder, Lebowitz, Lieb  
J Math Phys 1967,

Dhar, Phys Rev Lett. 2001

2

where the matrix elements of SL,R(w) are given by,
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SL(w)
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Here g̃(t j,w) denotes the Fourier transform of the active force auto-correlation
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where G⇤(w) = G(�w) denotes the complex conjugate of G(w). Proceeding similarly for J2, we have from Eq. (??) and
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Now, remembering the definition of G(w) = [�Mw2 +F� iw(GL +GR)]�1, it can be easily shown that,
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The first term on the second line vanishes as w(G(w)+G⇤(w))SL(w) is an odd function of w, and we finally have, from Eqs. (??)
and (??),
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From the expressions of SL(w) and SR(w) given in Eq. (??) it is immediately clear that J separates into two parts — J = Jth+Jact,
where,
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The thermal current Jth is well known in the literature [? ? ] and is given by,
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In the following we compute the active current Jact exactly. To this end, we first need the explicit form for the matrix element
G1N(w). This has been calculated in the context of thermal transport [? ], we revisit the calculation here for the sake of
completeness.

By definition, G(w) is the inverse of a tri-diagonal matrix,
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Correlated bath
Rubin-Greer model: Semi-infinite chain of harmonic oscillators at 
temperature T

Generalised Langevin equations

FDT demands  

Stationary current ∝ (T1 − TN)

Rubin, J Math Phys 1961
Rubin & Greer  

J Math Phys 1971
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⟨η̃i(ω)η̃i(ω′ )⟩ = 4πkBTiRe[γ(ω)]δ(ω + ω′ )

 What happens when reservoirs are away from equilibrium?
 Active reservoirs?

Dissipation 
kernel  γ(t)



Active Reservoir
Medium consisting of self-propelled active particles 

Active Particles: Generate directed motion consuming  
energy from environment at individual level 

Inherently nonequilibrium in nature

Examples: at all scales

In nature: Bacteria, Bird flocks, Fish schools… 


Artificial: Micro/nano swimmers, Janus particles… 

  

Examples

● In nature

– Fish school

– Bird flocks

– Bacteria

– Crowd ...

● Artificial

– Micro/nano-swimmers

– Janus particles/rods

– ...

at all length scales ...  
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Examples

● In nature

– Fish school

– Bird flocks

– Bacteria

– Crowd ...

● Artificial

– Micro/nano-swimmers

– Janus particles/rods

– ...

at all length scales ...

Bechinger et al, RMP 2016 
Ramaswamy 2017, …



Motion of single probe particle in active reservoirs:  
   theoretical and experimental studies

Intriguing features: 

Emergence of memory, 

Modification of equipartition theorem, 

Negative friction

Maggi et al., PRL 2014,
Maes, PRL 2020,

Seyforth et al., PRR 2022,
Granek et al., PRL 2022,…

Seyforth et al., PRR 2022



How are transport properties of extended systems affected  
when connected to active reservoirs? 

Ion Santra, Raman Research Institute
StatPhys Kolkata XI

 

 

Active particles & active reservoirs
Self-propelled particles like bacteria or Janus beads generate dissipative, persistent motion. 
They are out of equilibrium and do not satisfy FDT.

These are very common in nature. Advancement in micro-rheology have triggered experimental 
and theoretical works in the last decade, which have studied dynamics of a  test particle in a 
pool of active particles (active reservoirs).

Maggi et. al. (PRL 113, 238303) showed that the effective dynamics of the test particle in a 
bacterial bath can be described by a Langevin equation with exponentially correlated noise.

Transport properties of an extended system 
connected between two active reservoirs?

Courtesy: Ion Santra

 Simple, linear model: Activity driven harmonic chain



Set-up : Model
Simple model of active reservoir: chain of identical Run-and-Tumble 
Particles (RTP) 
 

Rubin-Greer like set-up 

'Activity' of the reservoir : persistence time of constituents 

Conducting system — chain of passive oscillators — connected to two 
active reservoirs

distribution (Eq. (19) with r = 2), the two-point correlation of the noise is given by [38, 39],

hfl(t)fl0(t0)i = �ll0v
2
0e

� |t�t0|
⌧ cos

⇣ |t� t0|
⌧

⌘
. (22)

and

hf̃l(!)f̃l(!0)i = 2⇡�(! + !0)h̃2(!, ⌧) where, h̃2(!, ⌧) =
2v20⌧(2 + !2⌧2)

4 + ⌧4!4
. (23)

FIG. 2. (a) Plot of Re[�̃(!)] as function of ! for � = 10�1 and different values of ⌫. In the inset, corresponding
Im[�̃(!)] is shown as a function of !. (b) Plot of time correlation of noise for RTP and Clock model as
functions of time. The plot of Fourier transform of time correlation of noise as a function of !.

III. MODEL AND RESULTS

1 2 N �1 N

M21 1 2 M

Right active reservoirLeft active reservoir

Passive chain

FIG. 3. The model of interest comprises a harmonic chain that is coupled to two chains of overdamped
active particles.

We consider a one-dimensional system of ordered harmonic chains of mass m and stiffness k.

The left and right ends of the chain are connected to two chains of M active particles. The active

reservoir chains are modeled by overdamped active particles, having a self-propulsion force and

nearest neighbor harmonic interaction of strength �. In the previous section, it is shown that a

single active chain exerts an effective noise on an inertial probe particle connected to one end of

10



Objective
Characterise the active reservoir 

Breaking of FDT?

Effective temperature?

Characterise the nonequilibrium stationary state (NESS) of the passive chain

Velocity/position fluctuations?

Spatio-temporal correlations?

Energy current flowing through the system



Characterisation of the active reservoir
Active reservoir: Chain of harmonically coupled  active particles

Probe particle coupled to one end

Reservoir particle dynamics: overdamped Langevin equation for 

 Fixed boundary at one end ( )

Probe particle (x1) attached at the other end

{yl}

y0 = 0

II. CHARACTERIZATION OF THE ACTIVE RESERVOIR

The behavior of a reservoir is usually characterized by its action on a probe particle coupled

to it. Here we propose a simple model of an active reservoir as a one-dimensional ordered chain

of active particles. In the absence of any interaction, the position y(t) of a self-propelled active

particle evolves via an overdamped Langevin equation,

⌫ẏ = f(t), (1)

where ⌫ is the friction coefficient and the stochastic force f(t) models the self-propulsion. Different

dynamics of f(t) correspond to different active particle models [18, 19, 22–25], the simplest one

being the run-and-tumble particle (RTP), where f(t) is a dichotomous noise that has a constant

magnitude and changes sign intermittently. In general, the self-propulsion force is taken to be a

stationary colored noise with zero mean, a characteristic time ⌧ and an autocorrelation,

hf(t)f(t0)i = h

✓
|t� t0|

⌧

◆
, (2)

where the functional form of h(t) depends on the specific dynamics of f(t). Note that, for any finite

⌧ , Eqs. (1) and (2) imply that the active particle dynamics automatically violates Fluctuation-

Dissipation Theorem[1].

M21

FIG. 1. Schematic figure of active reservoir attached to a passive probe (in grey). The active reservoir
consists of M overdamped active particles (in red).

The active reservoir consists of M such identical active particles with nearest-neighbor inter-

action mediated by a potential V (z); see Fig. 1 for a schematic representation. We take a fixed

boundary condition at one end—the left-most particle l = 1 is attached to a fixed wall, while the

other boundary particle l = M , is coupled to an inertial probe particle. The displacement yl of the

l-th particle of the active reservoir from its equilibrium position evolves by,

⌫ẏl = � @

@yl
[V (yl � yl�1) + V (yl+1 � yl)] + fl(t), 8 l 2 [1,M � 1], (3)

⌫ẏM = � @

@yM
[V (yM � yM�1) + V (x1 � yM )] + fM (t), (4)

5

friction   and  
Coupling strength 

ν
λ



Stochastic dynamics with active noise  : memory

Stationary auto-correlation— persistence time-scale   
                                                                measure of activity 

Unrelated to dissipation — no fluctuation-dissipation 
relation 

Probe particle dynamics

fl(t)

τ

No detailed balance

Effective description? 



Effective probe dynamics
Integrate out the bath degrees of freedom

Linear: exact solution of  bath particles Langevin equations for given 
 

          

 matrix  with elements  
                  

x1(t)

M × M Λ(z)

with



Generalised Langevin equation for probe dynamics (in a correlated 
bath)

Use this effective description to study the extended system

Dissipation kernel Effective noise 
(active) 

over-damped version of the Rubin-Greer bath with active noise. In the following, we characterize

this active reservoir by deriving the generalized Langevin Equation for the probe particle.

To obtain an effective equation for x1(t), we need to solve Eq. (6), and express yM (t) in terms of

x1(t). This can be done in a straightforward manner by exploiting the nearest neighbor interaction

[see Appendix A for the details], which yields,
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Substituting Eq. (8) in Eq. (7), we get the effective equation of motion for the probe particle,
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By integrating the second term on the right-hand side by parts, the above equation can be recast

an a generalized Langevin equation,

mẍ1 = �
Z t

�1
ds ẋ1(s)�(t� s) + ⌃(t) (11)

where �(t) and ⌃(t) denote the dissipation kernel and the effective noise, respectively. These two

quantities completely characterize the active reservoir and it is instructive to analyze them in detail.

Dissipation kernel: The dissipation kernel in Eq. (11) is given by [see Appendix A],
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Check the theta-function In the thermodynamic limit M ! 1, the sum over k can be converted

6

Properties in thermodynamic limit M → ∞

No time-scale
separation assumed



Dissipation kernel
Dissipation kernel 
 

At long-times  : algebraic decay  

Irrespective of active nature,  
property of the chain structure

Appears in various contexts including  
active baths

t ≫ ν/λ t−1/2

[see Appendix A for the details], which yields,
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where ⇤(z) is an M ⇥M matrix with elements
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Substituting Eq. (8) in Eq. (7), we get the effective equation of motion for the probe particle,

mẍ1(t) = ��x1(t) +
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By integrating the second term on the right-hand side by parts, the above equation can be recast

an a generalized Langevin equation,

mẍ1 = �
Z t

�1
ds ẋ1(s)�(t� s) + ⌃(t), (11)

where �(t) and ⌃(t) denote the dissipation kernel and the effective noise, respectively. These two

quantities completely characterize the active reservoir and it is instructive to analyze them in detail.

Dissipation kernel: The dissipation kernel in Eq. (11) is given by [see Appendix A],

�(t� z) =
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Check the theta-function In the thermodynamic limit M ! 1, the sum over k can be converted

to an integral which can be evaluated exactly, leading to,

�(t) = �e�
2�t
⌫

"
I0

 
2�t

⌫

!
+ I1

 
2�t

⌫

!#
⇥(t), (13)

where ⇥(z) is the Heaviside-theta function and In(z) denotes the nth order modified Bessel function

of the first kind [34].
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Overdamped Rubin-Greer Bath
100 101 102 103

t

10°2

10°1

∞
(t

)

1p
t

∏ = 0.1, ∫ = 2.0

∏ = 0.1, ∫ = 5.0

∏ = 0.1, ∫ = 10.0

Granek et al., PRL 2022,
Saito and Sakaue, PRE 2015

Lizana et al., PRE 2010…



Spectral function 

Symmetry properties 

For  

Asymptotic behaviour for small and  
large  … ω

to an integral which can be evaluated exactly, leading to,

�(t) = �e�
2�t
⌫

"
I0

 
2�t

⌫

!
+ I1

 
2�t

⌫

!#
⇥(t), (13)

where ⇥(z) is the Heaviside-theta function and In(z) denotes the nth order modified Bessel function

of the first kind [34].

Interestingly, for large t � ⌫/�, the dissipation kernel shows a power-law decay, �(t) ⇠ t�1/2.

Such power-law decays are generic and have been observed in polymer chains and active baths[35–

37]. Note that, in this system, the dissipation kernel Eq. (13) depends only on the interaction

potential and is independent of the self-propulsion force fl(t).

The spectral function of the reservoir, defined as the Fourier transform of the dissipation kernel

�̃(!) =
R1
0 dt e�i!t�(t), plays an important role in determining the transport properties of of a

system driven by the reservoir. Clearly, for the real function �(t) given in Eq. (13), we must have

Re[�̃(�!)] = Re[�̃(!)] and Im[�̃(�!)] = �Im[�̃(!)]. Hence, it suffices to compute the spectrum for

! � 0, which is given by,
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1�
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1

4
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4�2

⌫2!2
+

1

2

!1/2#
+ i

⌫

2

 r
1

4
+

4�2

⌫2!2
� 1

2

!1/2

. (14)

For small !, both Re[�̃] and Im[�̃] decay as !�1/2, consistent with the large t behaviour of �(t).

On the other hand, for large !, Re[�̃] and Im[�̃] decays as !�2 and !�1 respectively. Figure 4(a)

shows the plot of Re[�̃] and Im[�̃] for same � and different value of ⌫.
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distribution (Eq. (19) with r = 2), the two-point correlation of the noise is given by [38, 39],

hfl(t)fl0(t0)i = �ll0v
2
0e

� |t�t0|
⌧ cos

⇣ |t� t0|
⌧

⌘
. (22)

and

hf̃l(!)f̃l(!0)i = 2⇡�(! + !0)h̃2(!, ⌧) where, h̃2(!, ⌧) =
2v20⌧(2 + !2⌧2)

4 + ⌧4!4
. (23)
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Im[�̃(!)] is shown as a function of !. (b) Plot of time correlation of noise for RTP and Clock model as
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III. MODEL AND RESULTS

FIG. 3. The model of interest comprises a harmonic chain that is coupled to two chains of overdamped
active particles.

We consider a one-dimensional system of ordered harmonic chains of mass m and stiffness k.

The left and right ends of the chain are connected to two chains of M active particles. The active

reservoir chains are modeled by overdamped active particles, having a self-propulsion force and

nearest neighbor harmonic interaction of strength �. In the previous section, it is shown that a

single active chain exerts an effective noise on an inertial probe particle connected to one end of
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37]. Note that, in this system, the dissipation kernel Eq. (13) depends only on the interaction

potential and is independent of the self-propulsion force fl(t).

The spectral function of the reservoir, defined as the Fourier transform of the dissipation kernel
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On the other hand, for large !, Re[�̃] and Im[�̃] decays as !�2 and !�1 respectively. Figure 2(a)

shows the plot of Re[�̃] and Im[�̃] for same � and different value of ⌫.
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properties of the effective noise ⌃(t), defined by,
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2 . It is more convenient to express the effective noise correlation in the

frequency domain, which is given by,
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After performing the integral over u, the effective noise correlation in the frequency domain can be
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⟨Σ̃(ω)Σ̃(ω′ )⟩ = 2πδ(ω + ω′ ) g̃(ω)

⟨ f(t)f(t′ )⟩ = h ( | t − t′ |
τ )

g̃(ω) = 1
ν

h̃(ω)Re[γ̃(ω)]with

⟨η̃i(ω)η̃i(ω′ )⟩ = 4πkBTiRe[γ(ω)]δ(ω + ω′ )Reminder: for equilibrium baths
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frequency domain is,

hf̃l(!)f̃l(!0)i = 2⇡�(! + !0)h̃1(!, ⌧) where, h̃1(!, ⌧) =
2v20⌧

1 + !2⌧2
. (21)

Similarly, when the waiting time distribution of the dichotomous noise fl(t) follows the Gamma

distribution (Eq. (19) with r = 2), the two-point correlation of the noise is given by [38, 39],

hfl(t)fl0(t0)i = �ll0v
2
0e

� |t�t0|
⌧ cos

⇣ |t� t0|
⌧

⌘
. (22)

and

hf̃l(!)f̃l(!0)i = 2⇡�(! + !0)h̃2(!, ⌧) where, h̃2(!, ⌧) =
2v20⌧(2 + !2⌧2)

4 + ⌧4!4
. (23)

FIG. 2. Plot of g̃(!, ⌧) as function of ! for different values of ⌧ . (b) The solid lines correspond to RTP
and the dotted lines correspond to the Clock model.

III. MODEL AND RESULTS

We consider a one-dimensional system of ordered harmonic chains of mass m and stiffness k.

The left and right ends of the chain are connected to two chains of M active particles. The active

reservoir chains are modeled by overdamped active particles, having a self-propulsion force and

nearest neighbor harmonic interaction of strength �. In the previous section, it is shown that a

single active chain exerts an effective noise on an inertial probe particle connected to one end of

the active chain. The auto-correlation of this effective noise depends on the auto-correlation of the

self-propulsion force of the constituents of active chains as well as the memory kernels associated

9
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FIG. 3. Dotted and dashed lines correspond to g̃(!, ⌧) as function of ! for ⌧ = 0.5. The dashed line is
for RTP and the dotted line is for the Clock model. The solid line corresponds Re[�̃(!)] for � = 10�1 and
⌫ = 2.

FIG. 4. (a) Plot of Re[�̃(!)] as function of ! for � = 10�1 and different values of ⌫. In the inset, corresponding
Im[�̃(!)] is shown as a function of !. (b) Plot of time correlation of noise for RTP and Clock model as
functions of time. The plot of Fourier transform of time correlation of noise as a function of !.

FIG. 5. The model of interest comprises a harmonic chain that is coupled to two chains of overdamped
active particles.

with the motion of the probe particle. Therefore, for our model, Fig. 5, the active chains at the

two boundaries exert effective noises ⌃1 and ⌃N (which depend on the activity of the constituent

active particles of the individual reservoir chain) on the boundary oscillators of the one-dimensional

harmonic chain. In this section, we derive the equation of motion of the one-dimensional system of
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τ = 1
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FIG. 3. The model of interest comprises a harmonic chain that is coupled to two chains of overdamped
active particles.
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We consider a one-dimensional system of ordered harmonic chains of mass m and stiffness k.

The left and right ends of the chain are connected to two chains of M active particles. The active

reservoir chains are modeled by overdamped active particles, having a self-propulsion force and

nearest neighbor harmonic interaction of strength �. In the previous section, it is shown that a

single active chain exerts an effective noise on an inertial probe particle connected to one end of

the active chain. The auto-correlation of this effective noise depends on the auto-correlation of the

self-propulsion force of the constituents of active chains as well as the memory kernels associated

with the motion of the probe particle. Therefore, for our model, Fig. 3, the active chains at the

two boundaries exert effective noises ⌃1 and ⌃N (which depend on the activity of the constituent

active particles of the individual reservoir chain) on the boundary oscillators of the one-dimensional

harmonic chain. In this section, we derive the equation of motion of the one-dimensional system of

ordered harmonic chains in terms of the effective noises coming from the active reservoir.

The displacement XT = (x1, x2, . . . , xN ) of the system oscillators follow the equation of motion,

MẌ = �X +WLYL +WRYR, (24)

where Mij = m�ij is a diagonal matrix representing the mass of the system particles, WRij = ��Mj

and WRij = ��1j . The force matrix � of the harmonic chain is given by the N ⇥ N tridiagonal

matrix with elements �11 = �NN = �k��, �ii = �2k, �i+1,j = �i,j+1 = k and the other elements

are zero. The vectors Y T
L R = (yL,R1 , yL,R2 , . . . yL,RM ) denote the displacements of the left and right

reservoir chains, respectively.

Using Eq. (11), we can write the equations of motion of the passive chain as,

mẍ1 = k(x2 � x1)�
Z t

�1
ds ẋ1(s) �(t� s) + ⌃1(t),

mẍl = k(xl�1 + xl+1 � 2xl), 8 l 2 [2, N � 1], (25)

mẍN = k(xN�1 � xN )�
Z t

�1
ds ẋN (s) �(t� s) + ⌃N (t).

Equations of motion of x1 and xN are Generalized Langevin Equation with non-negative real-valued

memory kernel, �1(t) and �N (t) and effective noise, ⌃1(t) and ⌃N (t). We can recast the effective

equation of motion of the passive chain in a matrix form,

MẌ = ��X �
Z t

�1
ds�(t� s)Ẋ(s) + ⌦(t). (26)

Here M is the diagonal mass matrix and the components of � is defined as �11 = �NN = �k,

10
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In the stationary state  

with, Effective  
noise

solution in Fourier domain Eq. (29). The solution in the time domain is,

xl(t) =

Z 1

�1

d!

2⇡
ei!t[Gl1(!)⌃̃1(!) +GlN (!)⌃̃N (!)], (31)

where ⌃̃1(!) and ⌃̃N (!) are the Fourier transform of the effective noises coming from the active

reservoirs. The noise correlation of the effective noise ⌃i(t) in the Fourier domain is,

h⌃̃i(!)⌃̃j(!
0)i = 2⇡�ij�(! + !0) g̃(!, ⌧i), i, j = 1, N. (32)

Here g̃(!, ⌧i) are the spectra of the effective noise coming from the active reservoirs. In the previous

section, we derived the relation between the spectra of the effective noise and the memory kernel

Eq. (18)

A. Stationary state correlations

The two-point spatial and temporal correlations of the different observables help in characterizing

the NESS. It has been observed that harmonic chains driven by out-of-equilibrium baths show non-

trivial spatial and temporal correlations in the stationary state [43]. [Summarize the results already

seen]. In this section, we investigate the effects of an extended bath and non-Markovian driving of

the bath oscillators on the behavior of the spatial and temporal autocorrelations of the velocity of

the bulk oscillators. The two-point spatio temporal velocity correlation of the l-th oscillator, using

Eq. (31) can be easily written as,

hvl(t)vl0(t0)i =
X

i=1,N

Z 1

�1

d!

2⇡
!2e�i!(t�t0)Gli(!)G

⇤
l0i(!)g̃(!, ⌧i). (33)

In the following two subsections, we will discuss equal-time spatial velocity correlation hvl(t)vl0(t)i

and two-time velocity correlation of single oscillator hvl(t)vl(0)i for the bulk oscillators and compare

the results for two different realizations of active reservoir namely Poissonian RTP reservoir and

Non-Poissonian RTP reservoir.
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Appendix D: Calculation for spatio-temporal two-point correlation of velocity

In this section, we compute the spatio-temporal two-point correlation of velocity in detail. Before

going into the detailed calculation let us write the effective equation of motion of the passive chain

Eq. (26) in the matrix form,

MẌ = ��X �
Z t

�1
ds�(t� s)Ẋ(s) + ⌦(t). (D1)

Here XT = (x1, x2, . . . , xN ) is the displacement of the passive chain, M , �(t), and ⌦(t) are the

mass matrix, the memory kernel matrix, and the noise vector (see Eqs. (27) and (28) for explicit

expression) respectively. The solution of Eq. (D1) in the Fourier domain is,

X̃(!) = G(!)⌦̃(!), (D2)

where ⌦̃(!) is the Fourier transform of ⌦(t) and G(!) is the Greens function matrix and its explicit

form is given by,

G(!) =

2

6666664

�m!2 + k � i!�̃ �k · · ·

�k �m!2 + 2k · · ·
... . . . · · ·

0 · · · �m!2 + k � i!�̃

3

7777775

�1

, (D3)

and from the explicit expression, we know that the G(!) is the inverse of a tridiagonal matrix.

Therefore, we can write the components of G(!) as,

Gl1 = (�k)l�1 ✓N�l

✓N
and GlN = (�k)N�l ✓l�1

✓N
(D4)

where ✓l satisfy recursion relations,

✓l = (�m!2 + 2k)✓l�1 � k2✓l�2 8l = 2, 3, · ·N � 1

and, ✓N = (�m!2 + k � i!�̃)✓N�1 � k2✓N�2, (D5)
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Kinetic temperature
Average kinetic energy of oscillators 

Uniform at the bulk in thermodynamic limit,  
contribution from both reservoirs

Exponentially decaying boundary layer

̂Tl = ⟨v2
l ⟩

a harmonic chain driven by the Poissonian RTP reservoir and Non-Poissonian RTP reservoir along

with the analytic results Eq. (43) and (44). In addition to that, we also include a red dashed line

that corresponds to the envelope that decays as 1/
p
t.

B. Kinetic temperature profile
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FIG. 6. Plot of kinetic temperature profile driven by (a) Poissonian RTP reservoir and (b)
Non-Poissonian RTP reservoir: Symbols correspond to the numerical simulation result for ⌧N = 2.0
and different values of ⌧1. The number of oscillators in the active reservoir is M = 256 and the number of
oscillators in the system is N = 256. The other parameters are m = k = 1, ⌫1 = ⌫N = 1, �1 = �N = 1 and
v0 = 1. The black dashed line corresponds to the Eq. (48)(Poissonian RTP reservoir) and Eq. (49)(Non-
Poissonian RTP reservoir).

The kinetic temperature of the l-th oscillator in the steady state T̂l is the average kinetic energy

of that oscillator, T̂l = mhv2l (t)i and this can be written using Eq. (33) with t = t0 and l = l0,

T̂l =
X

i=1,N

T (⌧i) (45)

where

T (⌧i) = m

Z 1

�1

d!

2⇡
!2

��Gli

��2g̃(!, ⌧i). (46)

Similar to the Two-time velocity correlation of a single oscillator or Equal-time spatial veloc-

ity correlation, T̂l has two separate contributions coming from two active reservoirs at the two

boundaries and can be written as,

In the thermodynamic limit N ! 1, the contribution from the i-th active reservoir T (⌧i) can

17

FIG. 7. Plot of kinetic temperature profile driven by (a) Poissonian RTP reservoir and (b)
Non-Poissonian RTP reservoir: Symbols correspond to the numerical simulation result for ⌧N = 2.0
and different values of ⌧1. The number of oscillators in the active reservoir is M = 256 and the number of
oscillators in the system is N = 256. The other parameters are m = k = 1, ⌫1 = ⌫N = 1, �1 = �N = 1 and
v0 = 1. The black dashed line corresponds to the Eq. (48)(Poissonian RTP reservoir) and Eq. (49)(Non-
Poissonian RTP reservoir).

Similar to the Two-time velocity correlation of a single oscillator or Equal-time spatial veloc-

ity correlation, T̂l has two separate contributions coming from two active reservoirs at the two

boundaries and can be written as,

In the thermodynamic limit N ! 1, the contribution from the i-th active reservoir T (⌧i) can

be evaluated in the bulk (1 ⌧ l ⌧ N) and for general active driving,

T (⌧i) =

Z ⇡

0

dq

2⇡

���
d!

dq

���
g̃(!, ⌧i)p

m(4k �m!2)Re[�̃]
, (47)

where the relation between ! and q is given in Eq. (36).

Case I: For the Poissonian RTP reservoir-driven harmonic chain, the Eq. (47) can be evaluated

using the spectrum of the Poissonian RTP reservoir g̃1(!, ⌧) (using Eqs. (18) and (21)). Here we

quote the final result of the kinetic temperature for the bulk of the oscillator as,

T̂l =
X

i=1,N

v20⌧i

2⌫
q
1 + 4k

m ⌧2i

. (48)

Case II: The kinetic temperature profile of the bulk oscillators of the harmonic chain driven by

the Non-Poissonian RTP reservoir can be evaluated using the Eq. (47) and g̃2(!, ⌧) (using Eqs. (18)

and (23)). Here we quote the final result,

17

FIG. 8. Plot of kinetic temperature profile driven by (a) Poissonian RTP reservoir and (b)
Non-Poissonian RTP reservoir: Symbols correspond to the numerical simulation result for ⌧N = 2.0
and different values of ⌧1. The number of oscillators in the active reservoir is M = 256 and the number of
oscillators in the system is N = 256. The other parameters are m = k = 1, ⌫1 = ⌫N = 1, �1 = �N = 1 and
v0 = 1. The black dashed line corresponds to the Eq. (48)(Poissonian RTP reservoir) and Eq. (49)(Non-
Poissonian RTP reservoir).

B. Kinetic temperature profile

The kinetic temperature of the l-th oscillator in the steady state T̂l is the average kinetic energy

of that oscillator, T̂l = mhv2l (t)i and this can be written using Eq. (33) with t = t0 and l = l0,

T̂l =
X

i=1,N

T (⌧i) (45)

where

T (⌧i) = m

Z 1

�1

d!

2⇡
!2

��Gli

��2g̃(!, ⌧i). (46)

Similar to the Two-time velocity correlation of a single oscillator or Equal-time spatial veloc-

ity correlation, T̂l has two separate contributions coming from two active reservoirs at the two

boundaries and can be written as,

In the thermodynamic limit N ! 1, the contribution from the i-th active reservoir T (⌧i) can

be evaluated in the bulk (1 ⌧ l ⌧ N) and for general active driving,

T (⌧i) =

Z ⇡

0

dq

2⇡

���
d!

dq

���
g̃(!, ⌧i)p

m(4k �m!2)Re[�̃]
, (47)

where the relation between ! and q is given in Eq. (36).
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driven scenario



Velocity fluctuations
Typical velocity fluctuations: Gaussian both in bulk and at boundary 
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In the nonequilibrium stationary state, the average energy current Jact flowing through the bulk of

the system should be the same as the rate of work done by the active reservoirs on the boundary

oscillators.

Jact = hJ1i = · · · = hJli = · · · = �hJN+1i. (52)

FIG. 9. Plot of average energy current at functions of ⌧1 driven by (a) Poissonian RTP reservoir
and (b) Non-Poissonian RTP reservoir: Symbols correspond to the result of numerical simulation for
different values of ⌧N . The number of oscillators in the active reservoir is M = 256 and the number of
oscillators in the system is N = 256. The other parameters are m = k = 1, ⌫1 = ⌫N = 1, �1 = �N = 1 and
v0 = 1. The black solid line corresponds to the Eq. (53).

We are interested in the case in the thermodynamic limit i.e. when the size of the active reservoir

at the two boundaries and the size of the passive chain both are considerably large. The explicit

expression of the average energy current flowing through the system can be evaluated by exploiting

the tridiagonal nature of the Greens function matrix G(!) [see Eq. (30)]. The expression of average

energy current due to the difference in the activity of the active chain attached to its two boundaries

has a ‘Landaure-like form’,

Jact = J1 � JN , (53)

where,

Ji =

Z !c

0

d!

4⇡

p
m(4k �m!2)

mk + |�̃|2 � Im[�̃]m!
g̃(!, ⌧i). (54)

Here, g̃(!, ⌧j) is the spectrum of the i-th active reservoir, defined in Eq. (18).

The integral in

19

Similar to thermally  
driven scenario



Spatial correlation
Stationary correlation  in the bulk (in thermodynamic limit)

For thermally driven chain— no spatial correlation

Active reservoirs: new emergent length-scales

Q(l, l′ ) ≡ ⟨vlvl′ 
⟩

Q(l, l′ ) = δl,l′ 

(T1 + TN)
2

(see Appendix D 1),

�(⌧i, l, l
0) =

Z ⇡

0

dq

2⇡

���
d!

dq

���
cos (l � l0)qp

m(4k �m!2)Re[�̃]
g̃(!, ⌧i), with m!2 = 2k(1� cos q). (36)

It is clear from the Eq. (36) that �(⌧i, l, l0) is actually a function of the difference of l and l0.

Therefore, we can express the equal-time spatial velocity correlation hvlvl0i as Q(l � l0). In the

following, we compute the above integral for the two specific cases of active force discussed in

Sec. II.

Case I: For the Poissonian RTP reservoir, the integral in (36) with the reservoir spectrum g̃1(!, ⌧)

can be evaluated exactly using Eqs. (18) and (21), leading to the velocity correlation,

Q(l � l0) =
v20

⌫
p
8km

X

i=1,N

exp

✓
� |l � l0|

`i

◆
where `i = ⌧i

r
k

2m
. (37)

Clearly, the spatial velocity correlation hvlvl0i is a sum of two exponentially decaying functions with

characteristic length scales `i. Thus the correlation length of the velocities of the bulk oscillators

are determined by the reservoir with larger activity. Our analytical prediction (37) is compared

with numerical simulations in Fig. 6 which shows an excellent agreement.

Case II: For the non-Poissonian RTP reservoir-driven harmonic chain, the spatial velocity cor-

relation hvlvl0i of the bulk oscillators can be obtained by performing the integral in Eq. (36) (see

Appendix D 1) using the reservoir spectral function g̃2(!, ⌧) with the help of Eqs. (18) and (23),

Q(l � l0) =
v20

⌫
p
8km

X

i=1,N

exp

✓
� |l � l0|

`i

◆
cos

✓
(l � l0)

`i

◆
.

(38)

The velocity correlation is again a sum of the contributions from the two reservoirs, each of

which is an oscillatory function modulated by an exponential decay with a characteristic length

scale `i. We compare our predictions (38) with numerical simulations in fig. 6(b), which shows

an excellent match. Note that, since the characteristic length scales of the exponential decay and

the frequency of the oscillations are same (see Eq. (38)), it is practically impossible to see the

oscillations in Q(l � l0).

Comparison with thermal scenarios? Is there any modification due to the extended bath? Some

discussions...

14

Origin: Driving activity 

Characteristic frequency 

τ1, τN

ωc = 2k
m

The equal-time spatial velocity correlation hvlvl0i in the stationary state can be written as a sum

of the contributions from the two reservoirs using Eq. (33) as,

hvlvl0i =
X

i=1,N

�i(⌧i, l, l
0), (34)

where

�i(⌧i, l, l
0) =

Z 1

�1

d!

2⇡
!2Gli(!)G

⇤
l0i(!)g̃(!, ⌧i) (35)

is the contribution from the ith active reservoir. In the bulk of the oscillator chain, 1 ⌧ l, l0 ⌧ N ,

the contribution from the i-th active reservoir in the thermodynamic limit (N ! 1) simplifies to

(see Appendix D 1),

�(⌧i, l, l
0) =

Z ⇡

0

dq

2⇡

���
d!

dq

���
cos (l � l0)qp

m(4k �m!2)Re[�̃]
g̃(!, ⌧i), with m!2 = 2k(1� cos q). (36)

It is clear from the Eq. (36) that �(⌧i, l, l0) is actually a function of the difference of l and l0.

Therefore, we can express the equal-time spatial velocity correlation hvlvl0i as Q(l � l0). In the

following, we compute the above integral for the two specific cases of active force discussed in

Sec. II.

Case I: For the Poissonian RTP reservoir, the integral in (36) with the reservoir spectrum g̃1(!, ⌧)

can be evaluated exactly using Eqs. (18) and (21), leading to the velocity correlation,

Q(l � l0) =
v20

⌫
p
8km

X

i=1,N

exp

✓
� |l � l0|

`i

◆
where `i = ⌧i

r
k

2m
. (37)

Clearly, the spatial velocity correlation hvlvl0i is a sum of two exponentially decaying functions with

characteristic length scales `i. Thus the correlation length of the velocities of the bulk oscillators

are determined by the reservoir with larger activity. Our analytical prediction (37) is compared

with numerical simulations in Fig. 4 which shows an excellent agreement.

Case II: For the non-Poissonian RTP reservoir-driven harmonic chain, the spatial velocity cor-

relation hvlvl0i of the bulk oscillators can be obtained by performing the integral in Eq. (36) (see

13

In the following two subsections, we will discuss equal-time spatial velocity correlation hvl(t)vl0(t)i

and two-time velocity correlation of single oscillator hvl(t)vl(0)i for the bulk oscillators and compare

the results for two different realizations of active reservoir namely Poissonian RTP reservoir and

Non-Poissonian RTP reservoir.

1. Equal-time spatial velocity correlation

0 10 20 30
l ° l0

0.06

0.1

0.2

0.3

0.4

Q
(l

°
l0
)

e°(l°l0)/l1

øN = 1.0

øN = 2.0

øN = 4.0

FIG. 6. Plot of equal-time spatial velocity correlation Q(l � l0) of a harmonic chain driven by
(a) Poissonian RTP reservoir and (b) Non-Poissonian RTP reservoir: Symbols correspond to the
result of numerical simulation for l = N/2 and ⌧1 = 20.0 (for Poissonian RTP reservoir) and ⌧1 = 2.0 (for
Non-Poissonian RTP reservoir) and different values of ⌧N . The number of oscillators in the active reservoir
is M = 256 and the number of oscillators in the system is N = 256. The other parameters are m = k = 1,
⌫1 = ⌫N = 1, �1 = �N = 1 and v0 = 1. The black solid line corresponds to the Eq. (37)(Poissonian RTP
reservoir) and Eq. (38)(Non-Poissonian RTP reservoir).

The equal-time spatial velocity correlation hvlvl0i in the stationary state can be written as a sum

of the contributions from the two reservoirs using Eq. (33) as,

hvlvl0i =
X

i=1,N

�i(⌧i, l, l
0), (34)

where

�i(⌧i, l, l
0) =

Z 1

�1

d!

2⇡
!2Gli(!)G

⇤
l0i(!)g̃(!, ⌧i) (35)

is the contribution from the ith active reservoir. In the bulk of the oscillator chain, 1 ⌧ l, l0 ⌧ N ,

the contribution from the i-th active reservoir in the thermodynamic limit (N ! 1) simplifies to

13

Correlated over a distance controlled  
by higher activity reservoir 



Temporal correlation
Two-time correlation  of bulk oscillator velocity in NESS

For thermally driven chain, in the thermodynamic limit 

For activity driven chain

⟨vl(0)vl(t)⟩

where,

Ji =

Z !c

0

d!

4⇡

p
m(4k �m!2)

mk + |�̃|2 � Im[�̃]m!
g̃(!, ⌧i). (E20)

————————–

mẍ1 = k(x2 � x1)�
Z t

�1
ds ẋ1(s) �(t� s) + ⌘1(t),

mẍl = k(xl�1 + xl+1 � 2xl), 8 l 2 [2, N � 1], (E21)

mẍN = k(xN�1 � xN )�
Z t

�1
ds ẋN (s) �(t� s) + ⌘N (t).

hvl(t)vl(0)i =
T1 + TN

2m
J0(!ct). (E22)

hvl(t)vl0(t)i =
T1 + TN

2m
�ll0 . (E23)

hvl(t)vl(0)i =
X

i=1,N

Z !c

0

d!

2⇡

cos!tp
m(4k �m!2)

h̃(!, ⌧i). (E24)
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Appendix D 1) using the reservoir spectral function g̃2(!, ⌧) with the help of Eqs. (18) and (23),

Q(l � l0) =
v20

⌫
p
8km

X

i=1,N

exp

✓
� |l � l0|

`i

◆
cos

✓
(l � l0)

`i

◆
.

(38)

The velocity correlation is again a sum of the contributions from the two reservoirs, each of

which is an oscillatory function modulated by an exponential decay with a characteristic length

scale `i. We compare our predictions (38) with numerical simulations in fig. 4(b), which shows

an excellent match. Note that, since the characteristic length scales of the exponential decay and

the frequency of the oscillations are same (see Eq. (38)), it is practically impossible to see the

oscillations in Q(l � l0).

Comparison with thermal scenarios? Is there any modification due to the extended bath? Some

discussions...

2. Two-time velocity correlation of a single oscillator
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FIG. 5. Plot of two-time velocity correlation of single oscillator hvl(t)vl(0)i driven by (a) Pois-
sonian RTP reservoir and (b) Non-Poissonian RTP reservoir: Symbols correspond to the result of
numerical simulation for l = N/2, ⌧1 = 2.0, and different values of ⌧N . The number of oscillators in the
active reservoir is M = 256 and the number of oscillators in the system is N = 256. The other parameters
are m = k = 1, ⌫1 = ⌫N = 1, �1 = �N = 1 and v0 = 1. The black solid line corresponds to the numerical
integration of Eq. (42) with the proper form of g̃1(!, ⌧i) for the Poissonian RTP reservoir (Eq. (21)) in (a)
and g̃2(!, ⌧i) for the non-Poissonian RTP reservoir in (b) (Eq. (23)).

In the stationary state, the two-time velocity correlation of a single oscillator hvl(t)vl(0)i can be

14

Asymptotic behaviour: 

•Signature of activity at short-times

•Thermal-like decay at late times—  
oscillations with  envelopt−1/2

the numerical simulation result for two-time velocity correlation of a single oscillator hvl(t)vl(0)i of

a harmonic chain driven by Poissonian RTP reservoir and Non-Poissonian RTP reservoir is shown

along with the numerical integration result of Eq. (42).

Case I:The contribution from the i-th reservoir C̄(t, ⌧i) (Eq. (41)) can be well-approximated in

the limit t � 1/!c, where !c is the natural frequency of the harmonic chain and !2
c = 2k/m. The

detailed calculation is shown in Appendix D 2. Here we quote the final result in the large t limit

for the Poissonian RTP reservoir-driven harmonic chain as,

hvl(t)vl(0)i '
X

i=1,N

v20⌧i
2⌫(m+ 4k⌧2i )

J0
�
!ct

�
(43)

where Jn(z) is the n-th order Bessel function of the first kind [34].

Case II:Similarly the two-time velocity correlation of a single oscillator hvl(t)vl(0)i of a harmonic

chain driven by the Non-Poissonian RTP reservoir in the large t limit is,

hvl(t)vl(0)i '
X

i=1,N

v20(2m+ 4k⌧2i )

2⌫(8m2 + 32k2⌧4i )
J0
�
!ct

�
, (44)

The two-time velocity correlation of a single oscillator in a long time limit is proportional to

J0(!ct) that decays as 1/
p
t. In the inset of Fig. 6(a) and (b), we have shown the results of

numerical simulation results for the two-time velocity correlation of a single oscillator in the bulk of

a harmonic chain driven by the Poissonian RTP reservoir and Non-Poissonian RTP reservoir along

with the analytic results Eq. (43) and (44). In addition to that, we also include a red dashed line

that corresponds to the envelope that decays as 1/
p
t.

B. Kinetic temperature profile

The kinetic temperature of the l-th oscillator in the steady state T̂l is the average kinetic energy

of that oscillator, T̂l = mhv2l (t)i and this can be written using Eq. (33) with t = t0 and l = l0,

T̂l =
X

i=1,N

T (⌧i) (45)

where

T (⌧i) = m

Z 1

�1

d!

2⇡
!2

��Gli

��2g̃(!, ⌧i). (46)
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⟨vl(0)vl(t)⟩ = (T1 + TN)
2m

J0(ωct)



Energy current
Energy current: average energy flowing (from the reservoirs) per unit 
time through the system 

Same for all oscillators (no source/dissipation in bulk) 
 

Finite current in thermodynamic limit , analytically computableN → ∞

.l = k
2 ⟨(vl + vl−1)(xl − xl−1)⟩

Case I: For the Poissonian RTP reservoir-driven harmonic chain, the Eq. (47) can be evaluated

using the spectrum of the Poissonian RTP reservoir g̃1(!, ⌧) (using Eqs. (18) and (21)). Here we

quote the final result of the kinetic temperature for the bulk of the oscillator as,

T̂l =
X

i=1,N

v20⌧i

2⌫
q
1 + 4k

m ⌧2i

. (48)

Case II: The kinetic temperature profile of the bulk oscillators of the harmonic chain driven by

the Non-Poissonian RTP reservoir can be evaluated using the Eq. (47) and g̃2(!, ⌧) (using Eqs. (18)

and (23)). Here we quote the final result,

T̂l =
X

i=1,N

v20⌧i
p
m(m+ 2k⌧2i +

q
m2 + 4k2⌧4i )

4⌫

r
(2m2 + 8k2⌧4i )(m+

q
m2 + 4k2⌧4i )

. (49)

In Fig. 8, the numerically measured bulk kinetic temperature for Poissonian RTP reservoir-

driven and Non-Poissonian RTP reservoir-driven harmonic chain is shown along with the bulk

kinetic temperature value given by Eq. (48) and (49) respectively.

C. Stationary state current

It was previously shown in Ref. [14, 15], that the nonequilibrium steady state of an activity-

driven harmonic chain can be characterized by the average energy current. In this project, the

model of active reservoirs is modeled using a harmonic chain of overdamped active particles, and

the amount of work done per unit of time by the left and right active reservoirs on the boundary

oscillators are,

J1 = �(yLM � x1)ẋ1 and JN+1 = �(yR1 � xN )ẋN (50)

Note that, the dynamics of the bulk oscillators of the passive oscillator chain is Hamiltonian (see

Eq. (E22)), therefore the amount of energy transferred between the bond of l�1th and lth oscillator

can be expressed as [40, 41],

Jl =
k

2
(vl�1 + vl)(xl�1 � xl). (51)
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Case I: For the Poissonian RTP reservoir-driven harmonic chain, the Eq. (47) can be evaluated

using the spectrum of the Poissonian RTP reservoir g̃1(!, ⌧) (using Eqs. (18) and (21)). Here we

quote the final result of the kinetic temperature for the bulk of the oscillator as,

T̂l =
X

i=1,N

v20⌧i

2⌫
q
1 + 4k

m ⌧2i

. (48)

Case II: The kinetic temperature profile of the bulk oscillators of the harmonic chain driven by

the Non-Poissonian RTP reservoir can be evaluated using the Eq. (47) and g̃2(!, ⌧) (using Eqs. (18)

and (23)). Here we quote the final result,

T̂l =
X

i=1,N

v20⌧i
p
m(m+ 2k⌧2i +

q
m2 + 4k2⌧4i )

4⌫

r
(2m2 + 8k2⌧4i )(m+

q
m2 + 4k2⌧4i )

. (49)

In Fig. 8, the numerically measured bulk kinetic temperature for Poissonian RTP reservoir-

driven and Non-Poissonian RTP reservoir-driven harmonic chain is shown along with the bulk

kinetic temperature value given by Eq. (48) and (49) respectively.

C. Stationary state current

It was previously shown in Ref. [14, 15], that the nonequilibrium steady state of an activity-

driven harmonic chain can be characterized by the average energy current. In this project, the

model of active reservoirs is modeled using a harmonic chain of overdamped active particles, and

the amount of work done per unit of time by the left and right active reservoirs on the boundary

oscillators are,

J1 = �(yLM � x1)ẋ1 and JN+1 = �(yR1 � xN )ẋN (50)

Note that, the dynamics of the bulk oscillators of the passive oscillator chain is Hamiltonian (see

Eq. (E22)), therefore the amount of energy transferred between the bond of l�1th and lth oscillator

can be expressed as [40, 41],

Jl =
k

2
(vl�1 + vl)(xl�1 � xl). (51)

18

In the nonequilibrium stationary state, the average energy current Jact flowing through the bulk of

the system should be the same as the rate of work done by the active reservoirs on the boundary

oscillators.

Jact = hJ1i = · · · = hJli = · · · = �hJN+1i. (52)

FIG. 9. Plot of average energy current at functions of ⌧1 driven by (a) Poissonian RTP reservoir
and (b) Non-Poissonian RTP reservoir: Symbols correspond to the result of numerical simulation for
different values of ⌧N . The number of oscillators in the active reservoir is M = 256 and the number of
oscillators in the system is N = 256. The other parameters are m = k = 1, ⌫1 = ⌫N = 1, �1 = �N = 1 and
v0 = 1. The black solid line corresponds to the Eq. (53).

We are interested in the case in the thermodynamic limit i.e. when the size of the active reservoir

at the two boundaries and the size of the passive chain both are considerably large. The explicit

expression of the average energy current flowing through the system can be evaluated by exploiting

the tridiagonal nature of the Greens function matrix G(!) [see Eq. (30)]. The expression of average

energy current due to the difference in the activity of the active chain attached to its two boundaries

has a ‘Landaure-like form’,

Jact = J1 � JN , (53)

where,

Ji =

Z !c

0

d!

4⇡

p
m(4k �m!2)

mk + |�̃|2 � Im[�̃]m!
g̃(!, ⌧i). (54)

Here, g̃(!, ⌧j) is the spectrum of the i-th active reservoir, defined in Eq. (18).

The integral in

19



Landauer-like formula  for stationary current

Depends on  through reservoir spectra 

Additive contribution from both reservoirs

τ g̃(ω, τ)

Transmission 
coefficient

Reservoir spectra

using the following relation,

�i!1 + !2(�̃1 + �̃N )G = (i!3M � i!�)G (E14)

derived from Eq. (D2). Again, the odd integral of ! in Eq. (E13) becomes zero, and we are left

with,

Z 1

�1

d!

2⇡
Tr

h
G⇤�̃⇤

NGS1(!)
i

(E15)

Combining with the contribution from the active chain of the right reservoir we arrive at,

Jact =

Z 1

�1

d!

2⇡
!2Tr

h
G⇤�̃⇤

NGS1 �G⇤�̃1GSN

i
(E16)

Using Eq. (C9) and (E6) we arrive at “Landauer-like” formula,

Jact =

Z 1

�1

d!

2⇡
!2

���G1N

���
2
Re[�̃(!)]

⇣
g̃(!, ⌧1)� g̃(!, ⌧N )

⌘
(E17)

Here, g̃(!, ⌧1) and g̃(!, ⌧N ) are frquency spectra of the effective noise acting on the j-th particle

(j = 1, N) of the passive chain, defined in Eq. (18). The last expression can be further simplified

in the thermodynamic limit N ! 1 where,

|G1N |2 = 1

c2d1 � c1d2
. (E18)

This can be easily checked using Eqs. (D4) and (D6) and integrating over the fast oscillation using

Eq. (D14). For ! > !c, q becomes complex. In the thermodynamically large system size, the

integrand vanishes exponentially as e�2Nq̄ in the region ! > !c, here q̄ is real. The range of the

integration reduces to 0  !  !c. We can write the final expression of average current after

simplifications are done using the explicit expression of c1, c2, d1, d2 given in Eq. (D9).Note that,

as �(t) is a real-valued function, Re[�̃(�!)] = Re[�̃(!)] and Im[�̃(�!)] = �Im[�̃(!)]. The final

expression for the average current in the stationary state is,

Jact = J1 � JN , (E19)
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In the thermodynamic limit

No closed form, can be numerically evaluated 

No generic effective temperature description 

Effective temperature picture emerges in the passive limit

using the following relation,

�i!1 + !2(�̃1 + �̃N )G = (i!3M � i!�)G (E14)

derived from Eq. (D2). Again, the odd integral of ! in Eq. (E13) becomes zero, and we are left

with,
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NGS1(!)
i

(E15)

Combining with the contribution from the active chain of the right reservoir we arrive at,

Jact =

Z 1

�1

d!

2⇡
!2Tr
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NGS1 �G⇤�̃1GSN

i
(E16)

Using Eq. (C9) and (E6) we arrive at “Landauer-like” formula,

Jact =

Z 1

�1

d!
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!2

���G1N

���
2
Re[�̃(!)]

⇣
g̃(!, ⌧1)� g̃(!, ⌧N )
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(E17)

Here, g̃(!, ⌧1) and g̃(!, ⌧N ) are frquency spectra of the effective noise acting on the j-th particle

(j = 1, N) of the passive chain, defined in Eq. (18). The last expression can be further simplified

in the thermodynamic limit N ! 1 where,

|G1N |2 = 1

c2d1 � c1d2
. (E18)

This can be easily checked using Eqs. (D4) and (D6) and integrating over the fast oscillation using

Eq. (D14). For ! > !c, q becomes complex. In the thermodynamically large system size, the

integrand vanishes exponentially as e�2Nq̄ in the region ! > !c, here q̄ is real. The range of the

integration reduces to 0  !  !c. We can write the final expression of average current after

simplifications are done using the explicit expression of c1, c2, d1, d2 given in Eq. (D9).Note that,

as �(t) is a real-valued function, Re[�̃(�!)] = Re[�̃(!)] and Im[�̃(�!)] = �Im[�̃(!)]. The final

expression for the average current in the stationary state is,

Jact = J1 � JN , (E19)
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where,

Ji =

Z !c

0

d!

4⇡

p
m(4k �m!2)

mk + |�̃|2 � Im[�̃]m!
g̃(!, ⌧i). (E20)
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In the nonequilibrium stationary state, the average energy current Jact flowing through the bulk of

the system should be the same as the rate of work done by the active reservoirs on the boundary

oscillators.

Jact = hJ1i = · · · = hJli = · · · = �hJN+1i. (52)
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FIG. 9. Plot of average energy current at functions of ⌧1 driven by (a) Poissonian RTP reservoir
and (b) Non-Poissonian RTP reservoir: Symbols correspond to the result of numerical simulation for
different values of ⌧N . The number of oscillators in the active reservoir is M = 256 and the number of
oscillators in the system is N = 256. The other parameters are m = k = 1, ⌫1 = ⌫N = 1, �1 = �N = 1 and
v0 = 1. The black solid line corresponds to the Eq. (53).

We are interested in the case in the thermodynamic limit i.e. when the size of the active reservoir

at the two boundaries and the size of the passive chain both are considerably large. The explicit

expression of the average energy current flowing through the system can be evaluated by exploiting

the tridiagonal nature of the Greens function matrix G(!) [see Eq. (30)]. The expression of average

energy current due to the difference in the activity of the active chain attached to its two boundaries

has a ‘Landaure-like form’,

Jact = J1 � JN , (53)

where,

Ji =

Z !c

0

d!

4⇡

p
m(4k �m!2)

mk + |�̃|2 � Im[�̃]m!
g̃(!, ⌧i). (54)

Here, g̃(!, ⌧j) is the spectrum of the i-th active reservoir, defined in Eq. (18).

The integral in
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In the nonequilibrium stationary state, the average energy current Jact flowing through the bulk of

the system should be the same as the rate of work done by the active reservoirs on the boundary

oscillators.

Jact = hJ1i = · · · = hJli = · · · = �hJN+1i. (52)

FIG. 9. Plot of average energy current at functions of ⌧1 driven by (a) Poissonian RTP reservoir
and (b) Non-Poissonian RTP reservoir: Symbols correspond to the result of numerical simulation for
different values of ⌧N . The number of oscillators in the active reservoir is M = 256 and the number of
oscillators in the system is N = 256. The other parameters are m = k = 1, ⌫1 = ⌫N = 1, �1 = �N = 1 and
v0 = 1. The black solid line corresponds to the Eq. (53).

We are interested in the case in the thermodynamic limit i.e. when the size of the active reservoir

at the two boundaries and the size of the passive chain both are considerably large. The explicit

expression of the average energy current flowing through the system can be evaluated by exploiting

the tridiagonal nature of the Greens function matrix G(!) [see Eq. (30)]. The expression of average

energy current due to the difference in the activity of the active chain attached to its two boundaries

has a ‘Landaure-like form’,

Jact = J1 � JN , (53)

where,

Ji =

Z !c

0

d!

4⇡

p
m(4k �m!2)

mk + |�̃|2 � Im[�̃]m!
g̃(!, ⌧i). (54)

Here, g̃(!, ⌧j) is the spectrum of the i-th active reservoir, defined in Eq. (18).

The integral in

19

M = N = 256



Intriguing features : 

 Negative differential conductivity- 

 changes non-monotonically with  
activity drive

Maximum at intermediate 

 Current reversal -

  changes direction  
  at  (additionally)

Jact

τm

Jact
τ*1 ≠ τN

Plot of  vs  ( )
Symbols: numerical simulation  

for RTP, M=N=256

Jact τ1 k = 2, m = γ = 1

C. Stationary state current

It was previously shown in Ref. [14, 15], that the nonequilibrium steady state of an activity-

driven harmonic chain can be characterized by the average energy current. In this project, the

model of active reservoirs is modeled using a harmonic chain of overdamped active particles, and

the amount of work done per unit of time by the left and right active reservoirs on the boundary

oscillators are,

J1 = �(yLM � x1)ẋ1 and JN+1 = �(yR1 � xN )ẋN (50)

Note that, the dynamics of the bulk oscillators of the passive oscillator chain is Hamiltonian (see

Eq. (26)), therefore the amount of energy transferred between the bond of l� 1th and lth oscillator

can be expressed as [40, 41],

Jl =
k

2
(vl�1 + vl)(xl�1 � xl). (51)

In the nonequilibrium stationary state, the average energy current Jact flowing through the bulk of

the system should be the same as the rate of work done by the active reservoirs on the boundary

oscillators.

Jact = hJ1i = · · · = hJli = · · · = �hJN+1i. (52)
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FIG. 7. Plot of average energy current at functions of ⌧1 driven by (a) Poissonian RTP reservoir
and (b) Non-Poissonian RTP reservoir: Symbols correspond to the result of numerical simulation for
different values of ⌧N . The number of oscillators in the active reservoir is M = 256 and the number of
oscillators in the system is N = 256. The other parameters are m = k = 1, ⌫1 = ⌫N = 1, �1 = �N = 1 and
v0 = 1. The black solid line corresponds to the Eq. (53).
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Negative differential conductivity 
Differential conductivity  in certain parameter regime

NDC is a counterintuitive phenomenon, possible only away from 
equilibrium

Known examples are in non-linear systems: rotor chain, presence of 
obstacles, kinetic constraints  

Activity drive leads to NDC in this linear system!

Physical origin? 

dJact
dτj

< 0

Barma & Dhar JPhysA 1984 
Iacobucci et. al., PRE 2011

Leitmann & Franosch, PRL 2013 
Baerts et. al., PRE 2013

Chatterjee et al, PRE 2018 …



System frequency spectrum is peaked near the characteristic 
frequency  

Each reservoir spectrum is peaked at  

Overlap changes non-monotonically as activity is changed leading 
to NDC

ωc = 2 k/m

ω = 0

Winning reservoir decides direction of current …

using the following relation,

�i!1 + !2(�̃1 + �̃N )G = (i!3M � i!�)G (E14)

derived from Eq. (D2). Again, the odd integral of ! in Eq. (E13) becomes zero, and we are left

with,

Z 1

�1

d!

2⇡
Tr

h
G⇤�̃⇤

NGS1(!)
i

(E15)

Combining with the contribution from the active chain of the right reservoir we arrive at,

Jact =

Z 1

�1

d!

2⇡
!2Tr

h
G⇤�̃⇤

NGS1 �G⇤�̃1GSN

i
(E16)

Using Eq. (C9) and (E6) we arrive at “Landauer-like” formula,

Jact =

Z 1

�1

d!

2⇡
!2

���G1N

���
2
Re[�̃(!)]

⇣
g̃(!, ⌧1)� g̃(!, ⌧N )

⌘
(E17)

Here, g̃(!, ⌧1) and g̃(!, ⌧N ) are frquency spectra of the effective noise acting on the j-th particle

(j = 1, N) of the passive chain, defined in Eq. (18). The last expression can be further simplified

in the thermodynamic limit N ! 1 where,

|G1N |2 = 1

c2d1 � c1d2
. (E18)

This can be easily checked using Eqs. (D4) and (D6) and integrating over the fast oscillation using

Eq. (D14). For ! > !c, q becomes complex. In the thermodynamically large system size, the

integrand vanishes exponentially as e�2Nq̄ in the region ! > !c, here q̄ is real. The range of the

integration reduces to 0  !  !c. We can write the final expression of average current after

simplifications are done using the explicit expression of c1, c2, d1, d2 given in Eq. (D9).Note that,

as �(t) is a real-valued function, Re[�̃(�!)] = Re[�̃(!)] and Im[�̃(�!)] = �Im[�̃(!)]. The final

expression for the average current in the stationary state is,

Jact = J1 � JN , (E19)
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Conclusions 

Characterisation of active bath modelled by harmonic chain of RTPs

Dissipation and noise kernels — modification of FDT

NESS of harmonic chain driven by active reservoirs

Emergent finite correlation length due to activity driving

Transport properties: energy current reversal, NDC



Open questions 

What decides the direction? Thermodynamic understanding?

Do the NDC and current reversal survive in higher dimensions?

Effect of disorder? 

Effect of anharmonicity — what happens for FPUT chain?

Coupling with thermal current? 
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