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Macroscopic system subjected to temperature difference: energy transport

Theoretical model: Oscillator chain connected to equilibrium thermal reservoirs, satisfy

Fluctuation-Dissipation Theorem

Relevant questions:

Energy current — thermal conductivity? Fourier Law?
Local temperature?

Velocity / position fluctuations?

Paradigmatic example (in 1D): Harmonic chain connected to Langevin baths with different

temperatures Rieder, Lebowitz, Lieb, ] Math Phys 1967
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Chain of N harmonically coupled identical

oscillators with displacement {x;}

Boundary oscillators / = 1,N coupled to reservoirs with temperatures
1y, Iy

Reservoirs exerting forces: 'thermal noise' and ‘disszpation’

Equilibrium reservoirs: Fluctuation-dissipation theorem (FDT)

relates noise and dissipation




& Simple model —

constant dissipation and (Gaussian white noise at boundary

m:’v’l

=~k —e)Cud + VGRS

My —k(2xl — L1 + I 1), Vi e [2, N — 1],

Mass m
Coupling constant k




Linearity and Gaussianity allow exact solution
Current carrying (Gaussian nonequilibrium stationary state

In the thermodynamic limit N — oo constant energy current

Joty & (T} — Ty) flows through the system

- — Rieder, Lebowitz, Lieb
Jih = k(T — 1) 1+ ml; ml; \/1 i , J Math Phys 1967,
X L v mK Dhar, Phys Rev Lett. 200t

1
Uniform temperature at the bulk 7' = E(Tl + Ty)




temperature 1

Rubin, J] Math Phys 1961
Rubin & Greer

. . . J Math Phys 1971
Rubin-Greer model: Semi-infinite chain of harmonic oscillators at

Generalised Langevin equations | .5, — k(zg — 1) — / t ds i1(8) y(t — 8) 4+ m(2),
DiSSipatiOn mr; = k(xl—l + Zi4+1 _OQOCClza Vi e [27 N — 1]7
kernel () min = k(zny_1—2N) — / dszn(s)y(t —s)+nn(t).
FDT demands (7, (w)ij{@")) = 4nkyT; Re[y(w)]é(w + @’)

Stationary current o (7] — Ty)

~ What happens when reservoirs are away from equétébrium?
w Active reservoirs?
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¢ Medium consisting of self-propelled active particles

& Active Particles: Generate directed motion consuming

energy from environment at individual level

¢ Inherently nonequilibrium in nature
& Examples: at all scales

& In nature: Bacteria, Bird flocks, Fish schools...

Bechinger et al, RMP 2016

& Artificial: Micro/nano swimmers, Janus particles... Ramaswamy 2017, ...
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o Motion of single probe particle in active reservoirs:

theoretical and experimental studies

o Intriguing features:
& Emergence of memory,
& Modification of equipartition theorem,

& Negative friction

Seyforth et al., PRR 2022




¢ How are transport properties of extended systems affected
when connected to active reservoirs?
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ae Simple, linear model: Activity driven harmonic chain




Simple model of active reservoir: chain of identical Run-and-Tumble

Par tiClCS (RTP) Passive chain
) 1 2 M = > 1 2 M
/7 I I
" - > 1 2 N—1 N'« >
Left active reservoir Right active reservoir

Rubin-Greer like set-up
. . . . . . .
Activity' of the reservoir : persistence time of constituents

Conducting system — chain of passive oscillators — connected to two

active reservoirs
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Objective

@ Characterise the active reservoir
& Breaking of FDT?
o Effective temperature?
¢ Characterise the nonequilibrium stationary state (NESS) of the passive chain
& Velocity/position fluctuations?
@ Spatio-temporal correlations?

@ Energy current flowing through the system
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Active reservoir: Chain of harmonically coupled active particles

Probe particle coupled to one end Ww
' 1 2 M

Reservoir particle dynamics: overdamped Langevin equation for {y;}

| AYi+1 + yi—1 — 2y) + fi(?), vie|l,M —1],
VY =
Mz +ym-1—2ym) + fu(t), when l= M,

Fixed boundary at one end (y, = 0) friction v and

Probe particle (x1) attached at the other end Coupling strength A




Stochastic dynamics with active noise f(f) : memory

Stationary auto-correlation— persistence time-scale 7

measure of activity

"

o \t—t’|)
F@F(E)) =h ( No detailed balance

Unrelated to dissipation — no fluctuation-dissipation

relation

Probe particle dynamics ~ ™Z1 = A(ym — 1),

Effective description?
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Eftective probe dynamics

& Integrate out the bath degrees of freedom

& Linear: exact solution of bath particles Langevin equations for given
x, ()

L
dsx1(s)Apn(t —s) + —

¢ M X M matrix A(z) with elements

Aje(2) = 7 Zsm 2 sin T i PREEY

2(M -




¢ Generalised Langevin equation for probe dynamics (in a correlated

bath)

t
mE; = — /_ dstalon(e-9)+ 20
yd

—

S SUCHOE Eftective noise
No time-scale Dissipation kernel (active)

separation assumec

@ Use this effective description to study the extended system

Properties in thermodynamic limit M — oo




Dissipation kernel

@ Dissipation kernel

¥(t) = Ae™ v [Io(?) + 1 (?)]G(t),

—1/2

@ At long-times f > v// : algebraic decay ¢

¢ Irrespective of active nature, 2 — A=01s =20

—— A=0.1,r=50

L —— A=0.1,v =100

property of the chain structure s

@ Appears in various contexts including Overdamped Rubin-Greer Bath

active baths




@ Spectral function #(w) = [ dte ™ty(t)

¢ Symmetry properties Re[5(—w)|

& For a > ()

& Asymptotic behaviour for small and

large w ...




Effective noise gy =a(1=1)

¢ Effective noise acting on the probe

¢ M
S =2 [ ds Y Auilt = 9)fy(s),
@ Auto-correlation in the frequency space —%  j=1

| 1
(w)X(@)) = 27n8(w + ©) g(w)  with gw) = ;h(a))Re[}'?'(a))]

# Combination of active force i(w) and chain structure through 7(w)

@ Breaking of fluctuation-dissipation relation in a specific way

Reminder: for equilibrium baths  {7j{@)ij,(w")) = 47kpT; Re[y(®w)]6(w + @’



Active noise: example

& Active noise f,(7): independent, run-and-tumble like process

@ Dichotomous noise in 1D f/(1) = v o(?)
Characteristic

& Intermittent ‘tumbles’ 0 — — o with constant rate time 7

& Waiting time between consecutive tumbling events drawn from

exponential distribution

2@87
1 + w?7?

@ Auto-correlation  p (7) = y2e~? and frequency spectra iy (w,7) =

@ Other dynamics: ABP, AOUP etc equivalent




Modification of FDT

¢ Equilibrium thermal baths: FDT &(®w) x kgT' Re[y(w)]

& Presence of active force modifies FDT

|
§(w) = ;h(w)Re [7(w)]

& Effective temperature in

passive limit 7 — O, h(a)) X ngz'

©Effect of active bath on extended system?




Activity driven harmonic chain

Passive chain

T

Left active reservoir Right active reservoir

& Passive conducting harmonic chain connected to two active reservoirs

& Reservoirs difter only in persistence times

k(@—ﬂ?l)—/ ds1(s)y(t —s) + X1(2),

— OO

¢ Langevin equations for| ™#& = k@1 4z —2m), VIe2,N—1],
t

displacements {Xl} i k(rny—1—oN) — / dstn(s)y(t—s)+ Xn(t).

— OO




How is the nonequilibrium stationary state (NESS) different from the

thermally driven scenario?

Local veLoai’cg fluctuations
Temperature profile
s]m’clo—tempomL corrvelations

Average energy current




NESS

@ Linearity allows exact computation of certain observables

¢ Use Fourier transform and matrix method introduced in Dhar, PRL

2001

@ In the stationary state

fwz't]g) —mw? 4+ k — iwd _k . EHCCtiVC

—k —mw? + 2k Sb

—mw? + k — wy




Kinetic temperature

0.50

® Average kinetic energy of oscillators T; = (Vf)

0.46

¢ Uniform at the bulk in thermodynamic limit, _

contribution from both reservoirs

Tl K Z \/U()Ti
i 1

2
4k 2
—1,N 2V + T

0.42

¢ Exponentially decaying boundary layer

t Similar to thermally |
i driven scenario |




Velocity fluctuations

@ Typical velocity fluctuations: Gaussian both in bulk and at boundary

10°g

| Similar to thermally |
. driven scenario




Spatial correlation
@ Stationary correlation Q(/, ") = (v,v;) in the bulk (in thermodynamic limit)
(T, + Ty)
2

¢ For thermally driven chain— no spatial correlation  Q(,I') = §;,

@ Active reservoirs: new emergent length-scales

Q1) =

Origin: Driving activity 7y, Ty

Characteristic frequency o, =

Correlated over a distance controlled
by higher activity reservoir




Temporal correlation

& "Two-time correlation (v,(0)v,(¢)) of bulk oscillator velocity in NESS

(T, + T

& For thermally driven chain, in the thermodynamic limit (v(0)v@®) =

0.5

@ For activity driven chain

“e dw cos wt ~
(vi(t)v(0)) = Z;N/O o mdk mwQ)h(w,Ti)

Asymptotic behaviour:
eSignature of activity at short-times

eThermal-like decay at late times—
—1/2

oscillations with £ envelop




Energy current

¢ Energy current: average energy flowing (from the reservoirs) per unit
time through the system

k
S = 5«"1 + v DG — X_1))

J1 = )\(yz{% — T1)%1 IN+1 = )\(yf% — C’71\7)$’N

¢ Same for all oscillators (no source/dissipation in bulk)

e = (h) == AT = o = ~( )
@ Finite current in thermodynamic limit N — oo, analytically computable




¢ Landauerlike formula for stationary current

Jact = |Guv‘ Re[¥(w)] (g(w,n) g(w, m))

—00 21r

A

Iransmission Reservoir spectra
coefhicient

& Depends on 7 through reservoir spectra g(w, 7)

& Additive contribution from both reservoirs




¢ In the thermodynamic limit J,.; = J1 — In,

I /""C dw  /m(4k — mw?)
0

4 mk + |§|? — Im[ﬂmwg(w’ Ti)

@ No closed form, can be numerically evaluated

& No generic effective temperature description m=k=1,n=vy =1, A =iy =1
M =N =256

¢ Effective temperature picture emerges in the passive limit




¢ Intriguing features :

Q Negative diHferential Concluctivitg~ .,

@ J,ct changes non-monotonically with

activity drive

¢ Maximum at intermediate 7,

o Current reversal -

Plotot Licevsy k=2 m=v=1
@ Jact Changes direction Symbols: numerical simulation

N for RTP, M=N=256
at T # 7y (additionally)




dJ
. : B act : : .
Difterential conductivity < 0 1n certain parameter regime

dz;

NDC is a counterintuitive phenomenon, possible only away from

equilibrium

Known examples are in non-linear systems: rotor chain, presence of

obstacles, kinetic constraints

o . | 4§ Barma & Dhar JPhysA 1984
Activity drive leads to NDC in this linear system! Tacobucci et. al., PRE 2011
Leitmann & Franosch, PRL 2013
Physical origin? Baerts et. al., PRE 2013

Chatterjee et al, PRE 2018 ...
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@ System frequency spectrum is peaked near the characteristic

* dw

frequency w,. = 2¢/ k/m ha= [ o Gun| Refi@) (3 m) - 3w m)

& Each reservoir spectrum is peaked at w = 0

o Overlap changes non-monotonically as activity is changed leading

to NDC
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Winning reservoir decides direction of current ...
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Conclusions

@ Characterisation of active bath modelled by harmonic chain of RTPs
& Dissipation and noise kernels — modification of FDT

@ NESS of harmonic chain driven by active reservoirs

¢ Emergent finite correlation length due to activity driving

@ "Transport properties: energy current reversal, NDC




Open questions

& What decides the direction? Thermodynamic understanding?

@ Do the NDC and current reversal survive in higher dimensions?
@ Effect of disorder?

@ Effect of anharmonicity — what happens for FPUT chain?

& Coupling with thermal current?
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