Evaluating

the instability & the inertial manifold dimension of space-time chaos from time series data

Kazumasa A. Takeuchi (Univ. Tokyo)

<u>Collaboration with</u> Taro P. Shimizu (formerly Tokyo Tech) Daiki Nishiguchi (Univ. Tokyo)

Space-Time Chaos

fire front

Kuramoto-Sivashinsky equation $\partial_t u = -\partial_x^2 u - \partial_x^4 u - u \partial_x u$

[Martínez-Ruiz et al., APS Gallery of fluid motion 2018]

Exciton-polariton condensate 🐚

dissipative Gross-Pitaevskii equation $i\partial_t \psi$ $= \left[-\nabla^2 + g_c |\psi|^2 + \frac{g_R P}{\gamma_R + R |\psi|^2} + \frac{i}{2} \left(\frac{RP}{\gamma_R + R |\psi|^2} - \gamma_C \right) \right] \psi$ Nature 2022]

bacterial turbulence

Toner-Tu-Swift-Hohenberg equation $\partial_t \vec{v} + \lambda (\vec{v} \cdot \vec{\nabla}) \vec{v}$ $= a \vec{v} - b |\vec{v}|^2 \vec{v}$ $- (1 + \nabla^2)^2 \vec{v} - \vec{\nabla} p$

[Nishiguchi et al., Nat Comm 2018]

How many variables needed? (degrees of freedom, DOFs)

Infinitely many DOFs?

Physically, finite DOFs should do.

- Perturbation inside IM → relevant effect; perturbed trajectory will separate exponentially from the unperturbed one.
- Perturbation outside IM \rightarrow decay exponentially w/o affecting others

Lyapunov Exponents & Vectors

[review: Eckmann & Ruelle, Rev. Mod. Phys. 1985]

Yang, Takeuchi, ..., PRL 102, 074102 (2009) **KS** Inertial Manifold Dimension PRE 84, 046214 (2011) Criterion is given by vector tangencies! Distribution of angle θ Lyapunov spectrum between vectors 0.5 10^{0} (40,41)(1,2)(2,3)0 -0.5 -1 -1.5 $\Theta 10^{-2}$ λ_i 41,42 -2 00 -2.5(43, 44)00 -3 -3.5 10^{-4} -4 30 10 2040 0 50 $\pi/4$ $\pi/2$ $3\pi/4$ 0 π 10^{0} Decay & no tangency for $i \ge 44$ \rightarrow perturbations outside IM! $-c/\theta$ $\widehat{\oplus}_{\mathbb{S}} 10^{-2}$ (41,42) tangencies **IM** dimension exist (necessary # of variables) no tangency 10^{-4} is determined! N = 431 1.5 $\mathbf{2}$ 2.5 $1/\theta$

This Opens the Door of IM to Numerics ... but not to Experiments

• Need to know the time evolution equation!

Even the measurement of the exponents is limited to tiny systems. "Butterfly effect" is unobservable for large experimental systems!

- Edward Ott group (2017) [Pathak et al. Chaos 27, 121102 (2017); PRL 2018] proposed a machine learning method (reservoir computing) to evaluate Lyapunov exponents from time-series data (they demonstrated with KS, but not with experiments)
- Here: by measuring not only the exponents but the vectors, we test if reservoir computing can capture IM from time series data.

Reservoir Computing

[Maass et al. Neural Comput. 2002; Jaeger & Haas, Science 2004] Also recall Nakajima-san's talk yesterday.

A variant of recurrent neural network (RNN)

 $D_r = 5000$, D = 64 (sampling intervals: $\Delta x = \frac{L}{D} \approx 0.34$, $\Delta t = 0.005$)

A: directed Erdős-Rényi graph, W_{in} : each r_i is linked to a single x_i

Results (KS time series + Reservoir Computing)

e o

0 0

15

What is the Missing Neutral Exponent?

 KS has 3 neutral exponents: time trans. $\delta u_T \propto \frac{\partial u}{\partial t}$, space trans. $\delta u_S \propto \frac{\partial u}{\partial r}$, Galilean $\delta u_G \propto 1$ but only 2 of them were detected. • If mode δu is detected $\rightarrow \delta u \in S \equiv \text{Span}[v_1, v_2, \cdots, v_{N=8}]$ tangent space counterpart of IM (local approximation of IM) Distribution of angle b/w $\delta u \& S$ Galilean mode δu_G $\delta u_T \& \delta u_S$ are detected. translation 10^{2} δu_G is undetected! modes δu_T δu_{ς} Presumably because δu_G is 10⁰ linked to conservation of $\int u dx$. Reservoir can't learn how a perturbation of a conserved 10⁻² quantity evolves. $\pi/8$ $\pi/2$ $3\pi/8$ $\pi/4$

[Shimizu, Nishiguchi, Takeuchi, to appear soon]

We realized Lyapunov analysis of large chaotic systems

→ Now we can measure, e.g. Lyapunov exponents (the butterfly effect) inertial manifold (IM) dimension (minimum # of var's)

• M dimension [Yang, Takeuchi, ..., PRL 102, 074102 (2009); PRE 84, 046214 (2011)]

- > can be determined *exactly* by inspecting tangencies of Lyapunov vectors
- Numerically demonstrated for Kuramoto-Sivashinsky eq. (& others)
- Time-series data + reservoir computing [Shimizu, N

[Shimizu, Nishiguchi, Takeuchi, to appear soon]

- > We can evaluate Lyapunov vectors too!
- For Kuramoto-Sivashinsky, this correctly estimated the IM dimension & identified what neutral exponent was missing.