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Space-Time Chaos .
PR
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Kuramoto-Sivashinsky equation
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[Martinez-Ruiz et al., APS Gallery of fluid motion 2018]

a :
Exciton-polariton condensate h [N|sh|guch| et al., Nat Comm 20I8]
dissipative Gross-Pitaevskii equation .
i atl/J How many variables needed?
_v2 2 4 gRP degrees of freedom, DOFs
{ RP . ?
+ 5 (YR+R|¢|2 Vc)] 1/) Infinitely many DOFs!

T Naare 2022] T - 71 % Physically, finite DOFs should do.
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Appiied | Integral Manifolds

Mathematical

How Many Variables are Needed!?

e Solutions of PDEs € co-dimensional phase space

but, for dissipative systems, Constantin et a
Trajectories are believed to be attracted to Springer (198
“inertial manifold” (IM) w/ finite integer dimension.

If so, solutions are described outside [M
inside IM
e Though IM had been a formal object,

in principle by a finite # of variables.
we developed a numerical method to capture it

by Lyapunov analysis. [YangTakeuchi, ..., PRL 102,074102; PRE 84,046214; ...]

Basic idea

,
%)

(e Perturbation inside IM => relevant effect; perturbed trajectory
will separate exponentially from the unperturbed one.

° Perturbation outside IM => decay exponentially w/o affecting others
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Lyapunov Exponents & Vectors

/trajectory }?t = ﬁt(}?o) 4 perturbed trajectory \
perturbation (5')?t = DFt(XO)ﬁ}?O Re

Jacobian ,

perturbation at time ¢
5X, ~ exp(A;t) ¥; (X
perturbation
at time 0

[review:
Eckmann & Ruelle,
Rev. Mod. Phys. 1985]

Lyapunov exponent 4;
exponential growth rate

Lyapunov vector v;(X)

5}?0= ﬁi(}?t})

reference traiectoy

.

proper direction of
perturbations growing at 4;

X v, ()_() )} is NOT an orthogonal basis. Can be tangent sometiﬂfmes.
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Perturbations may propagate through tangencies. \\

Perturbations outside IM =>» no tangency, 4;
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Results for

Kuramoto-Sivashinsky (KS) Equation

PRL 102,074102 (2009)
PRE 84,046214 (201 1)

0;u = —02u — 0pu — ud,u,

L =96
periodic

x €10, L]

negative diffusion => instability

-0.5 -

0 [2o0000000000000
OOOOOOOO

Lyapunov spectrum
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XSteps appear only for periodic boundaries.
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Step-wise structure can’t be a criterion.
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vector v, (x, t) (typical for i = 40)
Vo= —_—

4
=> Just sinusoidal..
no relation to trajectory?




KS Inertial Manifold Dimension

Criterion is given by vector tangencies!

Yang, Takeuchi, ...,
PRL 102,074102 (2009)
PRE 84, 046214 (201 1)

Distribution of angle 6
between vectors

Lyapunov spectrum
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Decay & no tangency for i = 44
=> perturbations outside IM!

IM dimension
(necessary # of variables)
is determined! N = 43

10° F (12) (2.3) =

/f""l“"‘* \h l (40’44

= 102 (41,42)
(43,44)
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0 /4 /2 3m/4 ™
0
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= 102 F (41,42) tangenci.e
1oL no tangency A
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This Opens the Door of IM to Numerics
... but not to Experiments

* Need to know the time evolution equation!

Even the measurement .
. /trajectory % = ﬁt(}?o) 4 perturbed trajectory \
of the exponents is perturbation 5%, = DF,(%0)8%, -
Ilmlted to tln)’ S)’Stems. Jacobian ," perturbation at time ¢
“Butterfly effect” is | OXp ~ exp(Lit) By(Xe)
perturbation

unobservable for large at time 0

. 8Xo=%;(Xo) {_ f '
experimental systems! \___° " rererenee e

* Edward Ott group (2017) [Pathak et al. Chaos 27, 121102 (2017);PRL 2018]
proposed a machine learning method (reservoir computing)

to evaluate Lyapunov exponents from time-series data
(they demonstrated with KS, but not with experiments)

* Here: by measuring not only the exponents but the vectors,
we test if reservoir computing can capture |IM
from time series data.




[Maass et al. Neural Comput. 2002;
Jaeger & Haas, Science 2004]

Also recall Nakajima-san’s talk yesterday.

Reservoir Computing

A variant of recurrent neural network (RNN)

/ input reservoir output \
X(t) € RP 7(t) € RPr X(t+ At) € RP
2

WO ut

o (8)] o, (t+ At)]
X2 (t) x5 (t + At)
-xp.(t)- xp (t 4 At))

E learning only here
r(t + At) = tanh[AT(t) + Wipx(t)], X(t + At) = Wy, 7' (t + At)
{ri (i is odd)

r# (iis even)

Trick to break the sign-reversal symmetry = with r; =
[Pathak et al., Chaos 27, 121102 (2017)]

We applied this to KS & computed both exponents & vectors.
(Ginelli et al. PRL 2007’s standard vector computation method can be used)

D, = 5000, D = 64 (sampling intervals: Ax = % ~ 0.34, At = 0.005)
A: directed Erdos-Rényi sraph, W:..:each r; is linked to a single x;




Results (KS time series + Reservoir Computing)

3 OfFoooo®oo0o0o0 7
140 o @ o
120 :::- S ago _
g first 9 modes
100 = -10 - : : . . -
g ° o
20 0 €I>.<} 06980 —————
Al -15 = |
-
60 : .actual
-1 L-02F} 1 4
40 ?zo - reservoir ° @ ¢ i
. Lyapunov = s [TT25 7T -
; -1 0 2 4 6 8
-3 tlme Al 30 I I I

dynamics

actual data

5 101520
X

prediction

5 10 1520

X

difference

5 101520
X

=> trained successfully

=> spectrum is essentially reproduced

Lyapunov exponents
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apart from | missing neutral exponent

Angles between Lyap vectors [similar report in Pathak et al., Chaos 2017]
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—> determined the IM dimension at
for L = 22
[Ding et al. PRL 2016]
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Reservoir successfully captured
the IM dimension from time series
apart from the missed exponent




What is the Missing Neutral Exponent?

e KS has 3 neutral exponents:
ou

du
time trans. ur o ——, space trans. dug 0 Galilean du; « 1

but only 2 of them were detected.

* If mode du is detected = du € § = Span|v,, vy, -+, Vy=3]
tangent space counterpart of IM

Dlstrlbutlon of angle b/w éu & § (local approximation of IM)
v

Galilean mode Su,—"

1021 translation our & dug are detected.

modes du. is undetected!
our
0 OUs I Presumably because du is
10 i linked to conservation of [ udx.

Reservoir can’t learn how
a perturbation of a conserved
quantity evolves.
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Sum MaAry  [Shimizy, Nishiguchi, Takeuchi,

to appear soon]

We realized Lyapunov analysis of large chaotic systems

=> Now we can measure, e.g.
Lyapunov exponents (the butterfly effect)
inertial manifold (IM) dimension (minimum # of var’s)

e IM dimension  [Yang Takeuchi, ..., PRL 102, 074102 (2009); PRE 84, 046214 (2011)]

» can be determined exactly by inspecting tangencies of Lyapunov vectors
> Numerically demonstrated for Kuramoto-Sivashinsky eq. (& others)

e Time-series data + reservoir computing  [Shimizu, Nishiguchi, Takeuchi,
to appear soon]
> Ve can evaluate Lyapunov vectors too!

» For Kuramoto-Sivashinsky, this correctly estimated the IM dimension
& identified what neutral exponent was missing.
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