Evaluating

the instability & the inertial manifold dimension of space-time chaos from time series data

Kazumasa A. Takeuchi (Univ. Tokyo)

Collaboration with Taro P. Shimizu (formerly Tokyo Tech) Daiki Nishiguchi (Univ. Tokyo)

Space-Time Chaos

fire front

Kuramoto-Sivashinsky equation $\partial_t u = -\partial_x^2 u - \partial_x^4 u - u \partial_x u$

[Martínez-Ruiz et al., APS Gallery of fluid motion 2018]

Exciton-polariton condensate

[Forthcome et al.,] Nature 2022] dissipative Gross-Pitaevskii equation $i\partial_t \psi$ $= [-\nabla^2 + g_c |\psi|^2 + \frac{g_R P}{\gamma_R + R |\psi|^2}]$ $+\frac{i}{2}\left(\frac{RP}{\gamma_R+R|\psi|^2}-\gamma_C\right)$ $\frac{R}{A}$

bacterial turbulence

Toner-Tu-Swift-Hohenberg equation $\partial_t v + \lambda (v \cdot V) v$ $= a\vec{v} - b|\vec{v}|^2 \vec{v}$ $-\left(1+\nabla^2\right)^2\vec{v}-\vec{\nabla}p$

[Nishiguchi et al., Nat Comm 2018]

How many variables needed? (degrees of freedom, DOFs)

Infinitely many DOFs?

Physically, finite DOFs should do.

- Perturbation inside IM → relevant effect; perturbed trajectory will separate exponentially from the unperturbed one.
- Perturbation outside $IM \rightarrow$ decay exponentially w/o affecting others

Lyapunov Exponents & Vectors

[review: Eckmann & Ruelle, Rev. Mod. Phys. 1985]

Yang, Takeuchi, ..., PRL **102**, 074102 (2009) KS Inertial Manifold Dimension PRE **84,** 046214 (2011) Criterion is given by vector tangencies!Distribution of angle θ Lyapunov spectrum between vectors 0.5 $10⁰$ (40,41) $(1,2)$ $(2,3)$ -0.5 (39,40) -1 -1.5 $\widehat{\mathcal{L}}$ 10⁻² λ_i (41,42) -2 $\frac{1}{2}$ -2.5 $\overline{O}O$ (43,44) -3 -3.5 \cap 10^{-4} -4 10 20 30 40 50 θ $\pi/4$ $\pi/2$ $3\pi/4$ Ω π $10⁰$ Decay & no tangency for $i \geq 44$ → perturbations outside IM! $\approx e^{-c/\theta}$ $\widehat{\mathfrak{S}}$ 10⁻² (41,42) tangencies IM dimension $(43,44)$ (necessary # of variables) no tangency 10^{-4} is determined! $N = 43$ $\mathbf{1}$ 1.5 2.5 \mathfrak{D} $1/\theta$

This Opens the Door of IM to Numerics … but not to Experiments

• Need to know the time evolution equation!

Even the measurement of the exponents is limited to tiny systems. "Butterfly effect" is unobservable for large experimental systems!

- Edward Ott group (2017) [Pathak et al. Chaos 27, 121102 (2017); PRL 2018] proposed a machine learning method (reservoir computing) to evaluate Lyapunov exponents from time-series data (they demonstrated with KS, but not with experiments)
- Here: by measuring not only the exponents but the vectors, we test if reservoir computing can capture IM from time series data.

Reservoir Computing

[Maass et al. Neural Comput. 2002; Jaeger & Haas, Science 2004] Also recall Nakajima-san's talk yesterday.

A variant of recurrent neural network (RNN)

 $D_r = 5000$, $D = 64$ (sampling intervals: $\Delta x = \frac{L}{D}$ $\frac{L}{D} \approx 0.34, \Delta t = 0.005$)

A: directed Erdős-Rényi graph, W_{in} : each r_i is linked to a single x_i

Results (KS time series + Reservoir Computing)

What is the Missing Neutral Exponent?

[Shimizu, Nishiguchi, Takeuchi, to appear soon]

We realized Lyapunov analysis of large chaotic systems

 \rightarrow Now we can measure, e.g. Lyapunov exponents (the butterfly effect) inertial manifold (IM) dimension (minimum # of var's)

• IM dimension [Yang, Takeuchi, …, PRL **102**, 074102 (2009); PRE **84**, 046214 (2011)]

- can be determined *exactly* by inspecting tangencies of Lyapunov vectors
- Numerically demonstrated for Kuramoto-Sivashinsky eq. (& others)
- Time-series data + reservoir computing

[Shimizu, Nishiguchi, Takeuchi, to appear soon]

- We can evaluate Lyapunov vectors too!
- \triangleright For Kuramoto-Sivashinsky, this correctly estimated the IM dimension & identified what neutral exponent was missing.