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Space-Time Chaos

fire front

[Martínez-Ruiz et al., APS Gallery of fluid motion 2018]

Exciton-polariton condensate

[Fontaine et al., 
Nature 2022]

Kuramoto-Sivashinsky equation
𝜕𝜕𝑡𝑡𝑢𝑢 = −𝜕𝜕𝑥𝑥2𝑢𝑢 − 𝜕𝜕𝑥𝑥4𝑢𝑢 − 𝑢𝑢𝜕𝜕𝑥𝑥𝑢𝑢

dissipative Gross-Pitaevskii equation
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𝛾𝛾𝑅𝑅+𝑅𝑅 𝜓𝜓 2 − 𝛾𝛾𝐶𝐶 𝜓𝜓 Infinitely many DOFs?

How many variables needed?
(degrees of freedom, DOFs)

Physically, finite DOFs should do.

bacterial turbulence

[Nishiguchi et al., Nat Comm 2018]

Toner-Tu-Swift-
Hohenberg equation
𝜕𝜕𝑡𝑡�⃗�𝑣 + 𝜆𝜆 �⃗�𝑣 ⋅ ∇ �⃗�𝑣
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How Many Variables are Needed?

 Solutions of PDEs ∈ ∞-dimensional phase space
but, for dissipative systems, 

Trajectories are believed to be attracted to
“inertial manifold” (IM) w/ finite integer dimension.
If so, solutions are described 
in principle by a finite # of variables.

 Though IM had been a formal object,
we developed a numerical method to capture it
by Lyapunov analysis.

Basic idea
 Perturbation inside IM ➜ relevant effect; perturbed trajectory 

will separate exponentially from the unperturbed one.
 Perturbation outside IM ➜ decay exponentially w/o affecting others

inside IM

outside IM

Constantin et al., 
Springer (1989)

[Yang, Takeuchi, …, PRL 102, 074102; PRE 84, 046214; …]              



𝑖𝑖 𝑖𝑖

𝑖𝑖𝑖

Lyapunov Exponents & Vectors

※ {�⃗�𝑣𝑖𝑖 �⃗�𝑋 } is NOT an orthogonal basis. Can be tangent sometimes.

Perturbations may propagate through tangencies.

Perturbations w/o tangency just decay like 𝑒𝑒𝜆𝜆𝑖𝑖𝑡𝑡 (if 𝜆𝜆𝑖𝑖 < 0)
Perturbations outside IM ➜ no tangency, 𝜆𝜆𝑖𝑖 < 0

[review: 
Eckmann & Ruelle, 
Rev. Mod. Phys. 1985]

Lyapunov exponent 𝜆𝜆𝑖𝑖
exponential growth rate
Lyapunov vector �⃗�𝑣𝑖𝑖(�⃗�𝑋)
proper direction of 
perturbations growing at 𝜆𝜆𝑖𝑖



Results for 
Kuramoto-Sivashinsky (KS) Equation

𝜕𝜕𝑡𝑡𝑢𝑢 = −𝜕𝜕𝑥𝑥2𝑢𝑢 − 𝜕𝜕𝑥𝑥4𝑢𝑢 − 𝑢𝑢𝜕𝜕𝑥𝑥𝑢𝑢, 𝑥𝑥 ∈ [0, 𝐿𝐿]

trajectory 𝑢𝑢 𝑥𝑥, 𝑡𝑡 : chaotic

PRL 102, 074102 (2009) 
PRE 84, 046214 (2011)

negative diffusion ➜ instability

Lyapunov spectrum

𝑖𝑖 ≲ 40 smooth
𝑖𝑖 ≳ 40

step-wise vector 𝑣𝑣8(𝑥𝑥, 𝑡𝑡) (typical for 𝑖𝑖 ≲ 40)

vector 𝑣𝑣46(𝑥𝑥, 𝑡𝑡) (typical for 𝑖𝑖 ≳ 40)

➜ Just sinusoidal.. 
no relation to trajectory?

𝐿𝐿 = 96
periodic 
boundary

※Steps appear only for periodic boundaries.
Step-wise structure can’t be a criterion.



(41,42) tangencies
exist(43,44)

no tangency

KS Inertial Manifold Dimension

Decay & no tangency for 𝑖𝑖 ≥ 44
 ➜ perturbations outside IM!

Lyapunov spectrum
Distribution of angle 𝜃𝜃

between vectors
(1,2) (2,3)

(39,40)

(40,41)

(41,42)

(43,44)

IM dimension
(necessary # of variables)
is determined! 𝑁𝑁 = 43

∼ 𝑒𝑒−𝑐𝑐/𝜃𝜃

Yang, Takeuchi, ..., 
PRL 102, 074102 (2009) 
PRE 84, 046214 (2011)

Criterion is given by vector tangencies!



This Opens the Door of IM to Numerics

Need to know the time evolution equation!
Even the measurement  
of the exponents is 
limited to tiny systems. 
“Butterfly effect” is 
unobservable for large
experimental systems!

 Edward Ott group (2017) [Pathak et al. Chaos 27, 121102 (2017); PRL 2018]

proposed a machine learning method (reservoir computing)
to evaluate Lyapunov exponents from time-series data
(they demonstrated with KS, but not with experiments)

Here: by measuring not only the exponents but the vectors, 
we test if reservoir computing can capture IM 
from time series data.

… but not to Experiments



Reservoir Computing

A variant of recurrent neural network (RNN)

We applied this to KS & computed both exponents & vectors.
(Ginelli et al. PRL 2007’s standard vector computation method can be used)

[Maass et al. Neural Comput. 2002; 
Jaeger & Haas, Science 2004]
Also recall Nakajima-san’s talk yesterday.

learning only here
�⃗�𝑥 𝑡𝑡 + Δ𝑡𝑡 = 𝑊𝑊out𝑟𝑟𝑖(𝑡𝑡 + Δ𝑡𝑡)

with 𝑟𝑟𝑖𝑖′ = �
𝑟𝑟𝑖𝑖 𝑖𝑖 is odd
𝑟𝑟𝑖𝑖2 (𝑖𝑖 is even)Trick to break the sign-reversal symmetry ➜

[Pathak et al., Chaos 27, 121102 (2017)]

input reservoir output

𝑟𝑟 𝑡𝑡 + Δ𝑡𝑡 = tanh 𝐴𝐴𝑟𝑟 𝑡𝑡 + 𝑊𝑊in�⃗�𝑥 𝑡𝑡 ,

�⃗�𝑥(𝑡𝑡) ∈ ℝ𝐷𝐷 �⃗�𝑥(𝑡𝑡 + Δ𝑡𝑡) ∈ ℝ𝐷𝐷𝑟𝑟(𝑡𝑡) ∈ ℝ𝐷𝐷𝑟𝑟

𝐷𝐷𝑟𝑟 = 5000, 𝐷𝐷 = 64 (sampling intervals: Δ𝑥𝑥 = 𝐿𝐿
𝐷𝐷 ≈ 0.34,Δ𝑡𝑡 = 0.005)

𝐴𝐴: directed Erdős-Rényi graph,    𝑊𝑊in: each 𝑟𝑟𝑖𝑖 is linked to a single 𝑥𝑥𝑗𝑗



Results (KS time series + Reservoir Computing)

➜ determined the IM dimension at
𝑁𝑁reservoir = 8 

➜ trained successfully

dynamics Lyapunov exponents

➜ spectrum is essentially reproduced
apart from 1 missing neutral exponent

reservoir

actual

Reservoir successfully captured
the IM dimension from time series
apart from the missed exponent

vs 𝑁𝑁actual = 9

Angles between Lyap vectors [similar report in Pathak et al., Chaos 2017]

for 𝐿𝐿 = 22
[Ding et al. PRL 2016] 

Lyapunov
time 𝜆𝜆1−1



What is the Missing Neutral Exponent?

KS has 3 neutral exponents:
time trans. 𝛿𝛿𝑢𝑢𝑇𝑇 ∝

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

, space trans. 𝛿𝛿𝑢𝑢𝑆𝑆 ∝
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

, Galilean 𝛿𝛿𝑢𝑢𝐺𝐺 ∝ 1
but only 2 of them were detected.

 If mode 𝛿𝛿𝑢𝑢 is detected ➜ 𝛿𝛿𝑢𝑢 ∈ 𝒮𝒮 ≡ Span[𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑁𝑁=8]
tangent space counterpart of IM

(local approximation of IM)Distribution of angle b/w 𝛿𝛿𝑢𝑢 & 𝒮𝒮

𝛿𝛿𝑢𝑢𝑇𝑇
𝛿𝛿𝑢𝑢𝑆𝑆

Galilean mode 𝛿𝛿𝑢𝑢𝐺𝐺
𝛿𝛿𝑢𝑢𝑇𝑇 & 𝛿𝛿𝑢𝑢𝑆𝑆 are detected.
𝛿𝛿𝑢𝑢𝐺𝐺 is undetected!

Presumably because 𝛿𝛿𝑢𝑢𝐺𝐺 is
linked to conservation of ∫𝑢𝑢d𝑥𝑥.
Reservoir can’t learn how 
a perturbation of a conserved 
quantity evolves.

(zoom)translation
modes



Summary

 IM dimension
 can be determined exactly by inspecting tangencies of Lyapunov vectors
 Numerically demonstrated for Kuramoto-Sivashinsky eq. (& others)

 Time-series data + reservoir computing
 We can evaluate Lyapunov vectors too! 
 For Kuramoto-Sivashinsky, this correctly estimated the IM dimension

& identified what neutral exponent was missing.

We realized Lyapunov analysis of large chaotic systems

➜ Now we can measure, e.g.
Lyapunov exponents (the butterfly effect)
inertial manifold (IM) dimension (minimum # of var’s)

[Yang, Takeuchi, …, PRL 102, 074102 (2009); PRE 84, 046214 (2011)]

[Shimizu, Nishiguchi, Takeuchi, 
to appear soon]

[Shimizu, Nishiguchi, Takeuchi, 
to appear soon]
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