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Synchronization of metronomes:
pay attention to interesting transient behavior

Youtube: Synchronization of four metronomes on a suspension bridge



Circadian clock

Synchronization of clock gene expression among
SCN cells (Yamaguchi et al, Science 2003)

(Reppert & Weaver, 2002 Nature)



Circadian clock in jet lag

When a mouse is subjected to advancing phase shift of
light-dark cycles (similar to a trip from Europe to Japan),
oscillations of gene expression disappear for a while:
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Days after jet lag (Yamaguchi et al, Science 2013)

This “oscillation quenching” is thought to be a primal cause of
heavy jet-lag symptoms.



My wish is to conduct theoretical research
that will be useful in the real world

* Developing theoretical frameworks for data-driven approaches

— Network inference from rhythmic signals
[Matsuki, HK, Kobayashi, to be submitted] Poster

— Network inference from spike data
[Mori & HK, PNAS (2022)] (talk on Thursday)

— Forecasting dynamics using reservoir computing
[Kuno & HK, arxiv]

* Oscillation quenching

— Metronomes [Kato & HK, Sci. Rep. (2023)]

— Kuramoto model with stochastic turnover [Ozawa & HK, to appear in PRL]
* Energetics of synchronization

— Coupled Heat engines [Yin, lzumida, HK, PRR (2023)]
* Higher order networks

— Slow desynchronization process in noisy oscillators [Marui & HK, arxiv]



Developing theoretical frameworks for
data-driven approaches



network inference

Suppose that we may observe oscillatory signals x; (7)
from a network of noisy oscillators and want to
infer coupling network between oscillators.

x; (9) K

X, (7)



Inference using phase models

One idea:

Oscillatory signal Phase Network
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p1 = w1 +Kqsin(pg — 1) + VD1é1(8),
P2 = ws + Kasin (¢1 — ¢2) + v/Dadalt),

by which coupling strength K; and noise strength D; may be inferred.

Many studies have been conducted along this line
[Tokuda et al (2007); Kralemann et al (2012); Stankovsky et al. (2012); Ota, Aoyagi (2018); ...]
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Inference does NOT work for well-synchronized networks
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BUT, it works if we use the circle map
[Matsuki, Kobayshi, HK, in preparation]

Akari Matsuki’s
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Inference of coupling and noise strength using only
spike data [Mori&HK, PNAS (2022)]
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This method works for well-synchronized oscillators

Fumito Mori will give a talk on Friday 24



Forecasting a better shiftwork
scheduling using Reservoir computing



Problems in shift working

e Shift workers are known to be at an increased risk of certain
diseases

* They are supposed to be in “chronic jet lag”, which is thought
to have a significant impact on their well-being and health



Mathematical models help qualitative
understandings and predictions about jet lag

[HK, Yamaguchi, Okamura Sci. Rep. (2017)]
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Wake up 4 hours earlier than usual on the day of the eastbound flight! 27



Mathematical models help qualitative understandings and predictions
also for shiftwork scheduling (unpublished)

(CASE A) (CASE B)
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Can we assist in schedule decision-

making using machine learning?
[Kuno&HK, arxiv]

Suppose that a person who has experienced a certain schedule of
shift working will at some point change to a new, different schedule.
Our aim is to forecast the dynamics of the circadian clock for the new
schedule on the basis of past data and the new schedule of sleep-
wake cycles.

Specifically, in this study, we asked whether Reservoir Computing (RC)

can predict the dynamics of limit-cycle oscillators subjected to a
periodic drive with frequent and abrupt phase shifts.

Training Reservoir computing (RC) Only the readout
|s trained
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RC can make quantitative forecast
[Kuno&HK, arxiv 2024]

(artificial data) Training data: 7 h phase-shift every 4 d
dv
oY 21
a
> 0
dw 9
— = u(1 —v*)w — v+ P,(t). =2
describes sleep-wake cycles

time

Forecasting: 10 h phase shift every 4 d

—— Generated timeseries 7\
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————— Absolute deviation
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Quantitative forecast is possible for this simple model. 30



Oscillation quenching

Sometimes, oscillation is desired.
Sometimes, oscillation is harmful, e.g.,
trembles in Parkinson 's disease.

We would like to know the design and control principle
of a system producing (or suppressing) oscillations



Coupled metronomes

Movie taken by a friend of mine

32



Weakly nonlinear analysis using a simple model
[MD. Kato & HK, Sci Rep. (2024)]
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Boundaries of in-phase,uanti-phase sync, oscillation quenching are obtained.
Novel interesting behavior, out-of-phase sync and beating phenomenon are found.



Coupled oscillators with metabolism
[Ozawa & HK, to appear in PRL]

Synchronization in phosphorylation rhythm of Kai proteins

ADP + Pi
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[C. Robertson McClung, PNAS (2007)] [Nakajima et al, 2005]

Period: about 24 hours

In vivo, there should be considerable effect
Half-life: about 10 hours

of turnovers of Kai proteins on synchronization
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Coupled oscillators with metabolism
[Ozawa & HK, to appear in PRL]

N
K .
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do;

Kuramoto type interaction Random phase resetting

At each time, oscillators are randomly picked up and reseted (turnonver)
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Energetics of Synchronization

What is the merit of synchronization?

Energy should be a key aspect

Image: American Institute of Physics, June 9 (2017)

36



Coupled heat engines

[Yin, lzumida, Kori, PRR 2023]
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https://www.youtube.com/shorts/YECEFJzvyQY



Maximum power and thermal efficiency are

achieved when engines are synchronized
[Yin, lzumida, Kori, PRR 2023]
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Mechanism: Loads to the engines are evenly distributed by synchronization 5



Higher order network of

noisy oscillators
[Marui & HK, arXiv]



Higher-order networks are ubiquitous

Neural network
d
—vo = f(ve) +g(va) + g(vB)

Q\Q .
D/ Pair-wise network

If neuron C fires only when neuron A and B fire almost simultaneously
this is effectively “and circuit”:

o/‘ . Non-pairwise network
A B

Lamp

Figure from https://www.electroniclinic.com/logic-and-gate-working-principle-circuit-diagram/

If we take temporal information into account,
some systems can better be modeled as non-pairwise networks 40



Oscillators in higher-order network

e Oscillators in higher-order networks have extensively been studied,
e.g.,
Tanaka&Aoyagi (2011), Skardal&Arenas (2019), Millan, Torres,
Bianconi (2020); Chutani, Tadic, Gupte(2021); Kuehn, Bick (2021);
Rajwani, Suman, Jalan(2023); Carletti, Giambagli, Bianconi (2023) ...
— Emergence of multiple attractors (two cluster states)
— Abrupt desynchronization

 However, noise effects on synchronization in higher-order networks
are largely overlooked.



Noisy oscillators in a higher-order network
[Marui & Kori, arXiv (2023)]

Globally coupled phase-oscillators with
two- and three-body interactions and independent white noises

K N
_ wm+_z sin (6 ) + N—j S sin(8; + 0y — 20,) + En(),

J,k=1

Em(t)) =0, (En(O)En(T)) = 2D8nd(t — 7),
. 1 < .
Using the order parameter Z = Re'® = Nzezw

j=1
the model reduces to

Oy = win + K1 Rsin(© — 0,,) + KoR?sin2(0 — 0,,) + & (1).

where R is Kuramoto order parameter, © is macroscopic phase



What is the effect of three-body interaction?

Oy = Wi + K1 Rsin(© — 0,,,) + Ko R%sin2(0 — 6,,,) + & (1).

By two-simplex interaction (i.e., three-body interaction),
Individual phase 0 seems to be lockedto @ or© + it
(where O is mean phase).

Therefore, one can expect that three-body interaction
promotes the formation of two-cluster states,
which is actually the case in noise-free oscillators



Two cluster states slowly decays and eventually disappear
in noisy oscillators with two-simplex interaction alone
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This decay occurs even when the noise is infinitesimally weak



Two clusters becomes persistent when two-body interaction
is additionally introduced
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Phase diagram

Self-consistency equation:

27
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0

Numerically finding R satisfying this equation, we obtain
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This bifurcation seems to be super- and sub-critical for K5 < K. and K, > K.,
respectively.
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Super- or subcritical? Weakly nonlinear analysis

Weakly nonlinear analysis for the bifurcation of R = 0 at K1 = K. is as follows.

d 3] )
W K = K.(1 2 ' _ _ 2__
e set K (14 €2) and introduce 7 5 T

The complex order parameter is expanded as
Z=eZ|+e*Zy+---,

Note R = |Z|. Using a standar method [Kuramoto, 1984], we derive
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- The bifurcation occurs at K; = 2D - ol 02 03

* It is super- and sub-critical for Ky < 2D and Ky > 2D, respectively. Ky 18



Lifetime of synchronized states

We have obtained

6 E

. 4K2R3 ( K2R2> 1.0-10
R=— exp | — 5 :
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We define the lifetime of the synchronized state by ¢ 10102 |
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2 100 |
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Very roughly, we can estimate 2
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theory ——

Synchronized states persist for long time,

increasing exponentially with three-body coupling strength K2. 2o



Noisy oscillators in a higher-order network: Summary

When noise is absent,
Oscillators are synchronized into various two-cluster states.

When noise is present,
all those synchronized states disappear.

However, the desynchronization process from synchronized state
is extremely slow.

One-simplex interaction (two-body coupling) may
stabilize the synchrony.



My wish is to conduct theoretical research
that will be useful in the real world

* Developing theoretical frameworks for data-driven approaches

— Network inference from rhythmic signals
[Matsuki, HK, Kobayashi, to be submitted] Poster

— Network inference from spike data
[Mori & HK, PNAS (2022)] (talk on Thursday)

— Forecasting dynamics using reservoir computing
[Kuno & HK, arxiv]

* Oscillation quenching

— Metronomes [Kato & HK, Sci. Rep. (2023)]

— Kuramoto model with stochastic turnover [Ozawa & HK, to appear in PRL]
* Energetics of synchronization

— Coupled Heat engines [Yin, lzumida, HK, PRR (2023)]
* Higher order networks

— Slow desynchronization process in noisy oscillators [Marui & HK, arxiv]

Many thanks for your attention and Cheers!




