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◦ DDAP2 in Hangzhou, my first international conference
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https://sites.google.com/edu.k.u-tokyo.ac.jp/ecc11/home

ECC11 twitter

Yoshiki Kuramoto will give a talk (in person!)



Synchronization of metronomes:
pay attention to interesting transient behavior

Youtube: Synchronization of four metronomes on a suspension bridge
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Circadian clock
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Coordination of circadian timing in mammals
Steven M. Reppert & David R. Weaver

Department of Neurobiology, University of Massachusetts Medical School, LRB-728, 364 Plantation Street, Worcester, Massachusetts 01605, USA

...........................................................................................................................................................................................................................

Time in the biological sense is measured by cycles that range from milliseconds to years. Circadian rhythms, which measure time
on a scale of 24 h, are generated by one of the most ubiquitous and well-studied timing systems. At the core of this timing
mechanism is an intricate molecular mechanism that ticks away in many different tissues throughout the body. However, these
independent rhythms are tamed by a master clock in the brain, which coordinates tissue-specific rhythms according to light input
it receives from the outside world.

C
ircadian rhythms, as exemplified by the sleep/wake cycle,
are the outward manifestation of an internal timing
system. The full force of genetic, molecular and bio-
chemical approaches, complemented by precise beha-
vioural observations, has rapidly advanced our

knowledge of circadian timing in mammals. The focal point of
this system is a master clock, located in the suprachiasmatic nuclei
(SCN) of the anterior hypothalamus, which orchestrates the circa-
dian programme1. Principal advances in understanding the mol-
ecular and biochemical basis of circadian timing have provided a
rapidly evolving model of the underlying ‘clockwork’. Recent

developments have also revolutionized our view of SCN input
and output mechanisms. These include the discovery of a new
visual pathway from retina to the SCN that entrains (synchronizes)
circadian rhythms to the solar day, and the elucidation of ways in
which the SCN clock ultimately generates output rhythms in
physiology and behaviour.
Defining the molecular basis of circadian timing in mammals has

profound implications. In terms of fundamental brainmechanisms,
the circadian system is among the most tractable models for
providing a complete understanding of the cellular and molecular
events connecting genes to behaviour. Thorough dissection of the

Figure 1 The mammalian circadian timing system is a hierarchy of dispersed
oscillators. a, The master clock in the SCN is composed of numerous clock cells. The
SCN receives light information by a direct retinohypothalamic tract (RHT) to entrain the
clock to the 24-h day. The entrained SCN, in turn, coordinates the timing of slave
oscillators in other brain areas (for example, cortex) and in peripheral organs (for
example, kidney and liver). b, A single SCN neuron in culture expresses robust
circadian rhythms in firing rate over 9 days of study, proving that the core clock

mechanism is contained within single cells (adapted from ref. 83). SCN and liver
explants from transgenic rats expressing a mPer1-driven luciferase reporter gene
exhibit bioluminescence rhythms in culture; the black and white bars along the x axis
indicate the light–dark cycle at the time of tissue collection (adapted from ref. 9). The
SCN explant rhythm persists for weeks in culture, whereas the liver explant rhythm
dampens. A medium change on day 7 restarts the liver oscillation, showing that the
dampening was not due to tissue death.

review article

NATURE |VOL 418 | 29 AUGUST 2002 | www.nature.com/nature 935© 2002        Nature  Publishing Group

(Reppert & Weaver, 2002 Nature) Synchronization of clock gene expression among 
SCN cells (Yamaguchi et al, Science 2003)



Circadian clock in jet lag
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When a mouse is subjected to advancing phase shift of
light-dark cycles (similar to a trip from Europe to Japan),
oscillations of gene expression disappear for a while:

This “oscillation quenching” is thought to be a primal cause of
heavy jet-lag symptoms. 

背景

生体リズム研究の背景
生体リズムの数理的研究

• 時差ぼけやシフトワークの常態化は，人間の健康状態に大きな影響を及ぼす．
I 人間の生体リズム（例えば、遺伝子発現や体温）は明暗リズムに同期するが，特定の時差を
経験すると振幅が一定期間小さくなり，これが体調不良の原因だと考えられる．

• 時差がもたらす生体リズムへの影響を予測できれば，例えばシフトワーカーなどにより
良い勤務スケジュールや休日の過ごし方を提案できる可能性がある．
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Figure: [6] より，1 日目に時差が生じた時のマウスの Per2（時計遺伝子）の発現の様子．
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My wish is to conduct theoretical research 
that will be useful in the real world

• Developing theoretical frameworks for data-driven approaches
– Network inference from rhythmic signals

[Matsuki, HK, Kobayashi, to be submitted] Poster
– Network inference from spike data

[Mori & HK, PNAS (2022)] (talk on Thursday)
– Forecasting dynamics using reservoir computing

[Kuno & HK, arxiv]
• Oscillation quenching

– Metronomes [Kato & HK, Sci. Rep. (2023)]
– Kuramoto model with stochastic turnover [Ozawa & HK, to appear in PRL]

• Energetics of synchronization
– Coupled Heat engines  [Yin, Izumida, HK, PRR (2023)]

• Higher order networks 
– Slow desynchronization process in noisy oscillators [Marui & HK, arxiv]
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Developing theoretical frameworks for 
data-driven approaches
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network inference
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Suppose that we may observe oscillatory signals xi (t)
from a network of noisy oscillators and want to
infer coupling network between oscillators. 

1 2
K1

K2x1 (t)

x2 (t)



Inference using phase models
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One idea:

<latexit sha1_base64="1mvLCeiucK6DNZMbz51l33EI6iU="></latexit>
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by which coupling strength Ki and noise strength Di may be inferred.

Many studies have been conducted along this line
[Tokuda et al (2007); Kralemann et al (2012); Stankovsky et al. (2012); Ota, Aoyagi (2018); …] 
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FIG. 1. Procedure for coupling inference. (i) Reconstruction of the phase signals ϕ̂i(t) from the observed signals xi(t). (ii)
Determining the phase coupling network from the phase signals.
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Inference does NOT work for well-synchronized networks

Artificial data
(Coupled Brusselators,
μ：Hopf bif parameter)

12

synchronization by a group-level Kuramoto order parameter

Ru =

〈∣∣∣∣∣∣
1

Nu

∑

j∈Au

eiφj(t)

∣∣∣∣∣∣

〉
(25)

where u ∈ {1, 2} indicates the left (u = 1) or the right group (u = 2) in Fig.3(b,d). Each group has Nu = 5
oscillators and the set of the oscillators’ indices is denoted by Au. We have (R1, R2) = (0.97, 0.55) for µ = 0.001, and
(R1, R2) = (1.00, 0.62) for µ = 0.04 showing the high synchrony in the left group.
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FIG. 3. Network inference from oscillatory signals: Application to simulated data from Brusselator oscillators.
(a): Observed signals xi(t) generated by Brusselator oscillators whose bifurcation parameter is close to Hopf bifurcation point:
µ = 0.001. (b): True network between Brusselator oscillators (top) and networks inferred from observations (a) by using the
naive method (middle) and the proposed method (bottom). (c): Same as (a), but the data is simulated with the bifurcation
parameter far from the Hopf bifurcation point: µ = 0.04. (d): Same as (b), but the network was inferred from observations (c).
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BUT, it works if we use the circle map
[Matsuki, Kobayshi, HK, in preparation]

Artificial data
(Coupled Brusselators,
μ：Hopf bif parameter)

True network

Inferred network
(via phase model)

12

synchronization by a group-level Kuramoto order parameter

Ru =
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(25)

where u ∈ {1, 2} indicates the left (u = 1) or the right group (u = 2) in Fig.3(b,d). Each group has Nu = 5
oscillators and the set of the oscillators’ indices is denoted by Au. We have (R1, R2) = (0.97, 0.55) for µ = 0.001, and
(R1, R2) = (1.00, 0.62) for µ = 0.04 showing the high synchrony in the left group.
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FIG. 3. Network inference from oscillatory signals: Application to simulated data from Brusselator oscillators.
(a): Observed signals xi(t) generated by Brusselator oscillators whose bifurcation parameter is close to Hopf bifurcation point:
µ = 0.001. (b): True network between Brusselator oscillators (top) and networks inferred from observations (a) by using the
naive method (middle) and the proposed method (bottom). (c): Same as (a), but the data is simulated with the bifurcation
parameter far from the Hopf bifurcation point: µ = 0.04. (d): Same as (b), but the network was inferred from observations (c).
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Inference of coupling and noise strength using only 
spike data [Mori&HK, PNAS (2022)]

Fumito Mori will give a talk on Friday

This method works for well-synchronized oscillators
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Fig. 1. (A) Examples of spike timing generated for coupled cells with the
FitzHugh–Nagumo model in Eq. 14. The SDs, ζ, of the spike time lag between
two oscillators are similar in cases i and ii. (B) Simultaneous inferences of
effective noise intensity aD and effective coupling strength |c|κ for the
FitzHugh–Nagumo model with method II. These inferences were achieved
using only spike time data. Actual values are plotted as crosses. Inferred
values are plotted as squares (for the lowest and third-lowest coupling
strengths) and circles (otherwise). The actual values are very well approxi-
mated in all cases, including D = 0.0002, κ = 0.01 (case i) and D = 0.0004,
κ = 0.02 (case ii). The average period is τ = 126.5.

checkpoint phase. The kth m-cycles period and its variance are
defined as

T (k)
m = t(k) − t(k−m), [1]

Vm = E [(T (k)
m − mτ)2], [2]

where E [· · · ] denotes the statistical average over k and τ is the
average period given by τ = E [T (k)

1 ]. Note that in this paper,
E [· · · ] denotes both the statistical average over k and the ensem-
ble average, which are identical in the steady state. Note further
that Vm is calculated from the spike time data of one oscillator.
To quantify the relationship between two oscillators, the SD of
time lag between the spikes of the oscillators is defined as

ζ =

√
E [(t(k)

1 − t(k)
2 )2], [3]

where t(k)
i is the kth spike time of the ith oscillator. It should be

noted that in coupled noisy oscillators, phase slips can generally
occur; this occurrence of phase slips demands redefinition of the
time lag. To adequately define the time lag after the phase slips,
we modify the definition of the (k + 1)th spike time when phase
slips occur after the kth spikes of oscillator i and j as follows: when
oscillator i generates l ≥ 2 successive spikes before the (k + 1)th
spike generated by oscillator j, i.e., max(t(k)

1 , t(k)
2 ) < t(k+1)

i <

. . . < t(k+l)
i < tk+1

j < t(k+l+1)
i holds true, we regard t(k+l)

i and
t(k+1)
j as the corresponding spikes; i.e., we redefine t(k+1)

i ≡
t(k+l)
i .

To derive an inference theory, we consider a pair of coupled
phase oscillators subject to noise. When limit cycle oscillators

are weakly coupled to each other and subject to weak noise, the
dynamics can be described by (17, 29)

θ̇1 = ω + κJ (θ1, θ2) + Z (θ1)
√

Dξ1(t),
θ̇2 = ω + κJ (θ2, θ1) + Z (θ2)

√
Dξ2(t),

[4]

where θi is the phase of oscillator i and κ≥ 0 is the coupling
strength. The independent and identically distributed noise ξi(t)
satisfies E [ξi(t)] = 0 and E [ξi(t)ξj (t

′)] = δij δ(t − t ′). The pos-
itive constant D represents the noise intensity. The phase sen-
sitivity function Z (θ) is a 2π-periodic function that quantifies
the phase response to noise. The 2π-periodic function J (x , y)
describes the interaction between oscillators that leads to syn-
chronization. We assume that J (θ, θ) = 0, which is satisfied in
systems with diffusive coupling between chemical oscillators or
gap junction coupling between cells. We focus on systems that
are well synchronized in phase.

Our inference methods are based on the formula of period
variability. In a previous work (30), the following expression for
the variance V1 was derived from the system in Eq. 4 by means
of linear approximation:

V1(θcp) = C1 + C2
d(θcp)

2

ω2
, [5]

where C1 and C2 are independent of θcp and given by
C1 = D

2

∫ 2π

0
Z(θ)2

ω3 dθ and C2 = (1 − exp[cκ])/2. The negative
constant cκ corresponds to the average effective attractive force
between the oscillators over one oscillation period. That is,
c = 1

ω

∫ 2π

0
fY (θ)dθ, where fY (θ) ≡ ∂J

∂x

∣∣
x=y=θ

− ∂J
∂y

∣∣∣
x=y=θ

. The

2π-periodic function d(θcp) ≡
√

E [‖θ1 − θ2‖2]θ1=θcp
represents

the phase distance from in-phase synchronization, where
‖θ1 − θ2‖ is the phase difference defined on the ring [−π,π).
If xk is the value of x (t) when θ1 first passes through 2πk + θcp,
then E [x (t)]θ1=θcp represents the average of xk over k. Note that
d(θcp) is proportional to

√
D and dependent on κ (30).

Through a derivation similar to that of Eq. 5, we derive that
Vm is given by

Vm(θcp) = maD +
[1 − exp(mcκ)]

2

[
d(θcp)

ω

]2

, [6]

where a ≡ 1
2

∫ 2π

0
Z(θ)2

ω3 dθ > 0. See SI Appendix, section A for
the derivation. Since a represents an average phase response to
noise, the product aD represents the effective noise intensity
(17). Our purpose is now to infer aD and |c|κ, which are
important values because they determine the strength of the
phase diffusion and the time scale of the synchronization,
respectively (17).
Method I. We use only V1, V2, and V3 for one of the oscillators.
Combining Eq. 6 for m = 1, 2, 3, we can determine the three
unknowns aD, cκ, and (d/ω)2. In particular, we obtain

aD =
−V 2

1 − V 2
2 + V1V2 + V1V3

3(V1 − V2) + V3
[7]

and
|c|κ = log

V2 − 2V1

V3 − 2V2 + V1
. [8]

Note that as shown below, Eq. 8 states that a temporal correlation
decays exponentially with spike times, and the decay constant
is given by the effective coupling strength |c|κ. We define the
temporal correlation as

Gm =
1
n

n∑

k=1

[(T (k−m)
1 − τ)(T (k)

1 − τ)]. [9]

2 of 5 PNAS
https://doi.org/10.1073/pnas.2113620119

Mori and Kori
Noninvasive inference methods for interaction and noise intensities of coupled

oscillators using only spike time data
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Fig. 1. (A) Examples of spike timing generated for coupled cells with the
FitzHugh–Nagumo model in Eq. 14. The SDs, ζ, of the spike time lag between
two oscillators are similar in cases i and ii. (B) Simultaneous inferences of
effective noise intensity aD and effective coupling strength |c|κ for the
FitzHugh–Nagumo model with method II. These inferences were achieved
using only spike time data. Actual values are plotted as crosses. Inferred
values are plotted as squares (for the lowest and third-lowest coupling
strengths) and circles (otherwise). The actual values are very well approxi-
mated in all cases, including D = 0.0002, κ = 0.01 (case i) and D = 0.0004,
κ = 0.02 (case ii). The average period is τ = 126.5.

checkpoint phase. The kth m-cycles period and its variance are
defined as

T (k)
m = t(k) − t(k−m), [1]

Vm = E [(T (k)
m − mτ)2], [2]

where E [· · · ] denotes the statistical average over k and τ is the
average period given by τ = E [T (k)

1 ]. Note that in this paper,
E [· · · ] denotes both the statistical average over k and the ensem-
ble average, which are identical in the steady state. Note further
that Vm is calculated from the spike time data of one oscillator.
To quantify the relationship between two oscillators, the SD of
time lag between the spikes of the oscillators is defined as

ζ =

√
E [(t(k)

1 − t(k)
2 )2], [3]

where t(k)
i is the kth spike time of the ith oscillator. It should be

noted that in coupled noisy oscillators, phase slips can generally
occur; this occurrence of phase slips demands redefinition of the
time lag. To adequately define the time lag after the phase slips,
we modify the definition of the (k + 1)th spike time when phase
slips occur after the kth spikes of oscillator i and j as follows: when
oscillator i generates l ≥ 2 successive spikes before the (k + 1)th
spike generated by oscillator j, i.e., max(t(k)

1 , t(k)
2 ) < t(k+1)

i <

. . . < t(k+l)
i < tk+1

j < t(k+l+1)
i holds true, we regard t(k+l)

i and
t(k+1)
j as the corresponding spikes; i.e., we redefine t(k+1)

i ≡
t(k+l)
i .

To derive an inference theory, we consider a pair of coupled
phase oscillators subject to noise. When limit cycle oscillators

are weakly coupled to each other and subject to weak noise, the
dynamics can be described by (17, 29)

θ̇1 = ω + κJ (θ1, θ2) + Z (θ1)
√

Dξ1(t),
θ̇2 = ω + κJ (θ2, θ1) + Z (θ2)

√
Dξ2(t),

[4]

where θi is the phase of oscillator i and κ≥ 0 is the coupling
strength. The independent and identically distributed noise ξi(t)
satisfies E [ξi(t)] = 0 and E [ξi(t)ξj (t

′)] = δij δ(t − t ′). The pos-
itive constant D represents the noise intensity. The phase sen-
sitivity function Z (θ) is a 2π-periodic function that quantifies
the phase response to noise. The 2π-periodic function J (x , y)
describes the interaction between oscillators that leads to syn-
chronization. We assume that J (θ, θ) = 0, which is satisfied in
systems with diffusive coupling between chemical oscillators or
gap junction coupling between cells. We focus on systems that
are well synchronized in phase.

Our inference methods are based on the formula of period
variability. In a previous work (30), the following expression for
the variance V1 was derived from the system in Eq. 4 by means
of linear approximation:

V1(θcp) = C1 + C2
d(θcp)

2

ω2
, [5]

where C1 and C2 are independent of θcp and given by
C1 = D

2

∫ 2π

0
Z(θ)2

ω3 dθ and C2 = (1 − exp[cκ])/2. The negative
constant cκ corresponds to the average effective attractive force
between the oscillators over one oscillation period. That is,
c = 1

ω

∫ 2π

0
fY (θ)dθ, where fY (θ) ≡ ∂J

∂x

∣∣
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. The

2π-periodic function d(θcp) ≡
√

E [‖θ1 − θ2‖2]θ1=θcp
represents

the phase distance from in-phase synchronization, where
‖θ1 − θ2‖ is the phase difference defined on the ring [−π,π).
If xk is the value of x (t) when θ1 first passes through 2πk + θcp,
then E [x (t)]θ1=θcp represents the average of xk over k. Note that
d(θcp) is proportional to

√
D and dependent on κ (30).

Through a derivation similar to that of Eq. 5, we derive that
Vm is given by

Vm(θcp) = maD +
[1 − exp(mcκ)]

2

[
d(θcp)

ω

]2

, [6]

where a ≡ 1
2

∫ 2π

0
Z(θ)2

ω3 dθ > 0. See SI Appendix, section A for
the derivation. Since a represents an average phase response to
noise, the product aD represents the effective noise intensity
(17). Our purpose is now to infer aD and |c|κ, which are
important values because they determine the strength of the
phase diffusion and the time scale of the synchronization,
respectively (17).
Method I. We use only V1, V2, and V3 for one of the oscillators.
Combining Eq. 6 for m = 1, 2, 3, we can determine the three
unknowns aD, cκ, and (d/ω)2. In particular, we obtain

aD =
−V 2

1 − V 2
2 + V1V2 + V1V3

3(V1 − V2) + V3
[7]

and
|c|κ = log

V2 − 2V1

V3 − 2V2 + V1
. [8]

Note that as shown below, Eq. 8 states that a temporal correlation
decays exponentially with spike times, and the decay constant
is given by the effective coupling strength |c|κ. We define the
temporal correlation as

Gm =
1
n

n∑

k=1

[(T (k−m)
1 − τ)(T (k)

1 − τ)]. [9]

2 of 5 PNAS
https://doi.org/10.1073/pnas.2113620119

Mori and Kori
Noninvasive inference methods for interaction and noise intensities of coupled

oscillators using only spike time data

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

15
3.

17
7.

17
4.

12
0 

on
 Ju

ly
 2

, 2
02

4 
fr

om
 IP

 a
dd

re
ss

 1
53

.1
77

.1
74

.1
20

.



Forecasting a better shiftwork 
scheduling using Reservoir computing

[Kuno & HK, arxiv 2024]



Problems in shift working

• Shift workers are known to be at an increased risk of certain 
diseases

• They are supposed to be in “chronic jet lag”, which is thought 
to have a significant impact on their well-being and health

26



Mathematical models help qualitative
understandings and predictions about jet lag

27
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coupling in the SCN, large desynchrony among SCN neurons just a!er advancing LD cycle, and slow adaptation 
to the new LD cycle—are closely interrelated.

A mathematical approach is essential for understanding complex multi-cellular dynamics and emergent prop-
erties. Although there is a large body of mathematical studies focused on the spontaneous synchronization of a 
population of clock cells15–23, only a few studies have addressed the response to substantial jet lag in multicellular 
systems14,24–26. In prior work, we proposed a mathematical model to investigate the role of intercellular coupling 
in the SCN during the adaptation process a!er substantial jet lag14. As shown in Fig. 1, our model consists of three 
oscillators with a structure based on the anatomical properties of the SCN. #e SCN is composed of a hetero-
geneous population of neurons utilizing speci$c neurotransmitters. Oscillator 0 represents a group of neurons 
receiving direct input from the retina, which uses vasoactive intestinal peptide (VIP) as a neurotransmitter to 
send signals to the entire SCN. Oscillators 1 and 2 represent groups of neurons not receiving direct input from the 
retina; these neurons use multiple neurotransmitters, such as AVP and GABA, to interact with one another. Our 
model successfully reproduced our main experimental $nding that the adaptation to the advanced LD cycle was 
accelerated when the intercellular coupling is weakened. However, its mechanism remains rather vague.

In this paper, we therefore propose a minimal model to elucidate the mechanism of desynchrony, its resultant 
e%ect on the adaptation process, and the role of intercellular coupling. Further, we shed light on a key theoretical 
concept referred to as “jet lag separatrix”, which turns out to be crucial for understanding desynchrony and slow 
adaptation under jet lag conditions. Our model is based on our previous model14,25, but is further simpli$ed, thus 
being advantageous in terms of gaining a clear understanding. Moreover, we here propose a feasible method to 
accelerate the re-entrainment process for jet lag corresponding to a long-distance eastbound trip. We experimen-
tally veri$ed our method using mice, observing the re-entrainment process to be in good agreement with our 
mathematical predictions. We also discuss a relevant application of our study to shi! work.

Model
Our model consists of the following set of di%erential equations for SCN cells:

φ
ω φ= + Ω + ∆ −

d
dt

K t tsin( ( ) ), (1a)
0
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where t [day] is time, φi(t) (0 ≤  φ <  2π) is the phase of oscillator i (i =  0, 1, 2); Ω =  2π is the frequency of the LD 
cycle (corresponding to the period of exactly one day); ω0 is the frequency of oscillator 0; and ω is the frequency 
of oscillators 1 and 2.

Jet lag, i.e., a phase shi! of the LD cycle, is described as ∆ t =  0 for t <  tjetlag and ∆ t =  δ for t >  tjetlag, where δ is 
the jet lag and tjetlag is the time at which jet lag occurs. In the context of long-distance trips, t and t +  δ are the local 
times of the departure and destination places, respectively, with positive δ δ< <( )0 12

24
 and negative δ 

δ− < <( )012
24

 corresponding to eastbound and westbound trips, respectively.
#e second term in equation (1a) describes the in'uence of the LD cycle on oscillator 0, where K0 is inter-

preted as the product of the light intensity and the sensitivity of oscillator 0 to light stimuli. For simplicity, we 
assume that K0 is so large that oscillator 0 is always instantaneously entrained to the LD cycle. #e entrainment 
condition for oscillator 0 is = Ω

φd
dt

0 , resulting in

φ = Ω + ∆ .t t( ) (2)0
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2
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Figure 1. Based on the anatomical structure of the SCN, a schematic of our model consisting of three 
oscillators (numbered 0, 1, and 2). Oscillator 0 represents a group of neurons receiving input from the retina, 
whereas oscillators 1 and 2 represent groups of neurons receiving input from neurons of oscillator 0.
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[HK, Yamaguchi, Okamura Sci. Rep. (2017)]
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But I consider that this does
not work for everyone.
A data-driven approach is needed to 
provide a reliable prediction to
each individual.

Mathematical models help qualitative understandings and predictions
also for shiftwork scheduling  (unpublished)

Our model predicts
a better way to spend holidays



Can we assist in schedule decision-
making using machine learning?

[Kuno&HK, arxiv]
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Suppose that a person who has experienced a certain schedule of 
shift working will at some point change to a new, different schedule.
Our aim is to forecast the dynamics of the circadian clock for the new 
schedule on the basis of past data and the new schedule of sleep-
wake cycles. 
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FIG. 2: Basic RC structure. The input xt is mapped onto ut in the hidden layer by the matrix Win. During the
training and testing periods, the RC is fed with the true data xt of the dynamical system at every step. During the
forecasting phase, the reservoir computer updates autonomously using its output as the input for the new step.
Here, we inject the true value of the external drive Pn(t) into the input assuming that Pn(t) is accessible at all

times, including the forecast period.

FIG. 3: Prediction by RC of the data with n = 7 during the testing period. Only v and Pn(t) are shown.

For the dataset, we prepared two types, one with array
v, w, Pn(t) and the other with v, Pn(t). For the first type,
the reservoir computer was fed with x, y, Pn(t) during the
training and testing phases. For the second, only x, Pn(t)
were available during the same phase. In Fig. 6, we show
the standard deviation of the generated and true data for
each n.

III. CONCLUSION AND DISCUSSION

In this study, we investigated the forecasting ability of
RC using the time series of the forced van der Pol equa-
tion with frequent phase shifts to its external drive. We
tested three di↵erent sets of training data shown in Fig.
1; the prediction performance is summarized in Figs. 5
and 6. For n = 7, where the training data were com-

Reservoir computing (RC) Only the readout
is trained

Specifically, in this study, we asked whether Reservoir Computing (RC) 
can predict the dynamics of limit-cycle oscillators subjected to a 
periodic drive with frequent and abrupt phase shifts.



RC can make quantitative forecast
[Kuno&HK, arxiv 2024]
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2

drawback of long computing time. A traditional chal-
lenge of designing these RNN schemes is achieving a bet-
ter tradeo↵ balance of the prediction precision and the
computational cost of the training algorithms.

Reservoir Computing (RC), or echo-state network, is
an innovative framework for RNNs that combines high
fidelity in replicating dynamics and e�ciency in compu-
tation. In RC, the input and hidden layers are initial-
ized with randomly selected matrices, and only the read-
out layer requires training15. Further, RC requires only
a linear regression for fitting, and no back-propagation
that involves nonlinear computation is necessary. De-
spite this simple structure that distinguishes RC from
previous RNN frameworks, RC is remarkably e↵ective
for dynamical-systems learning tasks even for chaotic
systems16–20, whose sensitive dependence on initial con-
ditions makes the prediction task more daunting. More-
over, data driven approaches on learning tasks of par-
tially or sparse observed systems have carefully been
inspected21–27.

RC has been tested for learning tasks of nonau-
tonomous dynamical systems as well. Prominent re-
search was reported in Ref. 28, where the authors used
RC to predict the future state of various chaotic systems
with external drives. Specifically, they employed a si-
nusoidal function with a slowly growing amplitude as an
external drive. It was demonstrated that RC can success-
fully predict the system’s behavior if the external drive is
known. This scenario is similar to the problem of predict-
ing a shift worker’s biological clock. In the case of shift
workers, if they are exposed to light during waking hours
and darkness during sleeping hours, the external drive
corresponding to shift work is known. However, unlike
the scenario described in Ref. 28, the external drive in-
volves frequent and abrupt phase shifts corresponding to
changes in working hours. It is necessary to investigate
whether RC can accurately predict dynamics even for
external drives with such phase shifts.

Therefore, in this study, we asked whether RC can pre-
dict the dynamics of limit-cycle oscillators subjected to
an external drive with frequent and abrupt phase shifts.
Data were generated by a simple model: We employed
the van der Pol equation as a limit-cycle oscillator and
modeled the external drive is a sinusoidal function. We
found that RC can indeed precisely predict oscillation
dynamics under certain situations.

This paper is organized as follows: Section II explains
the methods used for our experiments and the results.
Section III presents the conclusion, followed by a discus-
sion of the results and possible applications, focusing on
the circadian rhythm.

II. METHOD AND RESULTS

We assumed that a person who has experienced a cer-
tain schedule of shift working will at some point change
to a new, di↵erent schedule. Our aim was to forecast

the dynamics of the circadian clock for the new sched-
ule on the basis of past data and the new schedule. Our
concrete procedure is described here.

A. Model and Simulation

We used the forced van der Pol model with an external
drive Pn(t), expressed as

dv

dt
= w, (1a)

dw

dt
= µ(1� v2)w � v + Pn(t). (1b)

For Pn(t), we chose the following sinusoidal function
with a phase shift function ✓n(t):

Pn(t) := A sin(⌦t+ ✓n(t)), (2a)

✓n(t) :=
n

24

�
t

4Te

⌫
2⇡. (2b)

where A and ⌦ are the strength and frequency of the
external drive, respectively, and Te := 2⇡

⌦ is the period
of the external drive in the absence of phase shifts. The
external drive is a model of the day-night rhythm in the
context of the circadian clock system; we thus interpreted
Te as one day (1 d). The function ✓n(t) shifts the phase
of Pn(t) by n hours every 4 d, with n 2 Z,�12  n  12.
Our numerical simulations were conducted using the

scipy.integrate.solve ivp package in Python. Time
series were sampled with a time step h := Te

M , where
M = 100 is the number of divisions. To avoid incon-
veniences caused by the discontinuity of Pn(t) during
the simulation, the data were generated by repeating nu-
merical integrations over the individual intervals between
each phase shift and concatenating the obtained time se-
ries. Because a phase shift was injected every 4 d, each
time series segment had 4M time steps.
Throughout the study, we fixed A = 0.5 and ⌦ = 1.05.

This choice was motivated by the fact that circadian
clocks in mice are considerably disturbed for a phase ad-
vancing condition5. Figure 1 shows the first 50 d of the
data sets (only for the variables x(t) and Pn(t)) obtained
by a simulation for each n 2 {�7, 0, 7}. The case of n = 0
corresponds to the forced van der Pol model without any
phase shift to the external drive, whereby the obtained
time series is genuinely periodic. For n = �7, despite
rapid changes in Pn(t), the waveform of x(t) remains
nearly periodic. In contrast, for n = 7, x(t) is consid-
erably distorted and seemingly aperiodic. As targeted,
the forced van der Pol equation indeed showed weaker,
more disrupted oscillations in the forward shifts than the
backward ones.
We defined the past schedule of a shift worker as

Pn(t) with n 2 {�7, 0, 7}, and the new schedule as

3

(a)

(b)

(c)

FIG. 1: Variable v of the van der Pol equation subjected to external drive Pn(t), to which the phase shift of n hours
is applied at every 4 d. (a) n = �7, (b) n = 0, and (c) n = 7.

Pm(t) with m 2 {�11,�10, · · · , 12}. We thus generated

the data sets {v(n)i , w(n)
i , P (n)

i } for n 2 {�7, 0, 7} and
divided them into two consecutive parts: the training

and testing periods, denoted as {v(n)i,train, w
(n)
i,train, P

(n)
i,train}

(i = 0, . . . , Ntrain) and {v(n)i,test, w
(n)
i,test, P

(n)
i,test} (i =

0, . . . , Ntest), respectively. As detailed previously, the
former and latter were generated for the RC train-
ing and the optimization, respectively. Using the fi-
nal data as the initial condition, we further gener-

describes sleep-wake cycles

(artificial data) Training data: 7 h phase-shift every 4 d

time 6

FIG. 4: Time series of the prediction and true vi for n = 7 and m = 10 during the forecast period. Only v and Pn(t)
are shown.

(a)

(b)

FIG. 5: Error of the forecast, E(n!m), for n = �7, 0, 7 and m 2 {�11, 10, · · · , 12}, where the input was (a)
x = (v, w, Pn) and (b) x = (v, Pn).

Forecasting: 10 h phase shift every 4 d

Quantitative forecast is possible for this simple model.



Oscillation quenching

31

Sometimes, oscillation is desired.
Sometimes, oscillation is harmful, e.g.,
trembles in Parkinson 's disease.

We would like to know the design and control principle
of a system producing (or suppressing) oscillations



Coupled metronomes
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Movie taken by a friend of mine



Weakly nonlinear analysis using a simple model 
[MD. Kato & HK, Sci Rep. (2024)]
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 We introduce a small dimensionless parameter ε and the following quantities:

By renaming τ → t and x̂i → xi , we transform Eq. (33) into the following dimensionless system: 

 where we assume that xi = O(1), ẋi = O(1),µi = O(1),βi = O(1), κ = O(1), ρ = O(1) , and gi(xi , ẋi) = O(1).
For simplicity, we consider the case where two metronomes are identical. Namely, we set 

µ1 = µ2 = µ, β1 = β2 = β , κ = ρ = 1 , and g1(x, ẋ) = g2(x, ẋ) = g(x, ẋ) . !en, Eq. (35) becomes

Removing ẍ1 and ẍ2 terms from right-hand side of Eq. (36), we can rewrite Eq. (36) as

!e typical behaviors of Eq. (37) are shown in Fig. 3b and c. By neglecting the O(ε2) term from the right-hand 
side of Eq. (37), we #nally obtain

Analysis
Averaging approximation
We analyze Eq. (38) with an averaging approximation. We rewrite Eq. (38) as 

(33b)
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κ
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.

(37)ẍi = −xi − ε
[

µ(x1 + x2)+ βẋi − g(xi , ẋi)
]

+ ε2µ
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−β(ẋ1 + ẋ2)+ g(x1, ẋ1)+ g(x2, ẋ2)
]

.

(38)ẍi + xi = −ε
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µ(x1 + x2)+ βẋi − g(xi , ẋi)
]

.

(39a)ẋi = yi ,

(39b)ẏi = −xi − ε
[

µ(x1 + x2)+ βyi − g(xi , yi)
]

.

Figure 3.  (a) !e model of two coupled metronomes on a movable platform. (b,c) Typical dynamics of the 
nondimensional motion Eq. (37). Anti-phase and in-phase synchronization are observed in panels (b) and 
(c), respectively. We set g as Eq. (24), ε = 0.01 , a = 4 , b = 1 , µ = 10 , and β = 0.8 . Initial conditions are 
(x1(0), ẋ1(0), x2(0), ẋ2(0)) = (2.8, 0,−2.7, 0) for panel (b) and (x1(0), ẋ1(0), x2(0), ẋ2(0)) = (2.8, 0, 2.7, 0) for 
panel (c). 8
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side of Eq. (37), we #nally obtain

Analysis
Averaging approximation
We analyze Eq. (38) with an averaging approximation. We rewrite Eq. (38) as 

(33b)
m2(M +m1)

M +m1 +m2
ẍ2 + k2x2 + γ2ẋ2 − δ2f2(x2, ẋ2) −

m1m2

M +m1 +m2
ẍ1 = 0.

(34)

ω:=

√

k1
m1

, τ :=ωt, βi:=
ωγi

εki
, µi:=

mi

εM
, x̂i:=

kixi
δi

, κ:=
k2
k1

, ρ:=
δ2

δ1
, gi

(

x̂i ,
dx̂i
dτ

)

:=
1

ε
fi

(

δi x̂i
ki

,
ωδi

ki

dx̂i
dτ

)

.

(35a)ẍ1 + x1 = ε

(

−β1ẋ1 + g1(x1, ẋ1)+
µ1ẍ1 + ρ

κ µ2ẍ2

1+ εµ1 + εµ2

)

,

(35b)
µ2

µ1
ẍ2 + κx2 = ε

[

−κβ2ẋ2 + κg2(x2, ẋ2)+
µ2(

κ
ρµ1ẍ1 + µ2ẍ2)

µ1(1+ εµ1 + εµ2)

]

,

(36)ẍi + xi = ε

[

−βẋi + g(xi , ẋi)+
µ(ẍ1 + ẍ2)

1+ 2εµ

]

.

(37)ẍi = −xi − ε
[

µ(x1 + x2)+ βẋi − g(xi , ẋi)
]

+ ε2µ
[

−β(ẋ1 + ẋ2)+ g(x1, ẋ1)+ g(x2, ẋ2)
]

.

(38)ẍi + xi = −ε
[

µ(x1 + x2)+ βẋi − g(xi , ẋi)
]

.

(39a)ẋi = yi ,

(39b)ẏi = −xi − ε
[

µ(x1 + x2)+ βyi − g(xi , yi)
]

.

Figure 3.  (a) !e model of two coupled metronomes on a movable platform. (b,c) Typical dynamics of the 
nondimensional motion Eq. (37). Anti-phase and in-phase synchronization are observed in panels (b) and 
(c), respectively. We set g as Eq. (24), ε = 0.01 , a = 4 , b = 1 , µ = 10 , and β = 0.8 . Initial conditions are 
(x1(0), ẋ1(0), x2(0), ẋ2(0)) = (2.8, 0,−2.7, 0) for panel (b) and (x1(0), ẋ1(0), x2(0), ẋ2(0)) = (2.8, 0, 2.7, 0) for 
panel (c).
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Note that g(x, ẋ) = g(x, ẋ
√
1+ 2εµ) when the function g is given by Eq. (24). In the analysis of Eq. (56), we can 

remove the assumption that µ = O(1) because Eq. (56) is considered as a weakly nonlinear oscillator as long 
as εµ = O(1).

An averaging approximation of Eq. (56) yields 

 where r and θ are given by Eqs. (8) and (9). By considering the !ows of Eq. (57a), we "nd that the saddle-node 
bifurcation occurs when

which implies that the transition from in-phase synchronization to oscillation quenching occurs when

Note that the condition (59) is looser than the condition (54). Namely, there exist parameter regions in which 
oscillation quenching occurs when two metronomes are in-phase synchronized whereas the anti-phase syn-
chronous state is stable. #is analytical result agrees with previous experimental observations using pendulum 
 clocks18.

Based on the above existence and stability analyses of synchronization and quenching, we depict the phase 
diagram, which is shown as the black lines in Fig. 4. #e dash-dotted and solid lines are given by β = βSN and 
β = βSN_in , respectively. Namely, the former is the boundary of whether oscillation quenching occurs when the 
two metronomes are anti-phase synchronized, whereas the latter corresponds to that when the two metronomes 
are in-phase synchronized. #e dashed line is given by µ = µc in inequality (51). In other words, the stability of 
in-phase synchronization switches at the dashed line.

#e solid and dash-dotted lines in Fig. 4 correspond to the saddle-node bifurcation. Since the Jacobian matrix 
at the "xed point (47) has a zero eigenvalue on the dashed line (see Supplementary Information), this line cor-
responds to either of the saddle-node, transcritical, or pitchfork  bifurcation37. According to the symmetry of 
Eq. (46) (i.e. Eq. (46) is invariant if we change r1 → r2, r2 → r1 and ψ → −ψ ) and the fact that this "xed point 

(56)ẍ + x = ε(−β
√

1+ 2εµẋ + g(x, ẋ)).

(57a)ṙ =
ε

12π

(

−6πβ
√

1+ 2εµr + 3ar3 − 2br5
)

,

(57b)rθ̇ = −ε

(

3a

16
r3 −

5b

32
r5

)

,

(58)β = βSN_in:=
3a2

16πb
√
1+ 2εµ

,

(59)β > βSN_in.

Figure 4.  #e phase diagram of the system (36) for anti-phase synchronization (APS), in-phase 
synchronization (IPS), and oscillation quenching (OQ). We use Model (iii) to describe the escapement 
mechanism. #e black lines represent the analytical boundaries obtained by an averaging approximation. #e 
in-phase and anti-phase synchronization disappear by the saddle-node bifurcation at the solid line (given by 
β = βSN_in ) and the dash-dotted line (given by β = βSN ), respectively. #e stability of in-phase synchronization 
switches at the dashed line, which is given by µ = µc . #e colored marks and white area show the numerical 
simulation results of Eq. (37). In area 1, where no symbol is plotted, oscillation quenching occurs when we 
use any of the 4 initial conditions described in the article, suggesting that neither anti-phase nor in-phase 
synchronization exists. In area 2, which is marked with red circles, anti-phase synchronization is stable, whereas 
in-phase synchronization does not exist. Namely, oscillation quenching occurs if we use the initial condition 
that is either exactly or close to the in-phase synchronization. In area 3, which is marked by green square marks, 
anti-phase synchronization is stable, while in-phase synchronization is unstable. Both anti-phase and in-phase 
synchronizations are stable in area 4 marked by blue dots. Note that oscillation quenching is stable in all of the 4 
areas. We "x a = 4, b = 1, ε = 0.01 in the simulation.

Boundaries of in-phase, anti-phase sync, oscillation quenching are obtained.
Novel interesting behavior, out-of-phase sync and beating phenomenon are found.
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mutants that display high-amplitude bio-
luminescence rhythms were examined. The
period lengths of expression rhythm of kaiBC
promoter, monitored with a bioluminescence
reporter (3), were 17, 21, and 28 hours, re-
spectively, in mutant stains with amino acid
substitutions of Tyr for Phe470 (F470Y), Pro
for Ser157 (S157P), and Ser for Thr42 (T42S).
The KaiC phosphorylation profiles, obtained
when the mutant proteins were assayed in
vitro, were consistent with those observed in
vivo (Fig. 3A). We also confirmed that the
bioluminescence profiles of these mutant
strains were consistent with the in vitro
oscillation of phosphorylation for each of the
respective mutant KaiC proteins (Fig. 3, A and
B). These results indicate that oscillation of
KaiC phosphorylation is the molecular timer
for the circadian rhythm of Synechococcus.

Phosphorylation of clock proteins has been
reported in various prokaryotic and eukaryotic
model organisms. PERIOD and TIMELESS in
Drosophila and FREQUENCY in Neurospora
degraded and/or translocated to the nucleus
according to their circadian rhythms of phos-
phorylation state (10, 11). Because alterations
of the phosphorylation of these clock proteins
affect the period length, the phosphorylation
processes were assumed to be important
components of the TTO models, including
those for cyanobacteria (2, 3). In these models,
phosphorylation only contributes at a specific
phase of the circadian cycle. However, our
study demonstrates that the oscillation of KaiC
phosphorylation is the pacemaker of the
cyanobacterial circadian clock. In addition,
the in vitro oscillation is generated in a homog-
enous system, whereas heterogeneous com-

partments are assumed in eukaryotic models
(2). KaiC forms hexamers (12, 13) and is
phosphorylated at Ser431 and Thr432 (14, 15).
These results imply that KaiC hexamer has
multiple phosphorylation states that may have
different biochemical characteristics, including
autophosphorylation and autodephosphoryla-
tion activities and/or binding preferences with
other Kai proteins. In addition, the reaction
rates of KaiC phosphorylation and dephos-
phorylation are quite slow, with rate constants
of 10j3 to 10j4 s-1 E(16), SOM text^. Func-
tionally, this feature would reduce the energy
needed for timekeeping.

We propose a model of the cyanobacterial
clock in which the autonomous oscillation of
KaiC phosphorylation controls the expression
of relevant genes including the kai genes to
generate physiologically functional circadian
oscillation (fig. S1). Simultaneously, the in
vivo oscillation of KaiC phosphorylation could
be amplified by coupling it with periodic
changes in the concentrations of Kai protein
and/or additional regulatory components of
KaiC phosphorylation. The relationship be-
tween the phosphorylation of KaiC and the Kai
transcription-translation cycle may be similar
to that of a pendulum and an escapement
mechanism that sustains the pendulum oscilla-
tion and transmits time signals to the hands of
a wall clock.
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Fig. 2. Temperature
compensation of the
period of the in vitro
oscillation of KaiC phos-
phorylation. (A) Three
Kai proteins were incu-
bated as in Fig. 1A at
25-, 30-, and 35-C.
SDS-PAGE and densito-
metric analyses were
carried out as in Fig. 1.
(B) The period of the
oscillation of the in vitro KaiC phosphorylation state was plotted against the incubation temperature.
Results from two independent experiments were plotted.
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Fig. 3. Correlation of period length between
the in vitro oscillation of the KaiC phosphoryl-
ation and the in vivo rhythms from wild-type
and mutant strains. (A) Bioluminescence pro-
files from the P-kaiBC reporter of mutants
(F470Y, S157P, and T42S) and wild-type strains
were monitored under continuous light con-
ditions at 30-C with a photomultiplier-based
assay system (3, 17). The in vitro oscillations of
KaiC assayed as described in Fig. 1 and in vivo
mutant KaiC phosphorylation profiles were
analyzed as described (5, 17). In vitro ratios
of P-KaiC to total KaiC (filled circle), in vivo
ratios of P-KaiC to total KaiC (open circle), and
bioluminescence profiles (open square) are
plotted. To compare the period lengths, the

phases of in vitro and in vivo oscillations of KaiC phosphorylation are shifted to put first peak of
phosphorylation rhythms on that of the corresponding bioluminescence rhythm. Periods of
bioluminescence rhythm are shown in parentheses. (B) For wild type and each mutant strain
shown in (A), the period length of the in vitro oscillation of the KaiC phosphorylation state is
plotted against that of the in vivo rhythms of the strain. Results from two independent
experiments were plotted.
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Synchronization in phosphorylation rhythm of Kai proteins

Period: about 24 hours
Half-life: about 10 hours

In vivo, there should be considerable effect
of turnovers of Kai proteins on synchronization
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Energetics of Synchronization

What is the merit of synchronization?
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Image: American Institute of Physics, June 9 (2017)

Energy should be a key aspect
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FIG. 1. (a) Front view of an LTD Stirling engine. (b) Side view of a pair of weakly coupled LTD Stirling engines with different load torques
acting on the cranks. The gases confined to the cylinders are in contact with the bottom and top heat reservoirs.

numerical experiments. After that, we will provide a theoret-
ical analysis of the effects of the weak coupling on power
and thermal efficiency. By generalizing thermodynamic fluxes
and forces and their quasilinear relations for engines under
weak coupling, we show that the coupling improves the power
exerted against the load torques and the thermal efficiency. We
further show that their maximum values are achieved when
the engines are synchronized. Finally, we formulate the load
torques that achieve the maximum thermal efficiency of the
coupled system.

II. MODEL

We consider a pair of weakly coupled LTD Stirling engines
with the same parameters except for the load torques T̃ (1)

load

and T̃ (2)
load acting on the cranks (Fig. 1). Heat reservoirs at

temperatures T̃b and T̃t (T̃b > T̃t) are attached to the bottom and
top surfaces of the large cylinders of the engines, respectively,
and we define the temperature difference !T̃ ≡ T̃b − T̃t for
later use. The temperature difference !T̃ and load torque T̃ (i)

load
(i = 1, 2) are assumed to be sufficiently small. A nondimen-
sionalized minimal model of a single LTD Stirling engine has
been proposed in Ref. [6] with the following form:

dθ

dt
= ω, (1a)

dω

dt
= σ

(
T (θ ,ω)

V (θ )
− Pair

)
sin θ − %ω − Tload, (1b)

where θ is the phase angle of the crank connected to the power
piston; σ is a positive constant determined by the surface areas
of the large and small cylinders; V (θ ) = 2 + σ (1 − cos θ ) and
T (θ ,ω) = Teff (θ )/(1 + σ sin θω

GV (θ ) ) represents the volume and
temperature of the gas confined to the cylinders, respectively;
Teff (θ ) = 1 + sin θ

2 !T is the effective temperature of the heat
reservoirs that periodically changes depending on the phase
angle; G is the thermal conductance associated with the heat
transfer between the gas and the surface of the large cylinder;
Pair is the atmospheric pressure acting on the power piston,
and % is the friction coefficient associated with the power pis-
ton. All the variables and parameters without the tilde symbol
represent dimensionless quantities. The minimal model was
obtained by assuming that the heat fluxes from the bottom

and top surfaces of the large cylinder obey the Fourier law
JQm = Gm(θ )(Tm − T (θ ,ω)), where Gm(θ ) with m = b (or t)
represents the effective thermal conductance between the gas
and the bottom (or top) heat reservoir. It was also assumed
that Gm(θ ) ≡ Gχm(θ ), where χm(θ ) (0 ! χm(θ ) ! 1) is a
function that controls the coupling between the gas and the
bottom or top heat reservoir, given as χb(θ ) = 1

2 (1 + sin θ )
and χt (θ ) = 1

2 (1 − sin θ ) [7]. The dynamical equations de-
scribe the engines as coupled nonlinear pendulums, where
the first term on the right-hand side of Eq. (1b) represents
the driven force due to the temperature difference. Since it
has been experimentally demonstrated that the minimal model
Eqs. (1a)–(1b) explains the essential characteristics of a real
LTD Stirling engine [12], we generalize the above minimal
model by adding a coupling term to describe the dynamics
of a pair of weakly coupled LTD Stirling engines i and j
(i, j ∈ {1, 2}, i $= j):

dθi

dt
= ωi, (2a)

dωi

dt
= σ

(
T (θi,ωi )

V (θi )
− Pair

)
sin θi − %ωi − T (i)

load

−K sin(θi − θ j ). (2b)

The last term in Eq. (2b) represents the coupling with K >
0 being the coupling strength. Note that the coupling should
be antisymmetric according to the action-reaction law and is
chosen to be a sine function for simplicity.

III. SYNCHRONOUS AND ASYNCHRONOUS
TRANSITIONS

To evaluate the degree of synchronization caused by the
coupling, we introduce the effective frequency as

〈ωi〉 = lim
τ→∞

1
τ

∫ τ

0
ωidt, (3)

where 〈...〉 ≡ limτ→0
1
τ

∫ τ

0 ...dt denotes a long-time average
and is reduced to the average over one period for engines
in periodic motion. For K = 0, the engines are adjusted to
be in the quasilinear response regime [7] so that they rotate
autonomously in a self-sustained manner. The phase space of
engine i is a set of ordered pairs {(θi,ωi ) : θi ∈ [−π ,π ),ωi ∈
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FIG. 1. (a) Front view of an LTD Stirling engine. (b) Side view of a pair of weakly coupled LTD Stirling engines with different load torques
acting on the cranks. The gases confined to the cylinders are in contact with the bottom and top heat reservoirs.

numerical experiments. After that, we will provide a theoret-
ical analysis of the effects of the weak coupling on power
and thermal efficiency. By generalizing thermodynamic fluxes
and forces and their quasilinear relations for engines under
weak coupling, we show that the coupling improves the power
exerted against the load torques and the thermal efficiency. We
further show that their maximum values are achieved when
the engines are synchronized. Finally, we formulate the load
torques that achieve the maximum thermal efficiency of the
coupled system.

II. MODEL

We consider a pair of weakly coupled LTD Stirling engines
with the same parameters except for the load torques T̃ (1)

load

and T̃ (2)
load acting on the cranks (Fig. 1). Heat reservoirs at

temperatures T̃b and T̃t (T̃b > T̃t) are attached to the bottom and
top surfaces of the large cylinders of the engines, respectively,
and we define the temperature difference !T̃ ≡ T̃b − T̃t for
later use. The temperature difference !T̃ and load torque T̃ (i)

load
(i = 1, 2) are assumed to be sufficiently small. A nondimen-
sionalized minimal model of a single LTD Stirling engine has
been proposed in Ref. [6] with the following form:

dθ

dt
= ω, (1a)

dω

dt
= σ

(
T (θ ,ω)

V (θ )
− Pair

)
sin θ − %ω − Tload, (1b)

where θ is the phase angle of the crank connected to the power
piston; σ is a positive constant determined by the surface areas
of the large and small cylinders; V (θ ) = 2 + σ (1 − cos θ ) and
T (θ ,ω) = Teff (θ )/(1 + σ sin θω

GV (θ ) ) represents the volume and
temperature of the gas confined to the cylinders, respectively;
Teff (θ ) = 1 + sin θ

2 !T is the effective temperature of the heat
reservoirs that periodically changes depending on the phase
angle; G is the thermal conductance associated with the heat
transfer between the gas and the surface of the large cylinder;
Pair is the atmospheric pressure acting on the power piston,
and % is the friction coefficient associated with the power pis-
ton. All the variables and parameters without the tilde symbol
represent dimensionless quantities. The minimal model was
obtained by assuming that the heat fluxes from the bottom

and top surfaces of the large cylinder obey the Fourier law
JQm = Gm(θ )(Tm − T (θ ,ω)), where Gm(θ ) with m = b (or t)
represents the effective thermal conductance between the gas
and the bottom (or top) heat reservoir. It was also assumed
that Gm(θ ) ≡ Gχm(θ ), where χm(θ ) (0 ! χm(θ ) ! 1) is a
function that controls the coupling between the gas and the
bottom or top heat reservoir, given as χb(θ ) = 1

2 (1 + sin θ )
and χt (θ ) = 1

2 (1 − sin θ ) [7]. The dynamical equations de-
scribe the engines as coupled nonlinear pendulums, where
the first term on the right-hand side of Eq. (1b) represents
the driven force due to the temperature difference. Since it
has been experimentally demonstrated that the minimal model
Eqs. (1a)–(1b) explains the essential characteristics of a real
LTD Stirling engine [12], we generalize the above minimal
model by adding a coupling term to describe the dynamics
of a pair of weakly coupled LTD Stirling engines i and j
(i, j ∈ {1, 2}, i $= j):

dθi

dt
= ωi, (2a)

dωi

dt
= σ

(
T (θi,ωi )

V (θi )
− Pair

)
sin θi − %ωi − T (i)

load

−K sin(θi − θ j ). (2b)

The last term in Eq. (2b) represents the coupling with K >
0 being the coupling strength. Note that the coupling should
be antisymmetric according to the action-reaction law and is
chosen to be a sine function for simplicity.

III. SYNCHRONOUS AND ASYNCHRONOUS
TRANSITIONS

To evaluate the degree of synchronization caused by the
coupling, we introduce the effective frequency as

〈ωi〉 = lim
τ→∞

1
τ

∫ τ

0
ωidt, (3)

where 〈...〉 ≡ limτ→0
1
τ

∫ τ

0 ...dt denotes a long-time average
and is reduced to the average over one period for engines
in periodic motion. For K = 0, the engines are adjusted to
be in the quasilinear response regime [7] so that they rotate
autonomously in a self-sustained manner. The phase space of
engine i is a set of ordered pairs {(θi,ωi ) : θi ∈ [−π ,π ),ωi ∈
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FIG. 3. Dependence relation between the thermal efficiency and the coupling strength for (a) forward process and (b) backward process. K
is increased from 0 to 6.0 × 10−5 in increments of 4.0 × 10−7 in the forward process and decreased in the same way in the backward process.
In the current case, we can confirm that the coupling has increased the thermal efficiency of the total system by about 7%.

consider the coupling effects on 〈Prel〉. Without loss of gen-
erality, we assume T (1)

load < T (2)
load, in which case the value of

〈ωd〉 decreases due to the effect of the coupling strength K
in both forward and backward processes, as was shown in
Fig. 2. This leads to the fact that 〈Prel〉 is an increasing function
of K , which means that the coupling improves the averaged
power. To see the coupling effect on the thermal efficiency,
we notice that the total heat flux from the high-temperature
heat reservoir 〈J (1)

Qb
〉 + 〈J (2)

Qb
〉 is independent of the coupling

from Eq. (9). This suggests that the coupling improves both
the averaged brake power and the thermal efficiency given that
different load torques act on the cranks, and their maximum
values are achieved when the engines are synchronized.

To give a physical interpretation of the fact that a weak
coupling improves 〈Prel〉, let us concentrate on 〈ωd〉 in Eq. (9).
We find that 〈ωd〉 in the noncoupling case is reduced to
−L11(T (1)

load − T (2)
load ), which means that 〈Prel〉 is generated by

the synergy of the load torque difference and the relative
motion due to the load torque difference when there is no
coupling. In this case, 〈Prel〉 takes a negative value as long
as T (1)

load %= T (2)
load, and is a decreasing function of |T (1)

load − T (2)
load|.

We thus conclude that 〈Prel〉 reduces the averaged brake power
given a fixed sum of load torques. When there is a coupling
added, 〈Prel〉 is obtained by

〈Prel〉 ≈ 1
2

× 2L11

[
−K〈sin(θ1 − θ2)〉 − 1

2

(
T (1)

load − T (2)
load

)]

×
(
T (1)

load − T (2)
load

)
(16)

= −1
2

L11
(
T (1)

load − T (2)
load

)2 − L11K〈sin(θi − θ j )〉

×
(
T (1)

load − T (2)
load

)
. (17)

Here, 〈#Prel〉 ≡ −L11K〈sin(θi − θ j )〉(T (1)
load − T (2)

load ) represents
the change of 〈Prel〉 due to the coupling, which takes a positive
value as long as T (1)

load %= T (2)
load. This suggests that the cou-

pling improves the averaged brake power. From Eq. (16), we
find that the increase in averaged brake power is due to the
suppression effect of coupling on relative motion caused by

the load torque difference. The averaged brake power takes
the maximum value when K〈sin(θi − θ j )〉 reaches − 1

2 (T (1)
load −

T (2)
load ), in which case 〈ωd〉 = 0, meaning that the engines are

synchronized.
Figure 3 shows the dependence relation between the ther-

mal efficiency and the coupling strength in the forward and
backward processes. The blue line is obtained by numerical
experiment, while the orange line is obtained by approximate
calculation using the quasilinear relations between thermo-
dynamic fluxes and forces. Since it is difficult to calculate
K〈sin(θ1 − θ2)〉 analytically, we used numerical values of it
in the approximate calculation. We can see some gap be-
tween experimental and theoretical values, which is caused
by neglecting higher-order terms and by the averaging ap-
proximation made in the derivation of Eq. (9). We also find
that the dependence of the thermal efficiency on the coupling
strength is characterized by a hysteresis as in the case of the
effective frequency difference in Fig. 2(a). This is because
the thermal efficiency depends on the effective frequencies
of the two engines. Such a hysteresis structure facilitates the
robustness of maintaining maximum thermal efficiency.

We have confirmed that coupling can improve the averaged
brake power and thermal efficiency. Since the total load torque
determines the power and thermal efficiency given a fixed
coupling strength, it is important to investigate the total load
torque that achieves the maximum values of them for synchro-
nized engines. In this case, 〈ωm〉 and 〈ωd〉 are reduced to the
synchronized frequency ωs and 0, respectively, indicating that
ωs and 〈J (1)

Qb
〉 + 〈J (2)

Qb
〉 are the only thermodynamic fluxes for

the coupled system with conjugate forces −T (1)
load − T (2)

load and
#T . The thermal efficiency is given by

η =
ωs

(
T (1)

load + T (2)
load

)
〈
J (1)

Qb

〉
+

〈
J (2)

Qb

〉 , (18)

which is completely determined by the thermodynamic fluxes
and forces. Therefore, the formulation of the maximum ther-
mal efficiency of a single engine given in Ref. [7] is directly
applicable to the present case. The maximum thermal effi-
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FIG. 1. (a) Front view of an LTD Stirling engine. (b) Side view of a pair of weakly coupled LTD Stirling engines with different load torques
acting on the cranks. The gases confined to the cylinders are in contact with the bottom and top heat reservoirs.

numerical experiments. After that, we will provide a theoret-
ical analysis of the effects of the weak coupling on power
and thermal efficiency. By generalizing thermodynamic fluxes
and forces and their quasilinear relations for engines under
weak coupling, we show that the coupling improves the power
exerted against the load torques and the thermal efficiency. We
further show that their maximum values are achieved when
the engines are synchronized. Finally, we formulate the load
torques that achieve the maximum thermal efficiency of the
coupled system.

II. MODEL

We consider a pair of weakly coupled LTD Stirling engines
with the same parameters except for the load torques T̃ (1)

load

and T̃ (2)
load acting on the cranks (Fig. 1). Heat reservoirs at

temperatures T̃b and T̃t (T̃b > T̃t) are attached to the bottom and
top surfaces of the large cylinders of the engines, respectively,
and we define the temperature difference !T̃ ≡ T̃b − T̃t for
later use. The temperature difference !T̃ and load torque T̃ (i)

load
(i = 1, 2) are assumed to be sufficiently small. A nondimen-
sionalized minimal model of a single LTD Stirling engine has
been proposed in Ref. [6] with the following form:

dθ

dt
= ω, (1a)

dω

dt
= σ

(
T (θ ,ω)

V (θ )
− Pair

)
sin θ − %ω − Tload, (1b)

where θ is the phase angle of the crank connected to the power
piston; σ is a positive constant determined by the surface areas
of the large and small cylinders; V (θ ) = 2 + σ (1 − cos θ ) and
T (θ ,ω) = Teff (θ )/(1 + σ sin θω

GV (θ ) ) represents the volume and
temperature of the gas confined to the cylinders, respectively;
Teff (θ ) = 1 + sin θ

2 !T is the effective temperature of the heat
reservoirs that periodically changes depending on the phase
angle; G is the thermal conductance associated with the heat
transfer between the gas and the surface of the large cylinder;
Pair is the atmospheric pressure acting on the power piston,
and % is the friction coefficient associated with the power pis-
ton. All the variables and parameters without the tilde symbol
represent dimensionless quantities. The minimal model was
obtained by assuming that the heat fluxes from the bottom

and top surfaces of the large cylinder obey the Fourier law
JQm = Gm(θ )(Tm − T (θ ,ω)), where Gm(θ ) with m = b (or t)
represents the effective thermal conductance between the gas
and the bottom (or top) heat reservoir. It was also assumed
that Gm(θ ) ≡ Gχm(θ ), where χm(θ ) (0 ! χm(θ ) ! 1) is a
function that controls the coupling between the gas and the
bottom or top heat reservoir, given as χb(θ ) = 1

2 (1 + sin θ )
and χt (θ ) = 1

2 (1 − sin θ ) [7]. The dynamical equations de-
scribe the engines as coupled nonlinear pendulums, where
the first term on the right-hand side of Eq. (1b) represents
the driven force due to the temperature difference. Since it
has been experimentally demonstrated that the minimal model
Eqs. (1a)–(1b) explains the essential characteristics of a real
LTD Stirling engine [12], we generalize the above minimal
model by adding a coupling term to describe the dynamics
of a pair of weakly coupled LTD Stirling engines i and j
(i, j ∈ {1, 2}, i $= j):

dθi

dt
= ωi, (2a)

dωi

dt
= σ

(
T (θi,ωi )

V (θi )
− Pair

)
sin θi − %ωi − T (i)

load

−K sin(θi − θ j ). (2b)

The last term in Eq. (2b) represents the coupling with K >
0 being the coupling strength. Note that the coupling should
be antisymmetric according to the action-reaction law and is
chosen to be a sine function for simplicity.

III. SYNCHRONOUS AND ASYNCHRONOUS
TRANSITIONS

To evaluate the degree of synchronization caused by the
coupling, we introduce the effective frequency as

〈ωi〉 = lim
τ→∞

1
τ

∫ τ

0
ωidt, (3)

where 〈...〉 ≡ limτ→0
1
τ

∫ τ

0 ...dt denotes a long-time average
and is reduced to the average over one period for engines
in periodic motion. For K = 0, the engines are adjusted to
be in the quasilinear response regime [7] so that they rotate
autonomously in a self-sustained manner. The phase space of
engine i is a set of ordered pairs {(θi,ωi ) : θi ∈ [−π ,π ),ωi ∈
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Higher order network of
noisy oscillators

[Marui & HK, arXiv]
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Higher-order networks are ubiquitous

40

A

B

C

If neuron C fires only when neuron A and B fire almost simultaneously

1

2

3

this is effectively “and circuit”:

Figure from https://www.electroniclinic.com/logic-and-gate-working-principle-circuit-diagram/

Neural network

Non-pairwise network

If we take temporal information into account,
some systems can better be modeled as non-pairwise networks

Pair-wise network



Oscillators in higher-order network
• Oscillators in higher-order networks have extensively been studied, 

e.g.,
Tanaka&Aoyagi (2011), Skardal&Arenas (2019), Millan, Torres, 
Bianconi (2020); Chutani, Tadic, Gupte(2021); Kuehn, Bick (2021); 
Rajwani, Suman, Jalan(2023); Carletti, Giambagli, Bianconi (2023) …
– Emergence of multiple attractors (two cluster states)
– Abrupt desynchronization

• However, noise effects on synchronization in higher-order networks 
are largely overlooked.

42
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Noisy oscillators in a higher-order network
[Marui & Kori, arXiv (2023)]

Globally coupled phase-oscillators with
two- and three-body interactions and independent white noises

Using the order parameter 

the model reduces to

<latexit sha1_base64="33YXb87jb8ntc1gU1TaDmVZlA7Y="></latexit>

✓̇m = !m+
K1

N

NX

j=1

sin(✓j � ✓m) +
K2

N2

NX

j,k=1

sin(✓j + ✓k � 2✓m) + ⇠m(t),

<latexit sha1_base64="bV7hR4z5oEFFteyeOdRNbxudKW0="></latexit>

h⇠m(t)i = 0, h⇠m(t)⇠n(⌧)i = 2D�mn�(t� ⌧),

<latexit sha1_base64="cOqfAVARy6gBYiZxK4tQ+KGQgZ0="></latexit>

Z = Rei⇥ =
1

N

NX

j=1

eil✓

<latexit sha1_base64="hnlN7oc9NXnTefaNrVL7P5VhCLc="></latexit>

✓̇m = !m +K1R sin(⇥� ✓m) +K2R
2 sin 2(⇥� ✓m) + ⇠m(t).

where R is Kuramoto order parameter, Θ is macroscopic phase
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What is the effect of three-body interaction?

By two-simplex interaction (i.e., three-body interaction), 
Individual phase θ seems to be locked to Θ or Θ + π 
(where Θ is mean phase).

Therefore, one can expect that three-body interaction
promotes the formation of two-cluster states,
which is actually the case in noise-free oscillators

<latexit sha1_base64="Dnc4x+uwFL6nUPQAcLuUKXf1Gnk="></latexit>

✓̇m = !m +K1R sin(⇥� ✓m) +K2R
2 sin 2(⇥� ✓m) + ⇠m(t).
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Two cluster states slowly decays and eventually disappear
in noisy oscillators with two-simplex interaction alone
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Two clusters becomes persistent when two-body interaction
is additionally introduced
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Phase diagram

Numerically finding R satisfying this equation, we obtain

Self-consistency equation:
<latexit sha1_base64="FOY9ak0VY2NgH2UHN8+EHm8nCQ4="></latexit>

R =

Z 2⇡

0
Pst( , R) cos d := g(R)
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FIG. 3. Bifurcation diagram for (a) K3 = 3.0 and D = 0.1
(b) K3 = 0.1 and D = 0.1. The purple line is a stable branch
and the green one is unstable. (c) Phase diagram based on
the number of solutions of Eq. (12). The white, red and green
regions correspond to one, three, two solutions, respectively.

Figure 3 (c) is a phase diagram based on the number
of solutions of the self-consistent equation (12).

By utilizing a standard method [9, 22] including the
Fourier series expansion, the time-scale separation, ap-
plying the solvability condition, the normal form of equa-
tion which governs the time evolution of the 1-order pa-
rameter for pitchfork bifurcation is derived as below:

@

@⌧
P1,1(⌧) =

Kc

2
P1,1(⌧)� g|P1,1(⌧)|2P1,1(⌧), (13)

where ⌧ is a scaled time variable, P1,1 is the principal
term of the first Fourier series coefficient of the distribu-
tion P and

Kc = 2D, (14)

g =
K

2
c +KcK3

8D
�

K3

2
. (15)

The type of bifurcation depends on the sign of g. If
g > 0, the bifurcation is supercritical, while is subcritical
if g < 0. Therefore, we characterize the bifurcation types
as

K3

(
< Kc, supercritical,

> Kc, subcritical.
(16)

Next, we discuss lifetime of two-cluster state when only
three-body interations are effective (K2 = 0). To this
end, we introduce some approximations.

The phase equation is also written as in terms of the
potential U(✓, R1(t)):

U(✓, R1(t)) = �
1

2
K3R1(t)

2 cos 2✓, (17)

✓̇m =
@

@✓
U(✓, R1(t)) + ⇠m. (18)

The potential has the minimum value at ✓ = 0,⇡ for
any K3. Thus, this description implies that oscillators
are distributed evenly at the two minimums after relax-
ation and R1 = 0. In other words, the desynchronized
transition should occur for any K3 or initial conditions.

In order to perform a theoretical analysis, suppose that
the phase of an oscillator is strictly 0 or ⇡. In other words,
the distribution is described by

⌘(t)�(✓) + (1� ⌘(t))�(✓ � ⇡). (19)

This holds true for D = 0 and is expected to be a good
approximation if the noise strength is weak enough be-
cause oscillators are localized around the minimums.

In the approximation of (19), we have the relation be-
tween R1(t) and ⌘(t):

R1(t) = |2⌘(t)� 1|. (20)

Next, we define H and H
⇤ as the states in which the

phase of an oscillator is 0 and ⇡, respectively. If the noise
strength D is sufficiently weak compared to the potential
barrier, each oscillator jumps from a well to the other at
certain rates k±:

H
k+⌦
k�

H
⇤
. (21)

The potential barrier �U = Umax � Umin is given by:

�U = K3R
2
1. (22)

According to the Kramers’ rate theory [23, 24], we cal-
culate the rates k± as

k(R1) = k+ = k�

= 2

p
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2
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◆
. (23)

Note that the rate is doubled compared to the standard
definition [24]. This is because the potential we consider
is periodic and there are two paths for oscillators to move
from one minimum to the other one.

We get the time evolution of ⌘ as

⌘̇(t) = �k+⌘(t) + k�(1� ⌘(t))

= k(1� 2⌘(t))

=
2K3R

2
1
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exp
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�
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(1� 2⌘(t)). (24)
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(b) K3 = 0.1 and D = 0.1. The purple line is a stable branch
and the green one is unstable. (c) Phase diagram based on
the number of solutions of Eq. (12). The white, red and green
regions correspond to one, three, two solutions, respectively.

Figure 3 (c) is a phase diagram based on the number
of solutions of the self-consistent equation (12).

By utilizing a standard method [9, 22] including the
Fourier series expansion, the time-scale separation, ap-
plying the solvability condition, the normal form of equa-
tion which governs the time evolution of the 1-order pa-
rameter for pitchfork bifurcation is derived as below:
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P1,1(⌧) =
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P1,1(⌧)� g|P1,1(⌧)|2P1,1(⌧), (13)

where ⌧ is a scaled time variable, P1,1 is the principal
term of the first Fourier series coefficient of the distribu-
tion P and

Kc = 2D, (14)

g =
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The type of bifurcation depends on the sign of g. If
g > 0, the bifurcation is supercritical, while is subcritical
if g < 0. Therefore, we characterize the bifurcation types
as

K3

(
< Kc, supercritical,

> Kc, subcritical.
(16)

Next, we discuss lifetime of two-cluster state when only
three-body interations are effective (K2 = 0). To this
end, we introduce some approximations.

The phase equation is also written as in terms of the
potential U(✓, R1(t)):

U(✓, R1(t)) = �
1

2
K3R1(t)

2 cos 2✓, (17)

✓̇m =
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U(✓, R1(t)) + ⇠m. (18)

The potential has the minimum value at ✓ = 0,⇡ for
any K3. Thus, this description implies that oscillators
are distributed evenly at the two minimums after relax-
ation and R1 = 0. In other words, the desynchronized
transition should occur for any K3 or initial conditions.

In order to perform a theoretical analysis, suppose that
the phase of an oscillator is strictly 0 or ⇡. In other words,
the distribution is described by

⌘(t)�(✓) + (1� ⌘(t))�(✓ � ⇡). (19)

This holds true for D = 0 and is expected to be a good
approximation if the noise strength is weak enough be-
cause oscillators are localized around the minimums.

In the approximation of (19), we have the relation be-
tween R1(t) and ⌘(t):

R1(t) = |2⌘(t)� 1|. (20)

Next, we define H and H
⇤ as the states in which the

phase of an oscillator is 0 and ⇡, respectively. If the noise
strength D is sufficiently weak compared to the potential
barrier, each oscillator jumps from a well to the other at
certain rates k±:

H
k+⌦
k�

H
⇤
. (21)

The potential barrier �U = Umax � Umin is given by:

�U = K3R
2
1. (22)

According to the Kramers’ rate theory [23, 24], we cal-
culate the rates k± as

k(R1) = k+ = k�

= 2

p
|@2

✓U(✓min, R1)@2
✓U(✓max, R1)|

2⇡
exp

✓
�
�U

D

◆

=
2K3R

2
1

⇡
exp

✓
�
K3R

2
1

D

◆
. (23)

Note that the rate is doubled compared to the standard
definition [24]. This is because the potential we consider
is periodic and there are two paths for oscillators to move
from one minimum to the other one.

We get the time evolution of ⌘ as
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Figure 3 (c) is a phase diagram based on the number
of solutions of the self-consistent equation (12).

By utilizing a standard method [9, 22] including the
Fourier series expansion, the time-scale separation, ap-
plying the solvability condition, the normal form of equa-
tion which governs the time evolution of the 1-order pa-
rameter for pitchfork bifurcation is derived as below:
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where ⌧ is a scaled time variable, P1,1 is the principal
term of the first Fourier series coefficient of the distribu-
tion P and

Kc = 2D, (14)

g =
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The type of bifurcation depends on the sign of g. If
g > 0, the bifurcation is supercritical, while is subcritical
if g < 0. Therefore, we characterize the bifurcation types
as
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(
< Kc, supercritical,

> Kc, subcritical.
(16)

Next, we discuss lifetime of two-cluster state when only
three-body interations are effective (K2 = 0). To this
end, we introduce some approximations.

The phase equation is also written as in terms of the
potential U(✓, R1(t)):

U(✓, R1(t)) = �
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K3R1(t)

2 cos 2✓, (17)

✓̇m =
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U(✓, R1(t)) + ⇠m. (18)

The potential has the minimum value at ✓ = 0,⇡ for
any K3. Thus, this description implies that oscillators
are distributed evenly at the two minimums after relax-
ation and R1 = 0. In other words, the desynchronized
transition should occur for any K3 or initial conditions.

In order to perform a theoretical analysis, suppose that
the phase of an oscillator is strictly 0 or ⇡. In other words,
the distribution is described by

⌘(t)�(✓) + (1� ⌘(t))�(✓ � ⇡). (19)

This holds true for D = 0 and is expected to be a good
approximation if the noise strength is weak enough be-
cause oscillators are localized around the minimums.

In the approximation of (19), we have the relation be-
tween R1(t) and ⌘(t):

R1(t) = |2⌘(t)� 1|. (20)

Next, we define H and H
⇤ as the states in which the

phase of an oscillator is 0 and ⇡, respectively. If the noise
strength D is sufficiently weak compared to the potential
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Note that the rate is doubled compared to the standard
definition [24]. This is because the potential we consider
is periodic and there are two paths for oscillators to move
from one minimum to the other one.

We get the time evolution of ⌘ as

⌘̇(t) = �k+⌘(t) + k�(1� ⌘(t))

= k(1� 2⌘(t))

=
2K3R

2
1

⇡
exp

✓
�
K3R

2
1

D

◆
(1� 2⌘(t)). (24)
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R = 0 seems to bifurcate at K1 = Kc, where Kc = 0.2 = 2D.
This bifurcation seems to be super- and sub-critical for K2 < Kc and K2 > Kc,
respectively.
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Super- or subcritical? Weakly nonlinear analysis
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Weakly nonlinear analysis for the bifurcation of R = 0 at K1 = Kc is as follows.

We set K1 = Kc(1 + "2) and introduce
d

dt
!

@

@t
+ "2

@

@⌧
.

The complex order parameter is expanded as

Z = "Z1 + "2Z2 + · · · ,

Note R = |Z|. Using a standar method [Kuramoto, 1984], we derive

@

@⌧
Z1(⌧) =

K1 �Kc

2
Z1(⌧)� g|Z1(⌧)|2Z1(⌧),

where

Kc = 2D,

g =
K2

c +KcK2

8D
�

K2

2
.

The sign of g changes at K2 = Kc.
We thus conclude that

• The bifurcation occurs at K1 = 2D

• It is super- and sub-critical for K2 < 2D and K2 > 2D, respectively.
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FIG. 3. Bifurcation diagram for (a) K3 = 3.0 and D = 0.1
(b) K3 = 0.1 and D = 0.1. The purple line is a stable branch
and the green one is unstable. (c) Phase diagram based on
the number of solutions of Eq. (12). The white, red and green
regions correspond to one, three, two solutions, respectively.

Figure 3 (c) is a phase diagram based on the number
of solutions of the self-consistent equation (12).

By utilizing a standard method [9, 22] including the
Fourier series expansion, the time-scale separation, ap-
plying the solvability condition, the normal form of equa-
tion which governs the time evolution of the 1-order pa-
rameter for pitchfork bifurcation is derived as below:

@

@⌧
P1,1(⌧) =

Kc

2
P1,1(⌧)� g|P1,1(⌧)|2P1,1(⌧), (13)

where ⌧ is a scaled time variable, P1,1 is the principal
term of the first Fourier series coefficient of the distribu-
tion P and

Kc = 2D, (14)

g =
K

2
c +KcK3

8D
�

K3

2
. (15)

The type of bifurcation depends on the sign of g. If
g > 0, the bifurcation is supercritical, while is subcritical
if g < 0. Therefore, we characterize the bifurcation types
as

K3

(
< Kc, supercritical,

> Kc, subcritical.
(16)

Next, we discuss lifetime of two-cluster state when only
three-body interations are effective (K2 = 0). To this
end, we introduce some approximations.

The phase equation is also written as in terms of the
potential U(✓, R1(t)):

U(✓, R1(t)) = �
1

2
K3R1(t)

2 cos 2✓, (17)

✓̇m =
@

@✓
U(✓, R1(t)) + ⇠m. (18)

The potential has the minimum value at ✓ = 0,⇡ for
any K3. Thus, this description implies that oscillators
are distributed evenly at the two minimums after relax-
ation and R1 = 0. In other words, the desynchronized
transition should occur for any K3 or initial conditions.

In order to perform a theoretical analysis, suppose that
the phase of an oscillator is strictly 0 or ⇡. In other words,
the distribution is described by

⌘(t)�(✓) + (1� ⌘(t))�(✓ � ⇡). (19)

This holds true for D = 0 and is expected to be a good
approximation if the noise strength is weak enough be-
cause oscillators are localized around the minimums.

In the approximation of (19), we have the relation be-
tween R1(t) and ⌘(t):

R1(t) = |2⌘(t)� 1|. (20)

Next, we define H and H
⇤ as the states in which the

phase of an oscillator is 0 and ⇡, respectively. If the noise
strength D is sufficiently weak compared to the potential
barrier, each oscillator jumps from a well to the other at
certain rates k±:

H
k+⌦
k�

H
⇤
. (21)

The potential barrier �U = Umax � Umin is given by:

�U = K3R
2
1. (22)

According to the Kramers’ rate theory [23, 24], we cal-
culate the rates k± as

k(R1) = k+ = k�

= 2

p
|@2

✓U(✓min, R1)@2
✓U(✓max, R1)|

2⇡
exp

✓
�
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D
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=
2K3R
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1

⇡
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�
K3R

2
1
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◆
. (23)

Note that the rate is doubled compared to the standard
definition [24]. This is because the potential we consider
is periodic and there are two paths for oscillators to move
from one minimum to the other one.

We get the time evolution of ⌘ as

⌘̇(t) = �k+⌘(t) + k�(1� ⌘(t))

= k(1� 2⌘(t))

=
2K3R

2
1

⇡
exp

✓
�
K3R

2
1

D

◆
(1� 2⌘(t)). (24)
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Lifetime of synchronized states

4

Due to the symmetry of the system, we assume ⌘ �
1/2 without loss of generality and we obtain the time
evolution equation of R1 from Eq. (20) by dropping the
absolute value bars as follows:

Ṙ1(t) = �
4K3R

3
1

⇡
exp

✓
�
K3R

2
1

D

◆
. (25)

The stationary solution to (25) is R1 = 0, which is a
global attractor. Figure 4 illustrates the time evolution
of R1 following equation (25).

The duration of two-cluster states is defined by the
time within which R1 varies from R0 to Rthre.

⌧ =

Z Rthre

R0

dt

dR1
dR1

=

Z R0

Rthre

⇡ exp
⇣

K3R
2
1

D

⌘

4K3R
3
1

dR1. (26)

In the following discussion, we set the threshold Rthre

to the value which minimizes the right hand side of Eq.
(25). In Fig. 4, we plot the time it takes for R1 to change
from 0.6 (corresponding to ⌘ = 0.8) to Rthre with purple
dots. In the region where K3 is large, the theoretical
result is consistent with the numerical results.
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FIG. 4. Time evolution of R1 governed by Eq.(25). Compar-
ison between the numerical results and the theoretical result.
The green line represents the duration of two-cluster states
predicted with Eq. (26).

In the general case, where three-body and two-body
couplings exist (K2 6= 0), R1 is governed by the follwing
equation,

Ṙ1(t) = �k+(1 +R1) + k�(1�R1), (27)

where k+ and k� have different values. Please refer to
Appendix for details.

In this Letter, we explored the dynamics of globally
coupled oscillators with three-body interactions. First
model we presented, which has only three-body inter-
actions, is appeared to have no stationary synchronized
state. We derived approximated time evolution of the or-
der parameter R1 and estimated the duration of synchro-
nized states when the distribution of phases are clustered.
Second model is characterized by both three-body and
two-body couplings. We showed that synchronized states
emerge from the uniformly distributed initial phases if
the coupling strength of the two-body interaction is suf-
ficiently strong. Along with the self-consistent analysis,
we derive the time evolution of the order parameter with
an approximation, which is effective if the noise strength
is small. The theoretical prediction of the dynamics of
R1 matches the numerical results very well for strong
coupling strength.

Our approach has some limitations. First of all, we
have not presented stability analysis, which would lead
us to understand the behavior of the system for weak
coupling strength. Secondly, we consider only all-to-all
coupling case. Although such a network is mathemati-
cally tractable, the globally coupled model is not always
appropriate in modelling systems in the real world. Thus,
a system with a more general network would be a next
step of further research.
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We have obtained

Ṙ = �
4K2R3

⇡
exp

 
�
K2R2

D

!
.

We define the lifetime of the synchronized state by
the time within which R varies from R0 to Rthre:

⌧ =

Z Rthre

R0

dt

dR
dR =

Z R0

Rthre

⇡ exp
⇣

K2R
2

D

⌘

4K2R3
dR,

where R0 = R(0) = 2⌘(0)� 1.
Very roughly, we can estimate

⌧ / exp

✓
K2R2

0

D

◆

Synchronized states persist for long time,
increasing exponentially with three-body coupling strength K2.
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When noise is absent,
Oscillators are synchronized into various two-cluster states.

When noise is present,
all those synchronized states disappear.

However, the desynchronization process from synchronized state
is extremely slow.

One-simplex interaction (two-body coupling) may
stabilize the synchrony.

Noisy oscillators in a higher-order network: Summary



51

• Developing theoretical frameworks for data-driven approaches
– Network inference from rhythmic signals

[Matsuki, HK, Kobayashi, to be submitted] Poster
– Network inference from spike data

[Mori & HK, PNAS (2022)] (talk on Thursday)
– Forecasting dynamics using reservoir computing

[Kuno & HK, arxiv]
• Oscillation quenching

– Metronomes [Kato & HK, Sci. Rep. (2023)]
– Kuramoto model with stochastic turnover [Ozawa & HK, to appear in PRL]

• Energetics of synchronization
– Coupled Heat engines  [Yin, Izumida, HK, PRR (2023)]

• Higher order networks 
– Slow desynchronization process in noisy oscillators [Marui & HK, arxiv]

My wish is to conduct theoretical research 
that will be useful in the real world

Many thanks for your attention and Cheers!


