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Thermodynamics: Study of Open systems

Total Hamiltonian

HtOt — HS +HI +HB

- System dynamics depend on System-Bath (SB) interaction.
- Full Heot info is needed for accurate description of system dynamics.
- Bath has huge degrees of freedom (not feasible to consider all).

- Effective description is necessary.



Effective Description of SB interaction

Total Hamiltonian

HtOt — HS +HI +HB

- master equation: P = RP P : probability vector

(discrete states) R : transition rate matrix

- Stochastic Differential Equation (SDE)  (continuous states)
:myv =—0,Ux) —yv+ <& (Langevin eq.) (EDEM)) = 2kgyTo(t — 1)

effective description of bath influence

- enable to build stochastic thermodynamics and crucial relations

: fluctuation theorems, TURSs, speed limits...



Weak vs. Strong Coupling

Total Hamiltonian

HtOt — HS +HI +HB

- Stochastic Differential Equation (SDE)
:my =—0,U(x) —yv+ <& (Langevin eq.)  (E(OEX)) = 2kgyTS(t — 1)
effective description of bath influence
— simple, but no information on H
o —PHs

Zs

- equilibrium state (Langevin eq.): p® = (Hsonly)  Zs= Jdg ¢ —PHs



Weak vs. Strong Coupling

Total Hamiltonian

Interaction

H, He

HtOt — HS + HI + HB
e_ﬂHS

- equilibrium state (Langevin eq.): p*d = ~
S

(Hsonly) Z = JdS e PHs

e _ﬂ I_Itot

to
Ztot

- equilibrium state for S+B: ptz‘tl = = JdeB ¢~ PH

—pHg dB —pH, _:BHB/Z —PH 4
e e P
- equilibrium state for S: p ! = JdB Pl = J B_°

Zi! Zp Z%eff
mean-force Hamiltonian: # = Hg+ A A=— ﬂ—l 1n(e—ﬂHI>B

Z% [dS e P et — Ztot/ZB <>B — JdB...e—ﬁHB/ZB



Weak vs. Strong Coupling

Total Hamiltonian

HtOt — HS +HI +HB

- equilibrium state (Langevin eq.): p®1 =

Interaction

e _:BHS

Zg

e _ﬂ I_Itot

- equilibrium state for S+B: p. ! =

- equilibrium state for S: p ! = JdB p

tot

ZtOt

cq

mean-force Hamiltonian: # ot = Hg + A

- weak-coupling limit:  lim pg4 = p
|Hy|—0

H, Hs

(Hsonly) Z = JdS e PHs

Z. = JdeB e P

e —pHg J dB e —ﬂHIe —pHp / ZB e —PH 4

Ztot/ ZB Z%

= — flin(e P,

AR

mean-force potential: coupling effect

Langevin eq. regarded as
weak-coupling description




Main Questions and Results of This Study
- Conventional Langevin equation

cmv =—0Ux) —yv+¢&

— not proper to investigate strong coupling systems

— major obstacle to explore and establish stochastic thermodynamics for
strong-coupling systems

|.Is there an SDE to capture the nature of S-B interaction!?

— we develop the SDE for arbitrary Hi under the assumption of time-
scale separation (bath relaxes much faster than system)

cmv =—0,Ux) —0.Ax) —Gx)v+& (EDEM)) = 2kgG(x)TO(t — 1)
2. ls the conventional Langevin equation weak-coupling description!?

- derivation from Caldeira-Leggett model: not weak-coupling limit

— two conditions leading to conventional Langevin derived from our SDE



S:v() =x(t) X = (xg, Xy, =**, Xy)

mv(t) = f(x(1), 1)

interaction btw S + external force

B: f’(t) = .i'(t) X = (ila-%Za a)’Z]\NI)
mv(f) = — VOy(X(1))

interaction btw B




S:v(t) =x(1) X = (X1, X5, *+*, Xy)

mv(t) = f(x(0), 1) — V Hy(x(1), X(1))
interaction btw S - B

B:¥(t) = X X =F, %, Xp)
mv(t) = — V. ®&(1) — V H(x(t), %(1))
interaction btw B interaction btw S - B
Vi(x, %) = Hy(x, %) + &)




S:v() =x(t) X = (xg, Xy, =**, Xy)
o%p my (1) = f(x(1), 1) =V, Vi(x(1), %(1))
dof®
\ /’c‘of B: ¥(t) = X0 ¥ = (%, %, %)
o—

v(t) = — Vi Vix (@), %(1))
Vi(x, %) = Hy(x, %) + D(X)



Setup

S:v(t) =x(2) X = (X, Xp, =+, Xp)
mv(1) = f(x(1), 1) =V, Vi(x(2), X(1))

B: ¥(f) = ¥(?) X =(&,%, %)
v(t) = — VVi(x (1), %)) —79(1) + E(1)

Vi(x, %) = Hy(x, %) + OF) thermostat influence




Derivation of SDE for System: Time-Scale Separation
S:v(t) =x(1) X = (X1, X5, *+*, Xy)

mv(1) = f(x(2), 1) =V, Vi(x(2), X(1))

B : ¥(t) = x(¢) X =(&,%, %)
mv(t) = — Ve Vi (), X)) —77(1) + £(1)

Vi(x, %) = Hy(x, %) + OF) thermostat influence

|. ¥ relaxes much faster than X (small 72/%)

: underdamped eq. of B — overdamped eq. of B



Derivation of SDE for System: Time-Scale Separation
S:v(t) =x(1) X = (X1, X5, *+*, Xy)

mv(1) = f(x(2), 1) =V, Vi(x(2), X(1))

B:7x(1) = — VeVix(), X(0) + &) X = (), %y, -+, Ky)
Vi(x, %) = Hy(x, %) + OF)

|. ¥ relaxes much faster than X (small 72/%)

: underdamped eq. of B — overdamped eq. of B



Derivation of SDE for System: Time-Scale Separation
S:v(t) =x(1) X = (X1, X5, *+*, Xy)

mv(1) = f(x(®), 1) =V, Vi(x(1), %(1))

B:7x(1) = — VeVix(), X(0) + &) X = (), %y, -+, Ky)
Vi(x, %) = Hy(x, %) + OF)

2. X relaxes much faster than v, x (small 7 limit) : adiabatic elimination of X

: 1 -
P Px,v,X,t) = <$+73) Px,v,x,1)

% 3=—V3v—iVI[f<x,r>—{val(x,:m]
m

L =VI[{ViVi(x, %)} + T V]

~ — small ¥ expansion and keeping up to ¥ order

Py, %) = ) G, v, D (% | x) LX) = = (| %)
k eigenfunction eigenvalue
o~ PV(EH)
PoX | x) = dg=0

Zi(x)



Derivation of SDE for System: Time-Scale Separation
S:v(t) =x(1) X = (X1, X5, *+*, Xy)

mv(1) = f(x(®), 1) =V, Vi(x(1), %(1))

B:7x(1) = — VeVix(), X(0) + &) X = (), %y, -+, Ky)
Vi(x, %) = Hy(x, %) + OF)

2. X relaxes much faster than v, x (small 7 limit) : adiabatic elimination of X

. LO}OkgkO
L Coav )= (Foo+7 )y ——

k>1 k

) Colex, v, 1) Colx,v,0) = [dxp(x,v,x, )

PSS R N e e st o

marginal distribution

~ — small ¥ expansion and keeping up to ¥ order

Py, %) = ) G, v, D (% | x) LX) = = (| %)
k eigenfunction eigenvalue
o~ PV(EH)
PoX | x) = dg=0

Zi(x)



Derivation of SDE for System: Time-Scale Separation
S:v(t) =x(1) X = (X1, X5, *+*, Xy)

mv(1) = f(x(®), 1) =V, Vi(x(1), %(1))

B:7x(1) = — VeVix(), X(0) + &) X = (), %y, -+, Ky)
Vi(x, %) = Hy(x, %) + OF)

2. X relaxes much faster than v, x (small 7 limit) : adiabatic elimination of X
F 047 10

Co(x, v, t) — (90,0 + }72

) Cox, v, 1) Co(x,v,1) = [dxp(x,v,x, )
k>1 k

RIB IS

marginal distribution

- [_ vTy — ivg [fe, v, ) = {V,A®)}] +i ViG@) (v + ZVV)] Cy(x,v,1)
m | m m

deterministic part : effective bath influence
effective SDE

:v(t) = x(1) my(t) = f(x(2),1) —V Ax(1) — Gx(2)) v(?) + &)
(E(HE' (1)) = 2TG(x(1)5(t — ')



Derivation of SDE for System: Time-Scale Separation

effective thermostat >v(t) = x() X = (0, X, 000, Xy)
mv(t) = f(x(0), 1) =V, Vi(x(1), (1))
-0 jv?‘l effective SDE
6, V(1) = x(1) (§ET (1)) = 2TG(x(1)(t — 1)

mv(1) = fx (), 1) =V, AQx(1) = Gx(®)) v(?) + &)
|. SDE for a system with arbitrary interaction (T unchanged)

2. Mean force is included in SDE.

Ax)=-T lnjdi e PV + T'n Zg, Zs = [ dite—PP®

when f(x,7) = — V,U(x) — steady state: p;i(x,v) = 1
Z%eff Hg = Ux) + EI’I’ZV2
3. Dissipation matrix G(x) 3 e

Cpo(t1%) = (Sh(x, %(1))5g(x, #(0)));?

o0

1
Gn,m(x) — ?J' dt Caxnvl,axmvl(tlx) 5h(x, .if) = h(x, j') — <h(x, f)){c)q

0
() = J'df"‘%(ﬂx)



Main Questions and Results of This Study
|.Is there an SDE to capture the nature of S-B interaction!?
(1) = x(0) (EME (1)) = 2TG(x(1)5(t — 1)
mv(1) = fx(@), 1) —V, Alx(1) = Gx(®) v(r) + &)

~ [
Ax)=-T ln[df e+ TInZg  Gppl®) = L dt Cy_ v, v(t]X)

— Information on S-B interaction is included in A(x) and G(x).

2. Is the conventional Langevin equation weak-coupling description!?

conventional Langevin: mv(t) = f(x(¢), 1) — Gv(r) + &(¢)

lim Ax) =0 im Gn m(x) —0 MV(I) =f(x(t), t)

|Hy| >0 [H|-0 (isolation, deterministic)

V,.A(x) = 0 :mean-force vanishes

G, .(x) =7¥,05,, :independet of V|




Main Questions and Results of This Study
|.Is there an SDE to capture the nature of S-B interaction!?
(1) = x(0) (EME (1)) = 2TG(x(1)5(t — 1)
mv(1) = fx (), 1) =V, AQx(1) = Gx(®) v(r) + &)

~ 1 [
A)=-T ln[di e+ TInZg  Gppl®) = L dt Cy_ v, v(t]X)

— Information on S-B interaction is included in A(x) and G(x).

2. Is the conventional Langevin equation weak-coupling description!?
conventional Langevin: mv(t) = f(x(¢), 1) — Gv(r) + &(¢)
lim A@)=0 lim G, (x)=0 Ao (1) = fx(0),
|Hy| >0 [H|-0 (isolation, deterministic)
— Conventional Langevin is not a weak-coupling description.

- Many experiments are well described by conventional Langevin.

- there exists another mechanism leading to conventional Langevin.



Two Conditions for Conventional Langevin Equation

| . Translational invariance of interaction potential
Vi(x, %) = Hy(x, %) + O&)

= Vi(xp, oo Xn, Xy o0y Xiy) = Vix+a, -+, xyt+a, X +a, -+, Xyt+a)

q4;‘0 Q e Q
09 Q
o o 9 ‘ Q- °
%‘( @
ol

: valid for experiments implemented in the bulk region (far from boundary)
of their environment



Two Conditions for Conventional Langevin Equation

2. Mutual independence of baths

(N system particles) |) entire bath can be partitioned into N mutually
_ V3(x3,%3) independent subbaths
Vl(xl_, X)) :G\c\ - no direct interaction between different subbaths
"‘ d . ‘\ Ot \‘\
1 . . .
' /A / Q@ 2) each subbath exclusively interacts with one of the
‘?:':9\ ] system particles
,':/.0 . - each bath particle cannot interact with multiple system
| 1 . .
articles simultaneousl
DA P y)
Vi (xp, %) — each system particle has its own subbath.

- mathematical expression for mutual independence

N
Vi %) = ) V,(x,. %,)
n=1

- always hold for one-particle system

- but not for multiparticle system



Two Conditions for Conventional Langevin Equation

Example |. One-particle system
|) Mutual independence is satisfied.

2) Assume translational invariance.
Vi(x, %) = Hy(x, %) + O(F)

= Vi(xy, Xy, -+, X)) = Vilx+a,X+a, -, Xyta)  (a=—x)
= ‘/I(O’Xl’ “',XN) (Xl — ‘)~Cl - xl)

- mean-force term

A(x)=—TIn|dx e’ + TnZg Zs = Jdge—ﬁéo‘é)

=—Tln|dX e?O% 4 T1n Zs — independent of x;

J

0, A(x) = 0 :mean-force term vanishes



Two Conditions for Conventional Langevin Equation

Example I. One-particle system
|) Mutual independence is satisfied.

2) Assume translational invariance.
Vi(x, %) = Hy(x, %) + O(F)

= Vi(x, X, -+, X)) = Vix+a, X +a, -, Xyt+ta)  (a=—x)
— ‘/1(09)21’ ...’XN) (Xl — ')~Cl — Xl)
- mean-force term 9, A(x) =0
- G matrix action-reaction law:
1 (% -0, Vi(x;,X)— ) 0; Vi(x;, %) =0
G (xp) = ?J' dt CdleI,aleI(t | x1) B ; K
0

generalized Green-Kubo:

0




Two Conditions for Conventional Langevin Equation

Example I. One-particle system
|) Mutual independence is satisfied.

2) Assume translational invariance.
Vi(x, %) = Hy(x, %) + O(F)

= Vi(xy, Xy, -+, X)) = Vilx+a,X+a, -, Xyta)  (a=—x)

— ‘/1(07)21’ ...’X]\NI) (Xl = )~Cl - X1)
- mean-force term 9, A(x) =0

- G matrix y :independent of V|
mvy = f(x), 1) —0, Alx) = Glxvy + & (EBOEN)) = 2TG(x))d(t — t')
= my, = flx, )=y +& (O W) = 2Ty8(t - 1)

Information on V; dissapears (conventional Langevin equation).

— the reason why one-particle experiment is well fitted by Langevin.



Two Conditions for Conventional Langevin Equation

Example 2. Multi-particle system
|) Assume mutual independence of bath.

2) Assume translational invariance.

- mean-force term: A = — TZ anan e PVi0X) 4 Tn Zy —-V,A=0

N, N, roo
- G matrix : Z ZJ dtCa V05, V(tlxl) = ¥0nm (YnENn}7)

— d|agonal matrix without V; dependence

mv = fx,v,1) = V,A®X) - G) - v+ & (EME' (1)) = 2TC(x(1)3(t — 1)

= mb, = fx,0) =y, + & (D)) = 2T7,8,,5(t — 1)

Information on V; dissapears (conventional Langevin equation).



Numerical Confirmation

ex) Single particle without translational invariance (mutual independence O)

Setup
Hi(x,, %) = Zlk(x — %) c’1">(:z)=11}fT:z
@< bath on r p T 2

0
< SN < : L .
- J \)‘ Vi = H; + @ : translational invariance is broken

SYSteM & = 0 : translational invariance is recovered

SDE: mv, = f(x,1) —0, Alx)) — Glx)v; + & (EDOEN(H)) = 2TG(x))S(t — 1)

f(x]7 t) — O

0, A(x)) =kx; k= Nkk/(k + k) 0, A(x)) =0
~ ~ 2 % = O ~

Gy =y =Ny [kI/(kI + k)] G(x)) = Ny

— mvy = —kx; —yv; +4/2vyT¢, Information on V; dissapears.



Numerical Confirmation

ex) Single particle without translational invariance (mutual independence O)

Setup
H(x;, %) = Zlk(x — i) c’1">(:z)=17<fo
Q< bath on £ p T 2

i

- J- \:‘f“ V; = H; + @ : translational invariance is broken

SYSteM & = 0 : translational invariance is recovered

~

SDE: = mv; = — kx; —yv; +/2yT¢, N=1047=102%m=10%andm=T=1

1 1
fy=0.1 kr=0.1
ki =0.5 o k=05

z%a N zg "
= P ol = .
% . 2 =
z k = Nigk! (k; + k) y =Ny [kI/ (e + k)]
0 - 0 .
0 ~ i 0 ~ i
k/ ki k/ ki



Numerical Confirmation

Effective mutual independence of baths

Real experimental setup: multi-particle system in a single bath

SY

)
N

No clear division for mutually independent
subbaths

- One bath particle can interact with
several system particles simultaneously.



Numerical Confirmation

Effective mutual independence of baths

Real experimental setup: multi-particle system in a single bath

No clear division for mutually independent

¢ C subbaths

© | - One bath particle can interact with
- several system particles simultaneously.

®
Q
n
3
3
kv

system | @
© | - Interaction partner may change over time.




Numerical Confirmation

Effective mutual independence of baths

Real experimental setup: multi-particle system in a single bath

No clear division for mutually independent

C C subbaths

- One bath particle can interact with
- several system particles simultaneously.

®©
<
n
o
3
N

system | @ X

© | - Interaction partner may change over time.

— effective mutual independence,
bath instead of strict one




Numerical Confirmation

Effective mutual independence of baths

Effective mutual independence

C

system |

SB

C

bath

© ¢

OA

System?2

rgp - S-B interaction range

rgg : S-S distance



Numerical Confirmation

Effective mutual independence of baths

Effective mutual independence

bath ©
e
fa © © °
system | ”sso System?2
© e
rgp - S-B interaction range
'sp < Iss rgs - S-S distance

We can construct mutually independent subbaths.

- one bath particle interacts with a single system particle.



Numerical Confirmation

Effective mutual independence of baths

Effective mutual independence

bath
e © ¢
o 'sB O O o G

’'SB
- z
system | © S5

© © System?2
C C ©

rgp - S-B interaction range

'sp < Iss rgs - S-S distance

We can construct mutually independent sabbaths.
- one bath particle interacts with a single system particle.

- Though the interaction partner may change over time, memory of past
interactions is dissipated and does not affect subsequent S-B interactions.

— Effective mutual independence of baths



Numerical Confirmation

Effective mutual independence of baths

Simulation \ ~N
Q@ 99
y °
9 29
X1
o 4 Al = ki)
9 o 9
mean force
i S
o 5 0,,V;
S‘ E x9 V1
>H4- !
8
S :
OO ...................... i ................ 2 3 4 5

- Two-system particles in ID ring

- No other potentials exist except for S-B
Interaction

- S-B overlapping (repulsive) force: 7
d : particle diameter = r;
N=10, =102 m=10"2T=10,k=10,d=1, L =100

time =1, vl = 0.697231650, v2 = 0.120527968

1.00

g .
S

0.75 A

=)
o
=1

o (OO0 .'. Wy
S

.9

El

> -
°

-1.00 4 *eoccao »

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00



Numerical Confirmation

Effective mutual independence of baths

Simulation \ ~N
Q@ 99y
é ,
9
x1°
o 4 Al = ki)
9 o 9
mean force
M — 0,V
— ! 0, Vi
S ; 2 /1
>H4- !
8
’Q !
00 ...................... i ................ 2 3 4 5

- Two-system

particles in ID ring

- No other potentials exist except for S-B

interaction

- S-B overlapping (repulsive) force: 7

d : particle diameter = r;

N=10, =102 m=102T=10,k=10,d=1, L = 100
G matrix
i 2088w g0t —o——g— —0——8——8—¢
0.81\ ™
1 0.6 — G
\E i G2
- 0.44 :
g } ! ° G2,1
U 02 E I Gg,z
| ] - e R S— .
1 .. 0/ @
E WSS S i o
V2% 4 6 8§ 10



Numerical Confirmation

Effective mutual independence of baths

Simulation \ ~ - Two-system particles in ID ring
Q@ 99y . :
o ? - No other potentials exist except for S-B
X interaction
x, @ N
1 _ . . .
o 4 \fil = kit) - S-B overlapping (repulsive) force: k7
Yo 0 d : particle diameter = rg
N=10, =102 m=102T=10,k=10,d=1, L = 100
mean force G matrix
e i S _aazlv i oog3ed88e s St——e — 8 ——8——8 o
8 = : 0.8 \T\Mf
336- / oi . - | L : C| T . |C| ‘ G1,1
<6 |i rgp < rgg: conventional Langevin description is vall s
= 4l @ rsg 2 T'sg: conventional Langevin description is failed —— G2
< | i ~ 02 “— G
| 2] EQ [ R I. ............................................................................................................ .
:,: i i Sossieersis — :

rss/rSB rSS/rSB



Conclusions

|.We developed an SDE to capture the nature of SB interaction, applicable to
a system coupled to a bath via arbitrary SB Hamiltonian.

2. Information of SB interaction are included in two terms

- mean-force term

- G matrix (damping matrix)
3.We found two physical conditions that can lead to the vanishing of SB
interaction effects, even in the case of strong coupling.

- translational invariance of interaction potential

- mutual independence of baths

4.With these conditions, our SDE is reduced to conventional Langevin.

5. “Mutual independence” can be effectively satisfied when rgg < rgq

6. Preprint: arXiv:2311.01098, to appear soon in PRE
in collaboration with Hyunggyu Park (KIAS)

Jong-Min Park (APCTP)



