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• “Statistical laws of stick-slip friction at mesoscale”, Nature Comm. 14:6221 (2023).

• “Avalanches and extreme value statistics of a mesoscale moving contact line, PRL 132, 084003 (2024) (Editor’s suggestion)



• Stick-slip is a class of phenomena characterized by intermittent jerky movement in out-of-

equilibrium disordered systems, as a yield response to a smoothly-varying external force.

Erlandsson et al. (1988) Maloney & Lemaitre (2006)

• It is observed in nature and many engineering applications that span a wide range of scales, from the

nanoscale contacts and fractures in nano- and micro-machines/devices to the geophysical scale of

snow avalanches, landslides and earthquakes.

Stick-slip and avalanche dynamics



• A common feature of stick-slip events is their broad range of slip

lengths, manifest as power-law distributions of many orders of

magnitude. The fact that very different systems behave in a

similar manner has prompted extensive investigations for a

common mechanism underpinning these phenomena.

• There are a number models and proposals aimed at explaining the

power-law distributions, but many of them have not been

confirmed by experiment. Theory and experiment do not converge,

because the out-of-equilibrium systems involved are often

disordered, and disorder has many different forms.

➢ Rapture of single molecules (zero-dimension)

➢ Pinning and depinning of a three-phase contact line and vortex lines 

in type-II superconductors (one-dimension)

➢ Friction between two solid surfaces and dynamics of ferromagnetic 

domain walls (two-dimension)

➢ Plasticity of amorphous solids under a simple shear (three-dimension)



coslv sv sl   = −

Young’s equation:

For an idealized surface (atomically smooth, chemically homogenous & infinitely hard) at equilibrium:

Hysteresis:

(cos cos )h lv r af   = −

• Contact angle hysteresis (or capillary force hysteresis) is caused 

by the pinning of the contact line by physical roughness or 

chemical heterogeneity on the solid surface (x = (kBT/)1/2  0.2

nm).

• For mesoscale systems, one finds large amplitude fluctuations of 

the capillary force, in addition to its mean value change fh. 

• How contact angle hysteresis is determined by the underlying 

pinning force field?

pinning-depinning of a three-phase contact line

𝜃𝑎 > 𝜃𝑟



Experimental setup: AFM probe

advancing
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Stick-slip dynamics of a moving contact line at mesoscales:

Surface coating: propyl trichlorosilane (PTS)

• Long glass fiber diameter d: 0.4-4 µm, at mesoscale to resolve single slip events

• fiber length L: 100-300 µm

• Low-speed limit: u~0.62 µm /s  (viscous drag is negligible)

small enough to resolve the slip events at the single slip resolution but is also large enough to allow the individual slips to 
have a broad range of slip sizes in a well-characterized defect landscape

receding



Capillary force hysteresis loop for water (red) and 

ethylene glycol (black)

Static spring constant of the liquid interface, k0 ~ 

𝐹𝑐: critical depinning force (onset of slip)

𝛿𝑓: force release during the slip

𝑘: dynamics spring constant of interface

(linear force accumulation) 6

Stick-slip of a moving contact lineStick-slip dynamics of a moving contact line

Fluctuating stick-slip dynamics: 



Quasi-1D scanning probe with an end 

contact area of 34×3 μm2 (UV glue)

Ultra-fine sandpaper (silicon carbide)

surface with an average grain size 0.1 

m

2D scanning probe with an end contact 

area of 12×12 μm2(UV glue).

Lateral hanging-beam AFM

Stick-slip dynamics in solid frictionStick-slip dynamics of friction between 2 solid surfaces



• In the low-load regime, the asperities (or microcontacts) at the interface are dilute, and their number 

increases with the normal load N.

• In the high-load regime, coalescence between nearby asperities occurs. 

• In the intermediate range of N (200–600 nN), an “optimal contact” between the scanning probe and 

sandpaper is achieved, with the number of the asperities is kept at ~O(100) for a mesoscale scanning 

probe.

Evolution of contact geometry with increasing normal load N



• Increasing normal load N: smooth sliding  stick-slip

• focus on the intermediate range of normal load (200–600 nN)

at an “optimal contact” with the sandpaper so that it can sense 

the full range of the rough landscape with negligible wear

k, Fc, and δf reveal universal statistical properties for dry friction & CL 9

𝑁 = 100 nN

𝑁 = 2400 nN

𝑁 = 500 nN

Stick-slip of frictional motion of a solidStick-slip dynamics of friction between 2 solid surfaces

quasi-1D probe 

2D probe 

quasi-1D probe 



Distribution of the stick-slip events: Depinning force 𝑓𝑐 =
𝐹𝑐− 𝐹𝑐

𝜎𝐹𝑐

Generalized-extreme-value (GEV) distribution:

𝑝 𝑓𝑐 =
1

𝛽
1 + 𝜉

𝑓𝑐−𝜇

𝛽

−1/𝜉

exp[− 1 + 𝜉
𝑓𝑐−𝜇

𝛽

−
1

𝜉
],

𝜇 = 𝛽(1 − Γ 1 − 𝜉 )/𝜉

𝛽 = 𝜉/ Γ 1 − 2𝜉 − Γ2 1 − 𝜉
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𝜉 = −0.07

Contact line
Solid friction

water, 66 wt.% glycerol aqueous solution, and ethylene glycol
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• GEV models the distribution of extreme values in a dataset. Commonly used in environmental 
science, economics, and engineering to analyze events such as extreme weather conditions or 
financial market crashes.

• Help to understand how likely the extreme(the highest or lowest ) values are to occur.

• Examples: predicting the maximum wind speed in a particular location, estimating the size of 
the worst floods in a river, or analyzing the extreme values of stock market returns during a 
financial crisis.

Generalized Extreme Value (GEV) distribution 



12

Extreme value Theorem: 

three types of GEV distributions 

Cumulation distribution



Y. Wang et. al., Sci. Adv. 4: eaat7480 (2018)

Large-scale circulations in turbulent thermal convection:

the plume eruption amplitude follows the GEV distributions

Characteristic time scales near the laminar-turbulent transition in the pipe flow (left) and the scaling near predator extinction in the predator-prey 

model (right). The mean decay and splitting times of the turbulent density and the prey density scale with Reynolds number

Characteristic time scales near the laminar-turbulent transition in the pipe flow

Avila et. al Science 333, 192 (2011)
HY Shih et. al, Nat. Phys. 12, 245,(2018)

Examples of Extreme Value Statistics: 

Super-exponential in t is related to Gumbel distribution:
Active state persists until the most long-lived percolating
strand decays
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Extreme Value Statistics in moving contact line: 

contact line deforms and eventually depinning occurs

• contact line deforms to accumulate stronger force to de-pin

• A large number of pinning sites along the contact line loop

• Fc ~ maximum of the pinning forces

• As the contact line is pulled: sample the maximum of the (~independent pinning forces)

on the contact line → GEV

Normalized depinning force 𝑓𝑐 =
𝐹𝑐− 𝐹𝑐

𝜎𝐹𝑐

Fc contains an eqm. force

 = -0.17 (black line)  = -0.06 (red line)

 < 0 reversed Weibull distribution: has an upper bound (fc)M = μ − β/ξ

beyond which P(fc)= 0 → an upper bound for (Fc )M. Roughness-induced maximal 

pinning force = (Fc )M - Feq , larger for the rougher surface(750 vs. 402 nN)

 = 0 Gumbel distribution: exponential tail with an infinite upper bound [(fc)M →∞].

𝐹𝑒𝑞 = −𝜋𝑑𝛾 cos 𝜃
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휀 = 1.45 ± 0.1

𝑃 zslip ~(zslip)
−

Distribution of the stick-slip events for the contact line: 

slip length zslip=
𝛿𝑓

𝑘0

• Power-law distribution is hallmark of the avalanche dynamics.

• when a strong defect slips, the released large stress is partially transferred to its neighboring defects 

and triggers their slips→ avalanche

• ϵ is unchanged for fibers with different roughnesses and in contact with different liquids

• In the low-speed limit, the Alessandro-Beatrice-Bertotti-Montorsi(ABBM) model 

predicts ϵ =3/2 → slow CL motion obeys the ABBM model

Static spring constant of the liquid interface, k0



• Power-law distribution is hallmark of the avalanche dynamics.

• The power-law exponent 휀~1.5 (ABBM) of the CL is larger than that of the solid friction:

휀~1.2 (quasi-1D), 휀~0.72 (2D probe).

.
16

휀 = 1.45 ± 0.1

Distribution of the stick-slip events: Slip length=
𝛿𝑓

𝑘0

Contact line Solid friction

휀 = 1.15 ± 0.1



Distribution of the stick-slip events: Dynamic spring constant 𝑘

𝑘 is the dynamic spring constant at partial pinning.

𝑘0 is the static spring constant at complete pinning.
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Contact line Solid friction

0.3 ≲ k/k0≲ 1.1 and peaks around k/k0 ≃ 0.94 
→ k0 sets a cutoff value for k



Theoretical model: Stick-slip motion in a random pinning field

Uphill (AB):

Slip instability occurs when 𝑘0 < 𝑘′. 

Slip length zslip =
𝛿𝑓

𝑘0
.

Dynamic balance between 𝐹pull and 𝐹pin

Measured dynamic spring constant                            ,

is the local force gradient, with  (in series)

1

𝑘
=

1

𝑘0
+
1

𝑘′
Downhill (BC):

18

Random pinning 

force field 𝐹pin 𝑥

Elastic pulling force 

h(x; z) : defect-induced heterogeneous interfacial tension difference between the solid-air and solid-liquid interfaces

Microscopically: 

the slip area 



• 𝑃 𝑘′ =
1

𝑏
exp[−𝑏(𝑘′/𝑘0)], with 𝑘′/𝑘0 =

1

𝑏
≫ 1 (stick-slip condition is satisfied).

• Exponential distribution of 𝑘′ is common in dynamically or spatially heterogeneous systems

• Broad surface height roughness distribution:

Contact line Solid friction

Distribution of the stick-slip events: local pinning force gradient 𝑘′

1/𝑏 = 6.1
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1/𝑏 = 7.1

power spectrum



Damped spring-block model for stick-slip dynamics

𝛼
𝑑2𝑈

𝑑𝑇2 = −
𝑑𝑈

𝑑𝑇
+ 1 − 𝑈 + 𝑈 𝑇 ;  𝑇 = 0,  𝑇  𝑇′ = 2𝐷′𝛿 𝑇 − 𝑇′

Governing equation of the stick-slip motion (center-of-mass of scanning probe xs):

𝑚
𝑑2𝑥𝑠
𝑑𝑡2

= −𝛾
𝑑𝑥𝑠
𝑑𝑡

+ 𝑘 𝑢0𝑡 − 𝑥𝑠 − 𝐹pin 𝑥𝑠
Brownian-correlated pinning force:

𝐹pin 𝑥𝑠 − 𝐹pin 𝑥𝑠
′ 2

= 2𝐷|𝑥𝑠 − 𝑥𝑠
′|

Slip length: 𝛿𝑥𝑠 ≡ 0
𝑇𝑠𝑈(𝑇)𝑑𝑇

Numerical solution: 
𝑈 𝑇 = 0 = 0;𝑈 𝑇 = 𝑇𝑠 = 0

𝛼 = 𝑚𝑘/𝛾2 ቊ
= 0, overdamped, ABBM

≥ 1/4, underdamped

𝐷′ = 𝐷/𝑘𝛾𝑢0 ቊ
≫ 1, strong pinning

≤ 1, weak pinning

20

𝑈 =
𝑑𝑥𝑠

𝑑𝑡
/𝑢0→ Langevin-type equation with multiplicative noise:

• an extension of the Prandtl and Tomlinson model (widely used in the study of atomic stick-slip friction), in which Fpin(xs) 

was assumed to be of a sinusoidal form for atomic friction over a single crystalline surface.
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Distribution of the slip length:
𝑃(𝛿𝑥𝑠)~𝛿𝑥𝑠

−

Damped spring-block model for stick-slip dynamics in solid friction

𝜖 = ቊ
3/2 − 1/(2𝐷′), 𝛼 = 0 (overdamped, ABBM)

1.2 − 2/𝐷′, 𝛼 ≥ 1/4 (underdamped)

Numerical results

Smaller 𝜖 for under-damped system: it  has less dissipation, and 
more slip events with larger slip lengths are observed
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Conclusions

• Stick-slip friction and contact line pinning-depinning at mesoscale (at the single slip resolution)

obey the statistical laws that are often associated with the avalanche dynamics at a critical state.

• seemingly chaotic stick-slip friction at mesoscale obeys precise statistical laws

• The avalanche (stick-slip) dynamics of a contact line or solid are governed by three statistical laws:

1) GEV distribution for the depinning force;

2) Power-law distribution of the slip length;

3) Exponential distribution of the local pinning force gradient 𝑘′

• The power-law exponent 휀 for the avalanche size can be caused by the magnitude of damping, with

휀 = 1.5 for the overdamped contact line and 휀~1.2 for the (quasi 1D)underdamped solid friction.

• The proposed damped spring-block model under a Brownian-correlated pinning force field captures

the essential physics of the stick-slip friction at mesoscale
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𝑃 xs ~(xs)
−

f = k0xs




