
2. Hydrodynamic simulation of synchronized oscillatory flows
in two coupled collapsible tubes
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2. Hydrodynamic simulation of synchronized oscillatory flows
in two coupled collapsible tubes

Subcritical
Neimark-Sacker bifurcation

d = 23d = 22

d = 29.5d = 29.0

In-phase and anti-phase modes are bistable
for middle d.
We clarify the bifurcation structure
at two bifurcation points where the stability
of anti-phase mode changed.

discussed using both the phase
difference and amplitude

Y. Araya, H. Ito, and H. Kitahata, Phys. Rev. E 109, 054201 (2024).
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Symmetry and dynamics universality in quantum chaos

[1] P. Fang, C. S. Tian and J. Wang. Symmetry and dynamics universality of supermetal in quantum chaos. Phys. Rev. B 92, 

235437 (2015).

[2] C. Hainaut#, P. Fang#, A. Rançon, J. F. Clément, P. Szriftgiser, J. C. Garreau, C. S. Tian*, R. Chicireanu*, Experimental 

Observation of a Time-Driven Phase Transition in Quantum Chaos, PHYSICAL REVIEW LETTERS, 121, 134101 (2018).

• Model: Quantum kicked rotors with or without time-reversal 

symmetry

• Dynamics is universal, determined only by the system’s 

symmetry, both for the quantum resonance phase (rational 
෩ℏ/(4π))[1] and the localized phase (irrational ෩ℏ/(4π))[2].



Global bifurcation diagrams of a prescribed curvature
problem arising in a generalized MEMS model

Kuo-Chih Hung

Abstract
We study global bifurcation diagrams and exact multiplicity of positive solutions

for the one-dimensional prescribed mean curvature problem arising in MEMS8>><>>:
�

0@ u0(x)q
1 + (u0(x))2

1A0

=
�

(1� u)p ; u < 1; � L < x < L;

u(�L) = u(L) = 0;

(1)

where � > 0 is a bifurcation parameter, and p; L > 0 are two evolution parameters.

Notice (1) can be written in the equivalent dynamical system8<:
_u = v;

_v = ��(1 + v
2)3=2

(1� u)p ;
u(�L) = u(L) = 0: (1�)

The problem is a derived variant of a canonical model used in the modeling of elec-
trostatic MEMS device obeying the electrostatic Coulomb law with the Coulomb force
satisfying the inverse p-th power law with respect to the distance of the two charged
objects, which is a function of the deformation variable.
When a voltage � is applied, the membrane de�ects towards the ceiling plate and a

snap-through may occur when it exceeds a certain critical value ��; referred to as the
�pull-in voltage�. This creates a so-called �pull-in instability�which greatly a¤ects the
design of many devices. Also, in the actual design of a MEMS device, typically, one of
the primary device design goals is to achieve the maximum possible stable steady-state
de�ection (that is, ku��k1 (< 1), referred to as the �pull-in distance�, with a relatively
small applied voltage.



� For p � 1, the bifurcation diagram (1) undergoes two bifurcations. The �rst is a
standard fold (or called saddle-node) bifurcation, which happens for all positive L
at some positive ��. The second is a splitting bifurcation.

Global bifurcation diagrams Cp;L with p � 1.
(i) L > L�. (ii) L = L�. (iii) 0 < L < L�.

� For 0 < p < 1, the bifurcation diagram (1) undergoes three bifurcations. The �rst
is a standard fold bifurcation. The second is a splitting bifurcation. The third is a
segment-shrinking bifurcation.

Global bifurcation diagrams Cp;L with 0 < p < 1.
(i)�(ii) L > L�. (iii) L = L�. (iv) L� < L < L�. (v) 0 < L � L�.

2



Evaluating the Effectiveness of Precursor Data on
Earthquake Forecasting Depending on Earthquake Depth
Matheus Junqueiraa, Masanori Shiro, Yuji Yagi, Yoshito Hirata
a Graduate School of Science and Technology – University of Tsukuba

Effective ways to forecast earthquakes are yet to be
designed

The literature gives evidence that external factors
can change the patterns of earthquake occurrence

Solar magnetic field
Lunar tides
Atmospheric temperatures

They cannot be expected that they will affect
earthquakes equally regardless of depth

Investigating how forecasting accuracy varies with
the earthquake depths can give important insights
on which precursors are most relevant

Here we perform such analysis for surface
temperatures and sunspot data



A Glimpse of the Results

. . . . . .all depths depth < 50 km depth < 30 km

We try to predict earth‑
quakes in the Balkans us‑
ing temperature data and/or
sunspot numbers

the correlation increases sharply as we decrease the
threshold for the earthquake depths
For earthquakes shallower than 30 km, we observe a
correlation of approximately 0.21 when using both
kinds of data
An increase of∼35% from the baseline.
In the “all depths” model, not only the correlations
were lower, but the increase was only of∼26%

The results give pieces of evidence that support that
depth is a very significant variable in precursor
analysis
This can also be used to reason about the
mechanism by which the Sun affects earthquakes
The evidence strongly suggests that the Sun affects
earthquakes by means of the heat that it is
constantly transferring to our atmosphere



Highly efficient THz wave using chaotic supremacy
Fumiyoshi Kuwashima, Mona Jarrahi, et al. 

• Chaotic Supremacy is a new concept to express the 
properties that can only be realized by chaos

• Originated from ergodicity, mixture property, and 
structural stability of chaos. 

 Autonomous system
 High-efficiency（improve energy conservation)
 Structural stability

1
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Stable optical beats near the laser threshold using laser chaos



Emergent Dynamic Patterns in 

Chemokinetic Active Matter with Fuel Consumption
Euijoon Kwon, Yongjae Oh, and Yongjoo Baek

Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea

Coarse-grained continuum descriptionIntroduction

• Active matter shows collective behavior which comes from the 

nonequilibrium nature of the system.

• Recently, the role of chemical signaling on active matter have been studied 

extensively, where many of them focuses on chemotaxis.

• On the other hand, the effect of fuel depletion due to local consumption is 

neglected in previous active matter models.

• Motivated by this, we investigate chemokinetic active particle (CAP) with fuel 

consumption, and study the interplay between clustering of CAPs and 

chemical diffusion.

• Coarse-grained hydrodynamic equation

ሶ𝜌 𝒓, 𝑡 = 𝛁 ⋅ 𝐷 𝛁𝜌 +
𝑣 𝜌, 𝑛

2𝐷r
𝛁 𝑣 𝜌, 𝑛 𝜌 − 𝜅𝛁 𝛁2𝜌

ሶ𝑛 𝒓, 𝑡 = 𝐷𝑐𝛁
2𝑛 + 𝐼 − ቊ

𝜆𝜌𝑛, BMR

𝜆𝜌𝑣 𝜌, 𝑛 𝑛, AMR

Linear stability analysis & numerical simulation

• BMR (basal metabolic regime)

• AMR (active metabolic regime)

• Microphase separation & moving cluster in the AMR

Conclusion

Two mechanisms of fuel consumption

• We investigate how the changes in the self-propulsion strength via fuel depletion 

affect the MIPS phenomenology of active particle.

• In the BMR, the phase separation is always enhanced. 

• In the AMR, the phase separation is suppressed with microphase separation and 

emergent oscillatory patterns. 

• Our possible future works include investigating the role of fuel consumption in other 

active matter system (polar, chiral, etc.) and experimental confirmation of our results.

Basal Metabolic Regime (BMR)

• The fuel consumption rate is proportional to the density of the active particles

• Inside the dense cluster, fuel is depleted by large consumption of CAPs, which 

results in the slowdown of CAPs

→ Phase separation is enhanced (positive feedback)

Active Metabolic Regime (AMR)

• the fuel consumption rate is proportional to the actual distances traveled by CAPs.

• Inside the dense cluster, fuel is piled up due to stuck motion of CAPs, which helps 

CAPs to escape the cluster

→ Phase separation is suppressed (negative feedback)

The model: particle-based description

• Chemokinetic active particles

ሶ𝐫𝑘 = 𝜇𝑣 𝜌local, 𝑛 ො𝐞𝑘 + 2𝜇𝑇 𝜉𝑘, 𝑣 𝜌local, 𝑛 = 𝛼𝑛 − 𝜁𝜌local

• Fuel

ሶ𝑛 𝐫, 𝑡 = 𝐷𝑐 ∇
2𝑛 + 𝐼 − 𝜆 𝑓 𝑛, 𝐫𝑘, ሶ𝐫𝑘

𝑓 𝑛, 𝐫𝑘, ሶ𝐫𝑘 =

න𝑑2𝐫′𝑛 𝐫 𝛿 𝐫 − 𝐫′ ෍
𝑘′=1

𝑁

𝛿 𝐫′ − 𝐫𝑘′ , BMR

න𝑑2𝐫′𝑛 𝐫 𝛿 𝐫 − 𝐫′ ෍
𝑘′=1

𝑁

ሶ𝐫𝑘′ ⋅ Ƹ𝑒𝑘′𝛿 𝐫′ − 𝐫𝑘′ , AMR

Noneq. Stat. Phys. Lab 
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diffusion global injection

local consumption

• WCA potential

Particle-based simulation

moving 

clusters

Vorticity=
1

𝐿2
𝑑2𝒓׬ 𝛁 ×

𝒋

𝜌
(𝒓)

2
(𝑗: current of the system)

Video
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using the circle map 

Akari Matsuki (Hokkaido University, Japan)
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We propose circle-map-based inference
P.14 

We fit data to a phase model. Which model to use?

Propose: Circle map

= ωi +
N

∑
j=1

cij sin(ϕj − ϕi + α) + ξi(t)

　
ϕi(t + T) − ϕi(t)

T

·ϕi

= ωi +
N

∑
j=1

cij sin(ϕj − ϕi + α) + ξi(t)

Naive: Kuramoto model

Clock cell network

Accurate!



Signatures of Quantum Chaos and 
fermionization in the incoherent transport of 
bosonic carriers in the Bose-Hubbard chain

P. S. Muraev ,1,2 D. N. Maksimov, 1,3 and A. R. Kolovsky 2,3

1 IRC SQC, Siberian Federal University, 660041 Krasnoyarsk, Russia
2 School of Engineering Physics and Radio Electronics, Siberian 
Federal University, 660041 Krasnoyarsk, Russia
3 Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 
660036 Krasnoyarsk, Russia

Introduction

One of the central questions to be addressed with the open BH
chain, both theoretically and experimentally, is the stationary
current of Bose particles across the chain and its dependence
on the strength of interparticle interactions. To approach the
outlined problem, we introduce a specific boundary driven BH
model which conserves the number of particles in the system.
Although the introduced model cannot be directly related to
ongoing laboratory experiments, it admits a comparative
theoretical analysis with the closed BH system.

The Model

We consider the BH chain of the length 𝐿 with incoherent
coupling between the first and the 𝐿th sites. The coupling is
described by the following Lindblad operators

෡ℋ = −
𝐽

2
෍

𝑙=1

𝐿−1

( ො𝑎𝑙+1
† ො𝑎𝑙 + H. c. ) +

𝑈

2
෍

𝑙=1

𝐿

ො𝑛𝑙 ො𝑛𝑙 − 1

d ෠ℛ

d𝑡
= −𝑖 ෡ℋ, ෠ℛ − Γ1 መℒ1 − Γ2 መℒ2,

መℒ1 ෠ℛ = ෠𝑉† ෠𝑉 ෠ℛ − 2 ෠𝑉 ෠ℛ ෠𝑉† + ෠ℛ ෠𝑉† ෠𝑉,

መℒ2 ෠ℛ = ෠𝑉 ෠𝑉† ෠ℛ − 2 ෠𝑉† ෠ℛ ෠𝑉 + ෠ℛ ෠𝑉 ෠𝑉†,

where ෠𝑉 = ො𝑎1
† ො𝑎𝐿. Thus, the master equation for the carrier

density matrix ෠ℛ reads

is the Bose-Hubbard Hamiltonian.

Results

We demonstrate that the system described above exhibits
different transport regimes. These regimes are determined by
the ratio between the tunneling and interaction constants in
the Bose-Hubbard Hamiltonian. Additionally, we will show
that the nonequilibrium many-body density matrix of the
bosonic carriers in the chain exhibits a transition from a
regular spectrum to an irregular one.

where



Delay induced transient dynamics with resonance and resurgence 
Kenta Ohira, Graduate School of Informatics, Nagoya University 

We propose simple delay differential equation whose solutions can be constructed. 

Transient oscillation appears and 
disappears with the increasing value 
of the delay showing a frequency 
resonance. 

a =  0.15, b = 6.0 τ :  (A) 0, (B) 7, (C)20, (D)∞	

Power Spectrum exactly obtained: 



	
	

The Lambert W function 

Exact Solution Construction with the W function 

Using such exact solution, various peculiar transient dynamics 
induced by delay can be analyzed 



Projective measurement

Measurement-only dynamical phase transition of topological and

Institute for Solid State Physics, The University of Tokyo, Takahiro Orito

P20.
boundary order in toric code and gauge-Higgs models

Entangled state (Bell state) Product state

or

Does any measurement reduce entanglement?

Measurement can induce entanglement

Product state Entangled state (Bell state)

or



Measurement-only dynamical phase transition of topological and

Institute for Solid State Physics, The University of Tokyo, Takahiro Orito

P20.
boundary order in toric code and gauge-Higgs models

site

tim
e 

 t

Measurement induces “dynamics”

Quantum circuit Toric code like circuit

Target
Non-equilibrium behavior of 
toric code like circuit and 
topological and boundary order

Please Visit!!



Abdul Quadir* and Haider H Jafri, Department of Physics, Aligarh Muslim University, Aligarh INDIA

Extreme Events Scaling in Finite-Size Abelian Sandpile Model
Abelian BTW Sandpile Model
• The emergent scale-invariant feature remains one of the most 
remarkable observation occurring in system.

•Such features can arise near the critical point of a continuous transition 
between order and disorder phases.

•The concept of Self-organized criticality introduced by Bak et al. (1987), 

explains the underlying origin of scaling in natural systems, which remain 
far away from equilibrium.
•Observable x can describe the events like size (total toppled sites) s and 
area (spatial extent of size) a, duration T. 

Generalized Extreme Value Distribution

Methodology 
1. Peak over threshold

2. Block Maxima 

ℱ(x; μ, β, ξ) = exp{ − [1 + ξ( x − xc

β )]
−1/ξ

}
where  are location (or mode), scale, and shape parameters, 
respectively, having bounds . Depending 
upon the valued of shape parameter can be categorised into three 
universality classes

i.    implies Fr\'echet class where the parent distribution decaying 

as a power law. 

ii.  , describes Fisher - Tippette - Gumbel (FTG) class for which 

the parent distribution decays faster than power law.

iii.   represents Gumbel class

xc, β and ξ
xc, ξ ∈ ℝ and β ∈ ℝ ∣ β > 0

ξ > 0

ξ < 0

ξ = 0

Objectives:

P(x, xc) = {Ax−θ
c x−τx,   for   x ≪ xc

rapid change,   for   x ≈ xc

•The probability distribution of the event x obeys a decaying power-law 
behavior

➡ Extreme activity distribution may also be an explicit function of the 
system size.


➡The probability, along with the parameters, may vary with the system 
size and belong to the same class of extreme value distributions.


➡We demonstrate a simple scaling analysis that can capture

this characteristic.
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Results and Discussions

We observe that:


{P(y1 = yc) ∼ N−γ1, γ1 = 1.25
P(y1 = yc) ∼ N−γ2, γ1 = 1.05

We found that: 



Rescaling: 

⟨xi⟩ = ⟨xi(N)⟩ ∼ Nα

yi =
xi − ⟨xi⟩

σi

Numerically we found that:


✓Avalanche size maxima lies into 
Gumbel family of GEVD with 



✓Avalanche size maxima lies into 

Frechet family of GEVD with 



ξ = 0.0

ξ = 0.19

Scaling Function:


ψ(xj; N) = N−γj
1
σj

ℱ(
xj − ⟨xj⟩

σj )



Abhishek Sharma 

1. Introduction 

https://www.nature.com/collections/hvczfmjfzl

https://researchfeatures.com/schooling-fish-pay-attention-
neighbours-coordinating-their-collective-movements/

Active matter in nature:

Bird Flock

Fish School

Supervisor: Dr. Harsh Soni
Indian Institute of Technology Mandi, India-175005

Active Granular Nematics
Abhishek Sharma

2. Active granular nematic system
Experimental setup:

Simulation model:

Glass lid

Schematic diagramReal experimental setup

Vibrating plate

Spherical beadPolar rod

1.2 mm

10 cm

Vibrate

Glass lid

-A. K. Sood lab

0.4 mm

Zlid = a cos(Ωt) + a + ω
Zbase = a cos(Ωt) + a

Dynamics Days Asia Pacific 13 / YKIS2024
July, 2024



3.Main key findings
Active Granular Nematics

Phase diagram in (ϕ-ℓ) plane  G2(r)

Mean square displacement ⟨Δr2⟩
Phase with periodic ordering  and distribution 
function of orientation of rods P(θ)

LATEX TikZposter

Active Granular Nematics
Abhishek Sharma∗, Harsh Soni

Indian Institute of Technology Mandi, India - 175005

Active Granular Nematics
Abhishek Sharma∗, Harsh Soni

Indian Institute of Technology Mandi, India - 175005

1. Introduction

•Active systems in nature

Ant Trail[1]Ant Trail[1] Flock of birds[2]Ant Trail[1] Flock of birds[2] School of Fish[3]

•Active systems in lab:
–Microtubule bundles

: - by Renay San Miguel, Georgia Institute of Technology

–Granular polar system

: - Kumar, Soni, Sood, SR, Nat Comm 2014

2. Active Granular

Nematic System

•Experimental
setup 

: - A. K. Sood lab

• Simulation model

Simulation model is an exact imitation of the experimental
system

– 3D simulation model

–Taken into account vertically vibrating plates with
spacing w = 1.2 mm.

–Particles follow rigid body dynamics

– Interaction: inelastic collision

– length of simulation box is 83.73 mm

–Dimensionless parameter � = a⌦2/g = 7.0, where g =
gravitational acceleration, ⌦ = angular frequency a =
amplitude of the vibrations, respectively.

–The length ` of the rod varies from 2.5 mm to 4.5 mm.

3. Order Parameter and

Correlation Functions

•Order parameter S

S =
q
hcos 2✓i2 + hsin 2✓i2

✓ is the angle of the rod with
reference axis and bracket
stand for the average over all
the rods of the system

0  S  1

•Nematic order parameter correlation function G2(r)

G2(r) = hcos [2(✓i � ✓j)]ir
where hi represents an av-
erage over all pairs of rods
separated by the distance r,
and ✓i and ✓j are the orien-
tational angles of the rods of
such a pair with respect to
reference axis.

0  G2(r)  1

•Autocorrelation function of orientation C2(t)

C2(t) = hcos [2(✓t � ✓0)]i
where hi represents an aver-
age over all the particles, and
here ✓t and ✓0 are the orien-
tational angles of the same
rod with respect to reference
axis at time t and 0 respec-
tively.

0  C2(t)  1

•Mean square displacement (MSD)

�r2(t) =

*
1

N

NX

i=1

✓
ri(t + t0)� ri(t0)

◆2
+

t0

where h...it0 implies averaging over multiple realizations
in steady steady state, where summation over i is over
number of particle, N is total number of particles,ri(t+
t0) and ri(t0) are position of ith particle at time (t + t0)
and t0 respectively.
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– Steady-state configuration for ` = 4.5 mm, � = 0.85 and
distribution function P (✓) of the orientation of rods
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•Translational mean square displacement h�r2i
–For isotropic phase of small rod with ` = 2.5 mm
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•Autocorrelation Function C2(t)
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7. Conclusion

• Isotropic phase
(`,�) "���*)���
(`,�) #

Nematic phase

•Longer rods exhibit a lower critical area fraction for the
isotropic to nematic transition, while shorter rods have
a higher critical area fraction.

•From G2(r) Long range alignment is found for the ne-
matic phase.

•A phase with a periodic ordering profile was observed
for ` = 4.5 mm and above � = 0.80.

• In the isotropic phase, the translational di↵usivity of
rods increases with concentration, while in the nematic
phase, it increases along the alignment direction up to
� = 0.80, beyond which it declines due to frozen dynam-
ics; however, the di↵usion constant perpendicular to the
alignment direction decreases with increasing �.

•From C2(t) Long lived alignment is observed in the ne-
matic phase.

8. Future Prospects

• Study of topological defects in this neamtic medium.

•Other structural properities such as structure factor, self
intermediate scattering function.

•Dynamics of other entities such as motile rod, chiral ring
in the granular nematic medium.
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1. Introduction

•Active systems in nature

Ant Trail[1]Ant Trail[1] Flock of birds[2]Ant Trail[1] Flock of birds[2] School of Fish[3]

•Active systems in lab:
–Microtubule bundles

: - by Renay San Miguel, Georgia Institute of Technology

–Granular polar system

: - Kumar, Soni, Sood, SR, Nat Comm 2014

2. Active Granular

Nematic System

•Experimental
setup 

: - A. K. Sood lab

• Simulation model

Simulation model is an exact imitation of the experimental
system

– 3D simulation model

–Taken into account vertically vibrating plates with
spacing w = 1.2 mm.

–Particles follow rigid body dynamics

– Interaction: inelastic collision

– length of simulation box is 83.73 mm

–Dimensionless parameter � = a⌦2/g = 7.0, where g =
gravitational acceleration, ⌦ = angular frequency a =
amplitude of the vibrations, respectively.

–The length ` of the rod varies from 2.5 mm to 4.5 mm.

3. Order Parameter and

Correlation Functions

•Order parameter S

S =
q
hcos 2✓i2 + hsin 2✓i2

✓ is the angle of the rod with
reference axis and bracket
stand for the average over all
the rods of the system

0  S  1

•Nematic order parameter correlation function G2(r)

G2(r) = hcos [2(✓i � ✓j)]ir
where hi represents an av-
erage over all pairs of rods
separated by the distance r,
and ✓i and ✓j are the orien-
tational angles of the rods of
such a pair with respect to
reference axis.

0  G2(r)  1

•Autocorrelation function of orientation C2(t)

C2(t) = hcos [2(✓t � ✓0)]i
where hi represents an aver-
age over all the particles, and
here ✓t and ✓0 are the orien-
tational angles of the same
rod with respect to reference
axis at time t and 0 respec-
tively.

0  C2(t)  1

•Mean square displacement (MSD)

�r2(t) =

*
1
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NX

i=1
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ri(t + t0)� ri(t0)

◆2
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t0

where h...it0 implies averaging over multiple realizations
in steady steady state, where summation over i is over
number of particle, N is total number of particles,ri(t+
t0) and ri(t0) are position of ith particle at time (t + t0)
and t0 respectively.

5. Results

•Order parameter vs time
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– Steady-state configuration for ` = 4.5 mm, � = 0.85 and
distribution function P (✓) of the orientation of rods
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•Translational mean square displacement h�r2i
–For isotropic phase of small rod with ` = 2.5 mm
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–For nematic phase along the nematic alignment direction
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–For nematic phase normal to the nematic alignment
direction
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•Autocorrelation Function C2(t)
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7. Conclusion

• Isotropic phase
(`,�) "���*)���
(`,�) #

Nematic phase

•Longer rods exhibit a lower critical area fraction for the
isotropic to nematic transition, while shorter rods have
a higher critical area fraction.

•From G2(r) Long range alignment is found for the ne-
matic phase.

•A phase with a periodic ordering profile was observed
for ` = 4.5 mm and above � = 0.80.

• In the isotropic phase, the translational di↵usivity of
rods increases with concentration, while in the nematic
phase, it increases along the alignment direction up to
� = 0.80, beyond which it declines due to frozen dynam-
ics; however, the di↵usion constant perpendicular to the
alignment direction decreases with increasing �.

•From C2(t) Long lived alignment is observed in the ne-
matic phase.

8. Future Prospects

• Study of topological defects in this neamtic medium.

•Other structural properities such as structure factor, self
intermediate scattering function.

•Dynamics of other entities such as motile rod, chiral ring
in the granular nematic medium.
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1. Introduction

•Active systems in nature

Ant Trail[1]Ant Trail[1] Flock of birds[2]Ant Trail[1] Flock of birds[2] School of Fish[3]

•Active systems in lab:
–Microtubule bundles

: - by Renay San Miguel, Georgia Institute of Technology

–Granular polar system

: - Kumar, Soni, Sood, SR, Nat Comm 2014

2. Active Granular

Nematic System

•Experimental
setup 

: - A. K. Sood lab

• Simulation model

Simulation model is an exact imitation of the experimental
system

– 3D simulation model

–Taken into account vertically vibrating plates with
spacing w = 1.2 mm.

–Particles follow rigid body dynamics

– Interaction: inelastic collision

– length of simulation box is 83.73 mm

–Dimensionless parameter � = a⌦2/g = 7.0, where g =
gravitational acceleration, ⌦ = angular frequency a =
amplitude of the vibrations, respectively.

–The length ` of the rod varies from 2.5 mm to 4.5 mm.

3. Order Parameter and

Correlation Functions

•Order parameter S

S =
q
hcos 2✓i2 + hsin 2✓i2

✓ is the angle of the rod with
reference axis and bracket
stand for the average over all
the rods of the system

0  S  1

•Nematic order parameter correlation function G2(r)

G2(r) = hcos [2(✓i � ✓j)]ir
where hi represents an av-
erage over all pairs of rods
separated by the distance r,
and ✓i and ✓j are the orien-
tational angles of the rods of
such a pair with respect to
reference axis.

0  G2(r)  1

•Autocorrelation function of orientation C2(t)

C2(t) = hcos [2(✓t � ✓0)]i
where hi represents an aver-
age over all the particles, and
here ✓t and ✓0 are the orien-
tational angles of the same
rod with respect to reference
axis at time t and 0 respec-
tively.

0  C2(t)  1

•Mean square displacement (MSD)

�r2(t) =
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where h...it0 implies averaging over multiple realizations
in steady steady state, where summation over i is over
number of particle, N is total number of particles,ri(t+
t0) and ri(t0) are position of ith particle at time (t + t0)
and t0 respectively.

5. Results

•Order parameter vs time

0
0.2
0.4
0.6
0.8
1

0 2000 4000 6000

S

t (sec)

` = 4.5 mm, � = 0.75

` = 4.5 mm, � = 0.45

` = 4.5 mm, � = 0.45 ` = 4.5 mm, � = 0.75

•Order parameter S vs area fraction � and phase diagram in
�� ` plane

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8

0.5

0.6

0.7

0.8

2.5 3 3.5 4 4.5

Ordered

Disordered

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

hS
i t

�

`
=
4.
5
m
m

`
=
4.
0
m
m

`
=
3.
5
m
m

` =
3.0

mm

` = 2.5 m
m

�

` (mm)

•Nematic order parameter correlation function G2(r)

10�2

10�1

100

100 101 100 101

�

G
2(
r)

r (mm) r (mm)

0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45

•H G2(r)

–For ` = 4.5 mm, � = 0.45

�20

�10

0

10

20

�20 �10 0 10 20
0

0.2

0.4

0.6

0.8

1

0 10 20

y
(m

m
)

x (mm)

0

0.2

0.4

0.6

0.8

1

G
2(
r)

r (mm)

x
y

–For ` = 4.5 mm, � = 0.75

�20

�10

0

10

20

�20 �10 0 10 20
0.6

0.8

1

0 10 20 30 40

y
(m

m
)

x (mm)

0.8

0.9

1

G
2(
r)

r (mm)

k
?

–For ` = 4.5 mm, � = 0.85

�20

�10

0

10

20

�20 �10 0 10 20
0.6

0.8

1

0 10 20 30 40

y
(m

m
)

x (mm)

0.7

0.8

0.9

1

G
2(
r)

r (mm)

k
?

– Steady-state configuration for ` = 4.5 mm, � = 0.85 and
distribution function P (✓) of the orientation of rods
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•Translational mean square displacement h�r2i
–For isotropic phase of small rod with ` = 2.5 mm
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–For nematic phase along the nematic alignment direction
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–For nematic phase normal to the nematic alignment
direction
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•Autocorrelation Function C2(t)
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7. Conclusion

• Isotropic phase
(`,�) "���*)���
(`,�) #

Nematic phase

•Longer rods exhibit a lower critical area fraction for the
isotropic to nematic transition, while shorter rods have
a higher critical area fraction.

•From G2(r) Long range alignment is found for the ne-
matic phase.

•A phase with a periodic ordering profile was observed
for ` = 4.5 mm and above � = 0.80.

• In the isotropic phase, the translational di↵usivity of
rods increases with concentration, while in the nematic
phase, it increases along the alignment direction up to
� = 0.80, beyond which it declines due to frozen dynam-
ics; however, the di↵usion constant perpendicular to the
alignment direction decreases with increasing �.

•From C2(t) Long lived alignment is observed in the ne-
matic phase.

8. Future Prospects

• Study of topological defects in this neamtic medium.

•Other structural properities such as structure factor, self
intermediate scattering function.

•Dynamics of other entities such as motile rod, chiral ring
in the granular nematic medium.
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Dynamics of large oscillator populations with random interactions
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Populations of globally coupled oscillators appear in different fields of physics, engineering, and life sciences. In
many situations, there is disorder in the coupling, and the coupling terms are not identical but vary, for example,
due to different coupling strengths and phase shifts. While the phenomenon of collective synchronization in oscillator
populations which attracted much interest in the last decades is well-understood in a regular situation, the influence
of disorder remains a subject of intensive current studies. The disordered case is relevant for many applications,
especially in neuroscience, where in the description of the correlated activity of neurons, one can hardly assume the
neurons themselves to be identical and the coupling between them to be uniform.

We explore large populations of rorators φk(t) (k = 1, . . . , N) interacting via random coupling functions:

µφ̈k + φ̇k = ωk + σξk(t) +H
(
{φj(t)}

)
, (1)

where each φk(t) is assumed to be a phase or an angle variable with a first-order (µ = 0) or a second-order(µ ̸= 0) in
time dynamics, respectively. Here, we assume that the individual phase dynamics of an oscillator is described within
the “standard” model as rotations with a natural frequency ωk, possibly with individual Gaussian white noises σξk(t).
In Eq. (1), we separate this individual dynamics and the coupling terms H

(
φ1(t), φ2(t), . . . , φN (t)

)
= H

(
{φj(t)}

)
.

Note that the model (1) with µ = 0 corresponds to the model of coupled phase oscillators which is most popular
because it can be directly derived for generic coupled oscillators from the original equations governing the oscillator
dynamics, in the first order in the small parameter describing the coupling. The model (1) with µ ̸= 0 are discussed
in the literature, for example, in the context of modeling power grads.

Next, we specify the coupling terms H
(
{φj(t)}

)
according to the Kuramoto-Daido and the Winfree approaches. In

both two cases, we assume that all the pairwise coupling terms are different, taken from some random distribution of
random functions. In this assumption that all the coupling terms are generally different, the coupling function in the
Kuramoto-Daido form as a function of phase differences (φj − φk) reads

HKD

(
{φj(t)}

)
=

1

N

N∑
j=1

Fjk(φj − φk). (2)

For the Winfree-type model, in a such case of the general randomness case, the action on the oscillator k from the
oscillator j is proportional to the product Sjk(φk)Qjk(φj), where Sjk(φk) is the j-th phase sensitivity function of the
unit k, and Qjk(φj) describe the force with which the element j is acting on the oscillator k:

HW

(
{φj(t)}

)
=

1

N

N∑
j=1

Sjk(φk)Qjk(φj). (3)

It is well known that, in the regular setups, the Kuramoto-Daido and the Winfree coupling functions can be
reformulated in terms of the Kuramoto-Daido order parameters Zm(t) which are defined as

Zm(t) =
1

N

N∑
j=1

eimφj(t) =
〈
eimφj(t)

〉
. (4)

One can obtain these representations representing the 2π-periodic coupling functions as Fourier series. We use these
expressions as “templates” for identifying the effective coupling functions in the case of random interactions.

Thus, we represent the functions Fjk(x), Sjk(x) and Qjk(x) describing random pairwise interactions in the
Kuramoto-Daido and the Winfree models via random complex Fourier coefficients fm,jk, sm,jk and qm,jk, respectively:

Fjk(x)=
∑
m

fm,jke
imx , Sjk(x)=

∑
m

sm,jke
imx , Qjk(x)=

∑
m

qm,jk e
imx , (5)

fm,jk=
1

2π

∫ 2π

0

dxFjk(x)e
−imx , sm,jk=

1

2π

∫ 2π

0

dxSjk(x)e
−imx , qm,jk=

1

2π

∫ 2π

0

dxQjk(x) e
−imx . (6)

Next, we assume statistical independence of the phases and the corresponding Fourier coefficients. We expect this
independence to be valid for a large population, where many different couplings influence each phase. This assumption
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Рис. 1: Behavior of the first order parameter ⟨|Z1|⟩ an ensemble of N=12×103 noisy rotators (1) with equal natural
frequencies (ωk = Ω) and coupling function F (x) = K

(
sin(x) + 4 sin(2x)

)
with K=1 in dependence on

√
σ for the

moment of inertia µ = 0.5. Green squares and blue circles are simulations without and with phase shifts,
respectively. We consider random phase shifts αjk distributed according to G(α) = (1 + cosMα)

/
2π with M = 1.

Thus, the effective coupling function is F(x) = 0.5K sin(x). For such coupling, the analytical expression (solid red
line) for the order parameter in dependence on the noise intensity σ2 can be written in the parametric (parameter

R) form: |Z1| = 2πRI20 (R)I1(R)
/(

2πRI20 (R) + µKI1(R)
)
, σ2 = K|Z1| /2R , where I0(R) and I1(R) are the

principal branches of the modified Bessel functions of the first kind with orders 0 and 1, respectively.

allows us to obtain the reduced coupling terms and conclude that the interaction is described with an effective
deterministic coupling. For the Kuramoto-Daido-type model, we arrive at the effective averaged coupling function,
Fourier modes of which are just ⟨fm,jk⟩:

1

N

N∑
j=1

Fjk(φj − φk) ⇒ 1

N

N∑
j=1

F(φj − φk) =
1

N

N∑
j=1

⟨Fjk(φj − φk)⟩ =
∑
m

⟨fm,jk⟩ e−imφkZm. (7)

For the random Winfree-type model, we have

1

N

N∑
j=1

Sjk(φk)Qjk(φj) ⇒ S(φk)
1

N

∑
j

Q(φj)=⟨Sjk(φk)⟩
1

N

N∑
j=1

⟨Qjk(φj)⟩=
∑
m

⟨sm,jk⟩ eimφk

∑
m′

⟨qm′,jk⟩Zm′ . (8)

It is worth mentioning that because the Fourier transform is a linear operation, averaging the Fourier coefficients is
the same as averaging the functions. Thus, our main theoretical result is that one can reduce the dynamics of a large
population with random coupling functions to an effective ensemble without disorder, where the effective coupling
functions are averages of the original random coupling functions.

The relations (7) and (8) are derived in the case of general randomness of interactions, which includes a situation
where different coupling functions have different shapes. For example, some oscillators can be coupled via the first
harmonic coupling function, while others are coupled with the second harmonic coupling function. A particular
situation is one where all the shapes are the same, but the interactions differ in their coupling strengths and the phase
shifts. Using (7) and (8) in the case where the randomness is restricted to coupling strength and phase shifts, one
can see that the randomness of coupling strengths renormalizes the total coupling strength, but does not influence
the shape of the coupling function. In contradistinction, the randomness of the phase shifts changes the form of the
coupling function and the effective coupling function is the convolution operator of the original one with the phase
shift distribution density. Our exhaustive numerical simulations confirm this theoretical prediction (e.g., see Fig. 1).

Summarizing the results, we have considered different models of globally coupled phase oscillators and rotators. In
the case of a “maximal disorder”, all the coupling functions are distinct and random, sampled from some distribution.
Based on the assumption of independence of the phases and the coupling functions in the thermodynamic limit,
we derived the averaged equations for the phases, where effective deterministic coupling functions enter. A more
detailed consideration was devoted to the case where the shapes of the random coupling functions are the same, but
the amplitudes and the phase shifts are random. Then, the effective functions are renormalized convolutions of the
original coupling functions and the distribution densities of the phase shifts. In particular, if the distribution of the
phase shifts possesses just one Fourier mode, the effective coupling function will possess only this mode, too. This
property allows us to check the validity of the approach numerically because, for the one-mode coupling function,
there are theoretical predictions for the behavior of the order parameters.

L.A.S. acknowledges support from the RSF (grant no. 22-12-00348).



Universality and scale-to-scale information flow in turbulence
Osaka University,  Tomohiro Tanogami

Result 1: Direction of information flow
Information flows from macro to micro

Result 2: Scale locality
Information is propagated like a telephone game

Result 3: Information flow vs fluctuations 
Information flow enhances turbulent fluctuations

Energy Cascade

Information flow

Universality

Information flow ︖



www.postersession.c om

Dynamical ergodicity breaking and scaling relations
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Abstract

1D mean-field Curie-Weiss model

Hysteresis and metastable states are typical features associated with ergodicity breaking in the first-order phase transition
which occurs in the thermodynamics limit. When the system is quenched across a first-order phase transition, the excess
work (enclosed area between the dynamic and static hysteresis) even exhibits universal scaling behavior. Nevertheless, for
a system of finite size, how will the features of the first-order phase transitions persist remains unexplored. We study the
scaling behavior of the excess work as a function of the quench rate in the Curie-Weiss model. We find the shrinking of the
hysteresis when downsizing the system, and the crossover of the scaling of the excess work from 𝑣ଶ/ଷ to 𝑣. Our study
elucidates the interplay between the quench rate and the relaxation rate (system size), which leads to the dynamical
ergodicity breaking and different scaling behavior of the excess work.

Y. X. Wu, J. F. Chen and H. T. Quan, arXiv:2401.15592 (2024).Reference

2. Finite-size system

Crossover in the scaling relation from 𝒗𝟐/𝟑 to 𝒗 in finite 𝑵 system

• We consider a linear protocol 

• Deterministic equation of motion

• Expand the EMO around the turning point for small quench rate 

where 𝐴ଵ
ᇱ ≈ −1.019 and 𝐴ଵ ≈ −2.338 are zeros of Airy functions.

1. Infinitely large system

• 𝑣ିଵ/ଷ scaling relation of the delay time and transition time

• 𝑣ଶ/ଷ scaling relation of the excess work

• Stochastic equation of motion

The transition rates under the 
external field 𝐻 are given by 

obeying the detailed balance condition.

• The average work can be computed from

• The average excess work is defined through



Phase coexistence in a weakly stochastic reaction-diffusion system
Yusuke Yanagisawa and Shin-ichi Sasa (Dept. of Phys., Kyoto Univ.)

Ø Research topic : Phase coexistence in a reaction-diffusion system
ü Macroscopic system → deterministic and continuum description
ü Mesoscopic system → fluctuation effect

Ø Model : A stochastic reaction-diffusion system
ü coupled reaction vessels
ü bistable chemical reaction

phase coexistence condition

Ref) arXiv.2403.19198



Ø Results

𝑏 !

𝑟

Phase coexistence condition

Phase coexistence condition for different regimes
ü High-hopping-rate regime :

equivalent to the reaction-diffusion equation
ü Low-hopping-rate regime :

NOT equivalent to the reaction-diffusion equation

Details will be explained in the poster !

Phase coexistence in a weakly stochastic reaction-diffusion system
Yusuke Yanagisawa and Shin-ichi Sasa (Dept. of Phys., Kyoto Univ.)

Ref) arXiv.2403.19198
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